Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

Home > What's on > Workshops > Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

Dissipative PDEs in Bounded and Unbounded Domains and Related Attractors

 20 - 24 Sep 2010
 ICMS, 15 South College Street Edinburgh

Scientific Organisers:

  • Michele Bartuccelli, University of Surrey

  • Maurizio Grasselli, Politecnico di Milano

  • Armen Shirikyan, Université de Cergy-Pontoise

  • Sergey Zelik, University of Surrey


  • Anatoli Babine, University of California - Derivation of Classical and Quantum Mechanical Effects for Charged Particles from Dynamics of PDE   

  • Edriss Titi, University of California - Computing Slowly Advancing Features in Fast-Slow Systems Without Scale Separation - a Young Measure Approach   

  • Eduard Feireisl, Academy of Sciences of the Czech Republic - Asymptotic Properties of Complete Fluid Systems   

  • Genevieve Raugel, CNRS and Université Paris-Sud - Genericity of Kupka-Smale and Morse-Smale Properties for Scalar Parabolic Equations

  • Mark Groves, Universität des Saarlandes - Existence and Stability of Fully Localised Three-Dimensional Gravity-Capillary Solitary Water Waves  

  • John Gibbon, Imperial College London - The Dynamics of the Gradient of Potential Vorticity 

  • Koji Ohkitani, University of Sheffield - Dissipative and Ideal Surface Quasi-Geostrophic Equations   

  • Guido Gentile, Università di Roma Tre - Periodic Solutions for Nonlinear PDEs in Higher Dimension 

  • James Robinson, University of Warwick - Dimensions, Embedding and Attractors 

  • Gregory Seregin, University of Oxford - How Does L_3-Norm Approach Potential Blow-Up?  

  • Peter Constantin, University of Chicago - Oldroyd-B Systems  

  • Ian Roulstone, University of Surrey - A Geometric Description of Navier-Stokes Flows 

  • Giovanni Gallavotti, University of Roma - Thermostats Models and Related PDE's   

  • Marcel Oliver, Jacobs University Bremen - Non-Dissipative Regularization of First Order Balance Models   

  • Sergei Kuksin, CMLS - Damped and Driven KdV Equation

  • Marco Romito, Università di Firenze - Analysis of a Model for Amorphous Surface Growth  

  • Arghir Zarnescu, University of Oxford - Energy Dissipation, Regularity and Statistical Dynamics for a Nematic Liquid Crystal Flow

  • Ludovic Goudenege, ENS - Stochastic Cahn-Hilliard Equation with Singularities  

  • Lihu Xu, EURANDOM - Exponentially Mixing of Stochastic 3D Navier-Stokes Equations Driven by Mildy Degenerate Noises

  • Ilia Kamotski, University of Bath - On Nonexistence of Baras-Goldstein Type 

  • Igor Kukavica, University of Southern California - Complexity of Solutions for Parabolic Equations with Gevrey Coefficients

  • Irena Lasiecka, University of Virginia - Global Existence and Asymptotic Behavior in Fully Nonlinear Thermoelasticity

  • Vittorino Pata, Politecnico di Milano - A New Theoretical Scheme for the Analysis of Equations with Memory 

  • Stefania Gatti, Università degli Studi di Modena e Reggio Emilia - A Globally Continuous Family of Exponential Attractors for Singularly Perturbed Problems

  • Alexei Ilyin, Russian Academy of Sciences - Berezin-Li-Yau Bounds with Additional Term for the Stokes Operator and the Dirichlet Laplacian 

  • Vladimir Chepyzhov, IITP - Strong and Weak Trajectory Attractors for Ill-Posed Problems  

  • Alp Eden, Bosphorous University - On Cahn-Hilliard and Convective Cahn-Hilliard Equations

  • Giulio Schimperna, University of Pavia - On a Fourth Order Degenerate Parabolic Equation 

  • Varga Kalantarov, Koc University - Attractor for the Brinkman-Forchheimer Equations  

  • Alain Miranville, Université de Poitiers - The Cahn-Hilliard Equation with Dynamic Boundary Conditions 

  • Dalibor Prazak, Charles University - Attractors for Nonlinear Parabolic Problems in Unbounded Domains

  • Gautam Iyer, Carnegie Mellon University - Large Exit Times of Diffusions with Incompressible Drift   

  • Pedro Marin-Rubio, Universidad de Sevilla - On the Existence of Pullback Mathcal{D} -Attractors for Non-Autonomous 2D-Navier-Stokes Equations


Peter, AnthonyUniversxity of Surrey
Anatoli, BabineUniversity of California, Irvine
Michele, BartuccelliUniversity of Surrey
Vladimir, ChepyzhovIITP, Moscow
Peter, ConstantinPrinceton University
Alp, EdenBosphorous University
Eduard, FeireislAcademy of Sciences of the Czech Republic
Giovanni, GallavottiUniversity of Roma
Stefania, GattiUniversità degli Studi di Modena e Reggio Emilia
Guido, GentileUniversità di Roma Tre
John, GibbonImperial College London
Ludovic, GoudenegeENS de Cachan - Antenne de Bretagne
Maurizio, GrasselliPolitecnico di Milano
Mark, GrovesUniversität des Saarlandes
Alexei, IlyinRussian Academy of Sciences
Gautam, IyerCarnegie Mellon University
Varga, KalantarovKoc University
Ilia, KamotskiUniversity of Bath
Igor, KukavicaUniversity of Southern California
Sergei, KuksinUniversité Paris
Irena, LasieckaUniversity of Virginia
Pedro, Marin-RubioUniversidad de Sevilla
Alain, MiranvilleUniversité de Poitiers
Koji, OhkitaniUniversity of Sheffield
Marcel, OliverJacobs University Bremen
Vittorino, PataPolitecnico di Milano
Kavita, PatniUniversity of Surrey
Jon, PennantUniversity of Surrey
Dalibor, PrazakCharles University, Prague
Genevieve, RaugelCNRS and Université Paris-Sud
James, RobinsonUniversity of Warwick
Marco, RomitoUniversità di Firenze
Ian, RoulstoneUniversity of Surrey
Giulio, SchimpernaUniversity of Pavia
Yasemin, SengulUniversity of Oxford
Gregory, SereginUniversity of Oxford
Armen, ShirikyanUniversité de Cergy-Pontoise
Edriss, TitiUniversity of California, Irvine and The Weizmann Institute of Science
Jacques, VannesteUniversity of Edinburgh
Stephen, WatsonUniversity of Glasgow
Mark, WilkinsonUniversity of Oxford
Arghir, ZarnescuUniversity of Sussex
Sergey, ZelikUniversity of Surrey