Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

Home > Workshops > 2010 > Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

 20 - 24 Sep 2010

ICMS, 15 South College Street Edinburgh

Scientific Organisers:

  • Michele Bartuccelli, University of Surrey
  • Maurizio Grasselli, Politecnico di Milano
  • Armen Shirikyan, Université de Cergy-Pontoise
  • Sergey Zelik, University of Surrey


  • Anatoli Babine, University of California - Derivation of Classical and Quantum Mechanical Effects for Charged Particles from Dynamics of PDE   

  • Edriss Titi, University of California - Computing Slowly Advancing Features in Fast-Slow Systems Without Scale Separation - a Young Measure Approach   

  • Eduard Feireisl, Academy of Sciences of the Czech Republic - Asymptotic Properties of Complete Fluid Systems   

  • Genevieve Raugel, CNRS and Université Paris-Sud - Genericity of Kupka-Smale and Morse-Smale Properties for Scalar Parabolic Equations

  • Mark Groves, Universität des Saarlandes - Existence and Stability of Fully Localised Three-Dimensional Gravity-Capillary Solitary Water Waves  

  • John Gibbon, Imperial College London - The Dynamics of the Gradient of Potential Vorticity 

  • Koji Ohkitani, University of Sheffield - Dissipative and Ideal Surface Quasi-Geostrophic Equations   

  • Guido Gentile, Università di Roma Tre - Periodic Solutions for Nonlinear PDEs in Higher Dimension 

  • James Robinson, University of Warwick - Dimensions, Embedding and Attractors 

  • Gregory Seregin, University of Oxford - How Does L_3-Norm Approach Potential Blow-Up?  

  • Peter Constantin, University of Chicago - Oldroyd-B Systems  

  • Ian Roulstone, University of Surrey - A Geometric Description of Navier-Stokes Flows 

  • Giovanni Gallavotti, University of Roma - Thermostats Models and Related PDE's   

  • Marcel Oliver, Jacobs University Bremen - Non-Dissipative Regularization of First Order Balance Models   

  • Sergei Kuksin, CMLS - Damped and Driven KdV Equation

  • Marco Romito, Università di Firenze - Analysis of a Model for Amorphous Surface Growth  

  • Arghir Zarnescu, University of Oxford - Energy Dissipation, Regularity and Statistical Dynamics for a Nematic Liquid Crystal Flow

  • Ludovic Goudenege, ENS - Stochastic Cahn-Hilliard Equation with Singularities  

  • Lihu Xu, EURANDOM - Exponentially Mixing of Stochastic 3D Navier-Stokes Equations Driven by Mildy Degenerate Noises

  • Ilia Kamotski, University of Bath - On Nonexistence of Baras-Goldstein Type 

  • Igor Kukavica, University of Southern California - Complexity of Solutions for Parabolic Equations with Gevrey Coefficients

  • Irena Lasiecka, University of Virginia - Global Existence and Asymptotic Behavior in Fully Nonlinear Thermoelasticity

  • Vittorino Pata, Politecnico di Milano - A New Theoretical Scheme for the Analysis of Equations with Memory 

  • Stefania Gatti, Università degli Studi di Modena e Reggio Emilia - A Globally Continuous Family of Exponential Attractors for Singularly Perturbed Problems

  • Alexei Ilyin, Russian Academy of Sciences - Berezin-Li-Yau Bounds with Additional Term for the Stokes Operator and the Dirichlet Laplacian 

  • Vladimir Chepyzhov, IITP - Strong and Weak Trajectory Attractors for Ill-Posed Problems  

  • Alp Eden, Bosphorous University - On Cahn-Hilliard and Convective Cahn-Hilliard Equations

  • Giulio Schimperna, University of Pavia - On a Fourth Order Degenerate Parabolic Equation 

  • Varga Kalantarov, Koc University - Attractor for the Brinkman-Forchheimer Equations  

  • Alain Miranville, Université de Poitiers - The Cahn-Hilliard Equation with Dynamic Boundary Conditions 

  • Dalibor Prazak, Charles University - Attractors for Nonlinear Parabolic Problems in Unbounded Domains

  • Gautam Iyer, Carnegie Mellon University - Large Exit Times of Diffusions with Incompressible Drift   

  • Pedro Marin-Rubio, Universidad de Sevilla - On the Existence of Pullback Mathcal{D} -Attractors for Non-Autonomous 2D-Navier-Stokes Equations