The Higher-Genus Sigma Function and Applications

Home > Workshops > 2010 > The Higher-Genus Sigma Function and Applications

The Higher-Genus Sigma Function and Applications

 11 - 15 Oct 2010

ICMS, 15 South College Street

Scientific Organisers:

  • Chris Athorne, University of Glasgow
  • Harry Braden, University of Edinburgh
  • Victor Buchstaber, Moscow State University
  • J. Chris Eilbeck, Heriot-Watt University
  • Victor Enolski, University of Edinburgh
  • John Gibbons, Imperial College
  • Emma Previato, Boston University


  • Victor Enolskii, National Academy of Sciences of Ukraine - Introduction 

  • David Grant, University of Colorado - A Level 1 Genus 2 Jacobi's Derivative Formula and Applications to the Analytic Theory of Genus 2 Curves

  • Christian Klein, Institut de Mathématiques de Bourgogne - Algebraic Curves and Riemann Surfaces in Matlab

  • Yoshihiro Onishi, University of Yamanashi - Frobenius-Stickelberger-Type Formulae for General Curves

  • Christophe Ritzenhalter, IML - Algorithmic Number Theory and the Allied Theory of Theta Functions

  • Atsushi Nakayashiki, Kyushu University - On a Deformation of Baker's Addition Theorem

  • Victor Enolski, National Academy of Sciences of Ukraine - On the Existence of Non-Abelian Monopoles: the Algebro-Geometric Approach

  • Harry Braden, University of Edinburgh - Symmetry, Curves and Monopoles

  • Armando Treibich, Universite d'Artois - Systems of Polynomial Equations and Hyperelliptic Tangential Covers

  • Yury Fedorov, Politechnic University of Catalonia - Matrix Jacobi-Mumform Systems, Discrete Neumann Systems on Stiefel Varieties and the Addition Law on Prym Varieties

  • Jutta Kunz, University of Oldenburg - Monopoles and Monopole-Antimonopole Systems

  • Claus Lämmerzahl, University Bremen - Analytic Solutions of the Geodesic Equation in Axially Symmetric Space-Times and Observables

  • Betti Hartmann, Jacobs University Bremen - Geodesic Motion in Space-Times Containing Cosmic Strings

  • Valeriya Kagramanova, University of Oldenburg - Hyperelliptic Curve of Arbitrary Genus in Geodesic Equations of Higher Dimensional Space-Times

  • Dmitry Korotkin, Concordia University - Isomonodromic Tau-Function as Higher Genus Analog of Dedekind Eta-Function

  • Emma Previato, Boston University - Subvarieties of Moduli Spaces of Curves

  • Matthew England, University of Glasgow - Bases and Addition Formulae Associated with Higher Genus Abelian Functions

  • Chris Athorne, University of Glasgow - A Conjecture for Covariant Quadratic Identities in P{ijk} for Hyperelliptic Curves of Arbitrary Genus

  • Chris Eilbeck, Heriot-Watt University - Some Computational Challenges in Abelian Function Theory at Genus 3 and 4

  • John Gibbons, Imperial College London - Explicit Calculation of Some Reductions of the Benney Equations

  • Caroline Kalla, Université de Bourgogne - Quasi-Periodic Solutions of the Davey-Stewartson Equation and the Vector NLS Equation

  • Andrew Hone, University of Kent - Sigma Function Solutions of Bilinear Recurrence Relations

  • Elena Bunkova, Russian Academy of Sciences - Sigma Functions of Genus 2 and their Applications

  • Sergey Shpectorov, University of Birmingham - Parallel Computation of Braid Orbits

  • Andrey Mironov, Sobolev Institute of Mathematics - Commuting Ordinary Differential Operators of Rank 2