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Multiple g-zeta values

Definition

Forsi...,si—1 = 0and Q1 (%) ..
define

5 Qi—1(t) € Q[t] and s; = 1 and Q;(¢) € tQ[t] we

o510 5101, Q1) = Z Q1(¢™) ... Qu(g™)

0<ni<--<my (1 - q”h)sl cee (1 = qm)sl € Q[[q]]

- Recall, for natural numbers s1, ..., S;—1 = 1 and s; = 2 the sum

1
C(s1,00m8) = ), el
O<ni<..<n; 1 "7

is called a multiple zeta value (MZV) of weight s1 + ... + s; and depth .

-lfs;>1andsy...,s;—1 = 1, then we get g-analogues of multiple zeta values:

lim(1 — QTG (s1, s Qs Q) = Qu(1) . Qu(1) - (51, 8)
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Algebra of multiple g-zeta values

Definition

We define the algebra of multiple g-zeta values to be the Q-algebra

Zq = <Cq<sla"'78l;Q1a"'7Ql) ’ > 07 deg(Q]) < SJ>Q

- Z4is an Q-algebra, for example it is
Cq(51:Q1)Cq(82;Q2) = Cq(s1, 525 Q1, Q2)+(q(s2, 515 Q2, Q1)+ g(s1+52; Q1-Q2) ,

and clearly deg (@1 - Q2 < 51 + s2ifdeg Q; < sjforj = 1,2.

- anotion of weight and depth is defined using a spanning set of Zq. Caution, we have
G(5:Q) = Go(s +1,(1—1)- Q).

- we have conjectures for the weight, resp. weight and depth, graded pieces of Zq similar to the
conjectures of Zagier resp. of Broadhurst and Kreimer
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Schlesinger-Zudilin model for multiple g-zeta values
We call a Schlesinger-Zudilin multiple g-zeta value the g-series

C;Z(sla"'asl) = Cq(slv"'vsl;tSIv“',tSl)'
We have
Z, =<<22(51,...,sl)|l>0, $1,...,8-1=0,8 > 1’>Q’
Z(; :<<q(517...,Sl;Q1,...,Ql)EZq ’ QlanZEtQ[t]>Q
:<<22(sl,...,81)‘l>07 S1y...,9] >1>Q'

Observe Z; — Z, is a subalgebra. We set

Zq,123 = <<2Z(sla .. '7Sl) |l = O, S1,...,81 € {1’273}>Q .

Spanning Conjectures (Bachmann-K.)
Each of the following inclusions is an equality:

o
Zq’123 = Zq o= Zq.
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Motivation

The final aim is to prove the conjecture Z, 123 = Z, along the path of Brown’s proof for
Hoffman’s conjecture, i.e., the multiple zeta values ((s1, ..., Sq) with s; € {2, 3} span the
spaces of all multiple zeta values. A major first step in this direction is the following conjecture:
Structure Conjectures (Bachmann-K. + Burmester + ...)

(i) Zqis afree polynomial algebra

(i) Z4 = gMF ® H,, for some commutative Hopf algebra (Hq, LI, A,,)

(iii) (Hq, W, Ay,) = U(bmg)" for some Lie algebra (bmg, {, },)

(iv) we have a coaction A, : Z; — H, ® 2,

- understand the restriction of A, to Z4.123
- find a multiple g-version of Zagier’s theorem

- refined conjectures on the generation of the Lie algebra bmg would imply the beautiful
dimension conjectures for Z,.

- understand the relations in between the 123-multiple g-zeta values
We worked out this circle of ideas for formal multiple zeta values, see

https://arxiv.org/abs/2406.13630.
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Post-Lie algebra
Definition 1 (Post-Lie algebra)

A post-Lie algebra (g, L], >) is a Lie algebra (g, [_, _]) together with a bilinear map
>: g®g — gsuchthatforallz,y,z € g

vy, 2] = [z>y, 2] + [y, 2> 2] 0

[z,y|>2z=2>(y=2) — (z>y) >z —y>(z>2) + (y>x) = 2. )

- Post Lie algebras are currently under research in various fields of mathematics (e.g.
Zentralblatt search found "post-Lie algebra" in 103 documents )

- We will present and study further examples that are motivated by multiple zeta values or its
@-analogs in below.

Proposition 2
Given a post-Lie algebra (g, [,_],> ) then (g, {_, _}) with
{z,y} =2y —y=z+[2,9]

is also a Lie algebra. We call this Lie bracket the post-Lie bracket .
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Extension of the post Lie product

Definition 3
Let (g, [_, _], =) be a post-Lie algebra. We extend the post-Lie product to a bilinear pairing
=: U(g) ®U(g) — U(g) via
Ac=1=(4]1)
1I=A=A
2Ay=a(Axy) — (z=A) >y
A=BC = (A(l) >B) (A(Q) >C)

forall A, B,C € U(g) and z,y € g.

«©

°

Definition 3 yields a unique and well-defined bilinear product on 4(g).
Remark

Letz,y, z € g and zy, yx € U(g), then (2) corresponds by (5) to the identity

[z,y] >z = (zy — yx) > 2.
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Theorem (Ebrahimi-Fard, Munthe-Kaas, Lundervold)

Let(g,[, ],=) be a post-Lie algebra.
(i) The Grossman-Larson product onlU(g) given by

A®B = Aw)(Ap)=B) forA, Bel(g) @

is associative.

(i) (Z/I(g)7 ®, A) is a Hopf algebra.

Iltis ((g), conc, A, =) a post-Hopf algebra and (Z/l(g), ®, A) its subadjacent Hopf algebra.

Theorem (Ebrahimi-Fard, Munthe-Kaas, Lundervold )
Letg = (g,[_,_], =) be apost-Lie algebra and let & = (g,{_,_}) be the related Lie algebra
from Proposition 2. Then there is an isomorphism of Hopf algebras

(U(g), conc, A) = (U(g),®, A)

a1a9 - Ap — AP a2 ®...an,.

Details can be found here https://arxiv.org/abs/1410.6350v2.
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Remark
(i) Leta,be g.Since A(a) =a®1+1®awe get
a®b=ab+a=b
and thus by symmetry the post-Lie bracket from Proposition 2 satisfies
{a,b} = a®b—b®@a. (8)
(i) FA(a) =a® a, then

a®b=a(a=>b).

Remark 4
Let A, by - - - by, € U(g). We can calculate A@ by . . . by, by applying (6) iteratively

Then, each factor A; 1 = b; can be determined iteratively using (5).
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Assume that (g, [ , |, >) is a graded post-Lie algebra, i.e., we have g = (D,,~ g,, with each
g, finite dimensional and [g,,, 9,,,]» 8, = 8, < pry, forallm,n = 0. The grading on g
induces a grading on the universal enveloping algebras U (g) and I/ (g) as Hopf algebras.

We may summarize our discussion in the commutative diagrams:

(U(8)” s, Adec) <2555 (U(g), come, Ay)
mod productsl ]\ (1 O)

(indecU(g)"), ) «~TE22s (g,[,]).

Here, indec(U(g)" ) is the Lie coalgebra of the indecomposables elements of I/ (g) .
We analyse the change of the picture (10) by altering the Lie bracket with a post-Lie structure:

(U(g)¥,w, Ag) +Z22280 (U(g),®, Aw)

mod productsi ]\ (1 1 )

(indec(®(9)*),0g) +T5525 (g, {, ).
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Free Lie algebras

Notation 5

- V = {wg,v1,...}is acountable set, whose elements v; we call letters
- V* is the set of words w with letters in V'

- 1 denotes the empty word, we let 1 € V'*

- Q<V> is the non-commutative free algebra equipped with concatenation
- Lie(V) € Q(V')is the free Lie Algebra on the set V'

- U(Lie(V)) = (Q(V), conc, Ay,) is the universal enveloping algebra

We fix a duality pairing (| ) and identify V'V with V via v — (v] ).
The map dual to A}, is the usual shuffle product LI, which is recursively defined on V'* by
luw=w=wlW1land

v;wy Wojwe = v;(wi Wojwse) + vj(viw W ws)

for v;,v; € V and w, w1, we € V* and extended by Q-linearity.
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Calculating the coproduct Ag

A naive way determine the coproduct Ag is to calculate tables of a large number of @®-products
and then use the duality

(Ag(w) | f®g) = (f@g]|w)

forallw € V* and f, g € V* to collect all the coefficients of Ag(w). In fact it suffices to
calculate

(<1irr (w) | f®V) = (fev|w)

foralwe V* feV*andveV.

Theorem 6

Let V be an alphabet and ( Lie(V), [, ], =) be a graded post-Lie algebra. Then, we have for
and A e V*

Ag(A) = > (A1®1) . <™(A) W, - We <" (A4y).
A=A;A,
Here, <™ is the dual map to the triangle map = restricted to letters in the right factors. The
product LLI4 on Q<V>®2 is the shuffle product on the left factor and concatenation on the right
factor.
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A nonassociative point of view on free post-Lie products

Recall a set with a binary operation is called a magma. We consider here the free magma

M (V') generated by a set V' with operation » : M (V) x M (V) — M (V). The Q-vector
space M (V') q spanned by M (V) is nothing else than the free noncommutative,
nonassociative algebra generated by V.

A derivation is a linear map d : M (V)q — M (V)q such that d(a * b) = da x b + a * db.
Let (M (V')q, *) be the free magma on V. Assume, we are given another map

> MV)gxV —->MV)q (12)

(t,0) > tev,

then for each t € M (V') we extend ¢ > to a derivation on (M (V')g, *). This allows us to view
> as a bilinear pairing on M (V)q.
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Notation 7 (Non-commutative setup)
Let (M (V'), *, =) as before. Denote by (Q(M (V')), -, A) the free associative,

noncommutative Q-algebra generated by M (V') with its natural coproduct. We extend the pairing

= on M (V')q further to a bilinear pairing
>: QUM (V) x QM (V)) — QM (V)
via the requirements

A1=(A]|1)

1=A=A
(z-A)py=z(Aey) - (r=A)>y
A=(B-C) = (Ag)=B)(Ap) =0)

forall A, B,C' € Q{M(V)yandz,y € M (V).

—_ o~ o~
—_
o

= =z =2
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From magmas to Lie algebras

The identity on V' extends naturally to homomorphism

Lie : M(V)Q - Lie(V)Q
axbes [0,
whose kernel is the ideal I1,;c generated by z x z and (z *x y) * z + (y * 2) *x + (2 * x) * ¥.
We use the same notation for an element = € M (V') q as well as for its class = € Lie(V).
Proposition

The above described extension of amap = : M (V)q x V' — M (V)q determines a post-Lie
algebra (Lie(V)7 [,],> ) if and only if = descends to a bilinear pairing on Lie(V) and for all
z,y,2€ M(V)q

Lie((:c*y—x~y+y-x)>z) =0
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Application 1: Ihara bracket and Goncharov coproduct

As a motivation we consider a Lie algebra, which is well-known in the theory of multiple zeta
values.

Definition
Keep the notations 5and 7. Let Vo < V' = {vo7 VU1, V2, } be a subset and consider

> M(V)g xV — M(V)q

0 veV
(t7’l))'—>
vt veV\Vp.

We denote by = also its extensions to a derivation on M (V')g and to Q{M (V')).

Lemma

The pairing = descends to Lie(V).

Proof: Obviously, it is necessary and sufficient for = to descend to a pairing on Lie(V), that
Itie > M (V)q € Inie and M(V)q & I1ie S Ivie. The first condition follows by definition of
7 and the second holds as ¢ =7 is a derivation for all t € M (V')q Ol
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Lemma 8
We have for v € V\Vj

(tl © 600 © tn) >rv = (((’U *t1) *tg)...) *tn o

Proof. We prove the claim by induction. Assume it holds for n — 1 factors, then by construction
and using (16)

(ty oo tp) 10 =t > ((t2 S L= u) - ((t1 r(ty o tn)) B v)

= (1= v) *t2)..) x tn + Z (vxtg)...) x (t1 7 tz))) *
- Z (v xta).) * (b1 =1 t))..) * Ly

= (((v*ty) *ta)...) * ty.
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Theorem
The triple ( Lie(V),[,_],>r1 ) is a post-Lie algebra. J

Proof. We have by definition of =
(t1 *ta) v =v* (t * t2)
and by Lemma 8
(t1 - to—tg t1) v = (v*xty) *tg — (Vrty) *x g
Applying the Lie-map gives by means of the Jacobi relation

Lie (v * (t * tg) — ((y *xt1) xto — (v *tg) *tl))

= [U7 [th tQ]] - [[U’ tl]a t2] + [[U7 t2]’ tl]
- 0.
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We write {_, _}; for the induced post Lie bracket and call {_, _} the Ihara bracket. The
universal algebra U (g) is isomorphic to the free non-commutative algebra Q¢V") and the
extension 3 yields a bilinear pairing

> VY x UV — Q(V).
Because of Remark 4 it suffices to understand A =7 v for A€ Q{V)andv € V.
Proposition 9
Forall A € V* and v € V, we have for = given by Definition 3
A >rv = X(A, ’U) S(A(l))UA(Q),

where

514,1’ if ve ‘/05
X(4,v) = {
1, else,

Proof. By Lemma 8 and the definitions of the coproduct A and the antipode .S for Q(V") we
have for v € V\Vp andfor A = ay - - - a,, € U(Lie(V)), where ay, . . ., a, € Lie(V), that

AI>IU = [ . [[v,al],ag], SN ,an] = S(A(l))UA(Q)
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explicit Grossman-Larson product for the lhara bracket

Theorem 10
Let Ae Q(V)yand w = wyv;, - - - Wav;,Wa+1 € VF withwy, ..., wgt1 € V and
Viyy .-, 0i, € V\Vy. Then

A®w = AqywiS(Aw)vi Agyws - waS(Aa)) vigA@dr1)Wat1-

Proof. We deduce from (7) and several applications of (6) that
A®w=An)(Ap) =rw)

= Ay (A =rwivi,) - (Awsr) =1 wavi,) (Agas) =1 wayi)

= Amywi (Apy =10y, ) - wa(Ager) =1 Viy) Wagt
Now recall Proposition 9, i.e. we have for v; € V\Vj that
A >rv; = S(A(l))UiA(Q),

which in turn proves the claimed formula. J
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A variation of Goncharov’s coproduct

Proposition 11

Foray,...,a, €V, we have

<} (ay---ap) = 2 I(S(ar---aj—1) Waji1 - an; aj) ®aj.
j=1

Here I: Q(V) x V' — Q(V) is the Q-linear map defined for words w € V* and a letter
v eV by

I(w;v) = x(w,v)w.
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With the the explicit formula for the reduced triangle map in Proposition 11 and Theorem 6, we
are able to describe the dual coproduct A for the Grossman-Larson product &), corresponding
to the Ihara bracket.

Theorem
Forai,...,a, € V, we have
Ayar - an) =
> (al ooy WI(S(@ey41 -~ Bjp—1) W G5y 11+ G358, ) LU=+
0<k<n

0<i1 <j1<i2<Jo < - <ip<jp<n

LUI[(S(aik"'l cr 1) Wag, 4 "an%ajk)) ®aj, ---aj,.

Remark

In fact A, equals precisely the Goncharov coproduct in the case V' = {x¢, z1} and V) = {x¢}.
.
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Application 2: The ari bracket of Ecalle

Let V = {vg, v1, va, ...} and Vj = {vg}. There is a one-to-one correspondence of M (V)
and planar, rooted, binary trees with leaves labelled by elements of V. For example the tree

N
A YEAN
VAN

Viy Uis
corresponds to ((v;, * v;,) * (vi5 * (v, * v;,)). If we order the leaves of such a tree, e.g.

from left to the right, then we may consider a tree ¢ with d leaves as a map V¢ — M (V). More
generally we can even restrict ourselves to subsets of leaves with a fixed property.
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Elements as function on indices
In the following we write ¢(k), whenever we consider the element t € M (V') as a function
t: Vi M(V)

(ka""de) Ht(vkl,...,vkd).

For example, if t = vy * ((vg * v1) * (Vg * vg)), then t = ¢(vy, vy, v1, V4, V) and
t(v7, va, v, Vg, v13) equals vy * ((vg * vg) * (vg * v13)). Even more generally we view such
t as a function on the indices
t:INY - M(V)
K £(k),

where t(k) is given by t(vg,, . . ., Uk, )-
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Notation

- N=1{0,1,2,3,...}

k| =k + .+ kgfork = (ky, ..., kg) € IN¢

- 1<kholdsfork, 1€ IN% it l; < k; foralli = 1, ...,d
- we set (_01) = (_01) = 0 and (j) =1

Definition
Fork = (k1,...,kq), 1= (l1,...,1q) € IN% we define their ari multiplicity by

kp—1 kg — 1
— (_p) I+ (R (e T
M1 = (1) -1 lo—1

Observe that, if 1 > k, thenmy 1 = 0. Alsomy | = 0,ifk; = Oand l; # Oorif k; > 0 and
l; =0.
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Definition 12
Keep the previous notation and consider
Bq: M(V) xV - M(V)q
0 Vg = Vo

Y, Myl Vayk—1 * (1) va # vo
1eNC(0)

(t(k)’ Ua) =

and denote > also its extensions to a derivation on M (V') g and to Q{M (V)).

Lemma
The pairing =, on M (V')q descends to a bilinear pairing =, on Lie(V").

Proof: We need to check I1,ie =4 M (V)q S ILje. O
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Lemma 13
We have for v, # Vg

(t1<k1) © 500 © tn(kn)) >4 Vg

= 2 () (0 gy 000 a0 )
1<ly,...,1, i=1 =

Idea of proof. Using the general properties of =, we obtain an equivalence of Lemma 13 and the
following identity for the ari multiplicities :
Letk,1,n € IN? and a, b € IN, then we have

k|+|r _
Z (—1)| I+ ‘mk—n-‘rl,r—n-‘rl'ma+|k|7|r\,b = Mg, b—|k—n|-
n<r<k

This identity for binomial coefficients can be proven by standard methods. ]
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Theorem
Let =, be given by Definition 12, then (Lie(V), L, ], =a ) is a post-Lie algebra. J

Proof. Setk = (kj,ks) and1 = (11, 15). We have by definition of = that

(t1(k1) * ta(ka)) a0 = D ey Vappioy * (1 (1) * £2(12))

1<1<k
and by Lemma 13
(t1(k1) - ta(ke) — ta(ke) - ta(k1)) =q v
= Z my | ((Ua+|k—1| *t1(11)) * t2(la) — (Vayk—1| * t2(l2)) * t1(11))

1<I<k
Applying the Lie-map gives by means of the Jacobi relation for each 1 = (11, 15)

Lie (Ua+|k—l\ * (t1 (1) * t2(12)) = ((Vas gy * t1 (1)) * ta(l2) — (vau ey * 2(l2)) * 75101)))

= [Varpe—1s [E1 (1), t2(02)]] = [[Vas -1 t1 (1)1, 22(12)] + [[Vayiie—1)s t2(l2)], t1(11)]
=0.
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Definition J

We write {_, _} for the induced post Lie bracket and call {_, _},, the Ecalle ari bracket.

The universal algebra U (Lie(V)) is isomorphic to the free non-commutative algebra Q{1 and
the extension of =, which we described in Definition 3, yields a bilinear pairing

e : V) x V) — V).

Remark

We call the induced post Lie bracket the ari bracket, as it translates into the ARI Lie bracket of
polynomial bimoulds using a certain map Q{V) — Q[ X1, Xa, ..., Y7, Y5, ...]. For more
details we refer to the thesis of A. Burmester.
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Proposition 14
Forall A(k) € Q(V) and v; € V, we have

0 if v; =g
Al)eev =95 mact Al Jvigpe-1All) it vi # vo.
1

Here we use the notation A(A(k)) = Ay (k) ® Ag) (k) = A(k(1)) @ A(kg)).

Proposition 15

Let A(k) € U(g) and w = w1 v;, - - Wav;, War1 € VF withwy = v)', ..., way1 = v?
and vj, ,...,v;, € V\{vg}. Then

AK) @aw =Y, mic AKa)wiS(A2)) Vi, + e+ =) +1y | AlL3) w2
leIN¢(k)

wdS(A(l(Qd)>)vid+|k(2d)+k(2d+1) [=112a) +1(2d+1) |A(1(2d+1))wd+1'
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Some observations

Proposition

(i) tis (Q(v1,v2,v3, ...), ®q, A) a sub Hopf algebra of Ho = (QCV), ®,, A).
(i) Itis (Q(mo, x1), @), A) = (Q<vo, V1), @q, A) a sub Hopf algebra of H,,.

Proposition

- Lett = 0, then the space

04(vs) = {w € Lie(V\{vo}) | w4 v; = 0}

is a Lie subalgebra of (Lie(V), {, }a)-

- Forallw € 0,(v1) and for all b € Lie(vg, v1) we have {w, b}, = 0.

Corollary

Consider U (0,(v1)) as a Hopf subalgebra of H.,. Then for any w € U (0,(v1)) and any
b € Q{vg, v1), we have

wWHe b = b®, w.
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Proposition 16

Fork = (ki,...,kq) € N?with d > 1, we have

<lilrr(1}k1 ...’de) = Z Z

i=11=(1y,...,[3,....1)eN?~1
1= or |l|<k; —1

Mgt 1ke (S(Ukﬁ-h e Uky_y ) W (Uki+1+li+1 s Ukn+ln)) @ Vg, —1]-

Observe the case 1 = (F only occurs if d = 1 and then

<(v) = 1®v
for any letter v € V.

If d > 2 and we have k; = 0 for some 1, the summation index of the sum is empty and hence
the sum vanishes by convention. So for any word w with at least two letters, the letter v will
never occur as a right factor in <t'*

T (w). In particular, <™ (v7*) = 0 forall m > 2.
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Having a formula for the reduced triangle map, we can use Theorem 6 to give an explicit formula
for the coproduct A, dual to the Grossman-Larson product ®,,.

Theorem
Fork = (ki,...,kq) € N we have

Aa(vkl t de) = Z Z MEi,0in +1,ki1dn

0<n<d 1=(11,...,1,)
0<i j1<1 o< Ll <Jn<d 7=
11<J1x12<]2 In<Jn 15:(1i5+1,_,,,ljs7__,’li5+1)

L= or [15|<k;,—1
(U’ﬁ o Ug,, W S(Uki1+1+lil+1 T vkj171+lj171) W Uk 1+l 1 7 Ok +1p L
c WUk "'%Hd) ®Ukjlf|11| T Uk L,

where we formally set 4,11 = d.

By the discussion after Proposition 16, a v at the s-th position in the right factor corresponds to
is+1=1d5,1andly = .
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Proposition 17
Let Biog = Q<’U1, Vg, U3> (e Q<V>, then

Ag : Bias — Q(V) ® Bias.

In particular, A, of a 1-2-3 word has only 1-2-3 words as right factors.

By observation we found the following conjecture, which we checked then numerically for a large
number of words.

Conjecture

For k > 0 we define the k-level of a word v, - - - Uk, by
elevel(ve, - vi,) = d = #47 | ;= b}

and extend this to an increasing filtration on Q(V"). For w € Q(V), write as usual
Ay (w) = w(1) ® w(z). Then, we always have

k-level(w(g)) < k-level(w).

If w € Q{vy,va,v3), then conjecturally the right tensor product factors of A, (w) have not
more indicies distinct to 2 than w. This is a another indication that there might be a generalization

of Brown’s result on a generating set for multiple zeta values.
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Application 3: The uri bracket
Recall my ) = (—1)kI+1. (];11:11) e (];::11) fork,1 e IN¢. Set

C*(n) ={ae N, ||a] = n}.
For any threshold a € N+ o we have a indicator function on C*(n), which is given by

. _ Soar
ind,(a) 1<rJn<1£1(a) {jlai+---+a; =a}

By convention we set ind, (a) = 0, if eithera = &, a > |a.

Definition 18

Given a composition ¢ and a threshold a, then their uri multiplicity is given by

fa,o = Bi(l(@), inda(v)),

where By, is the k-th Bernoulli number and

s - 5 (1)

(17)
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Definition
Keep the previous notation and consider
>y M(V) XV — M(V)Q
0 Vg = Vo
(t(k)v Ua) = Z Mk 1 la,o Vg * (vOtz * (% (Umﬂ 5 t(l)))) Vg 7 Vo

1<l<k
aeC(a+|k|—1])

and denote t,, also its extensions to a derivation on M (V')q and to Q(M (V)).

Lemma
The pairing =, on M (V')q descends to a bilinear pairing =, on Lie(V).

Proof: We need to check I1ie =y M (V)q S Iie. O

36/43




Lemma 19
Leta > 0, then

£(ax)
(t1(k1) - ta(ke)) Buva = X M, 1, My 1y 2 Ba,e 2 Heoi B
1<li<k; aeC(at|kz|—|12]) i=1 BeC(a;+|ki|—|1])
1<lo<ks
Vay * ( * (Uai—l b ( (v51 i (U,Bz b ( b (Uﬂz(m L tl(ll))))) *(Uai+1"' 2 (Uae(u) b t2(12))))))

2-th position

Idea of proof. Both sides are a linear combination of elements in M(V) and thus we need to
compare both sides by comparing their respective coefficients: For k,n € IN%, ¢ € IN and
5 € IN®, we have

k|+
DU EDM T e D) Mg ey
n<r<k peCs(a+|k—r|)

= Mg,|8|—|k—n| K|3|—|k—nl|,5

O
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Theorem 20
If the Bernoulli numbers satisfy the threshold shuffle identities, then for the above =, the triple
(Lie(V), [ == ) is a post-Lie algebra.

Idea of proof: Extracting the image of the Lie-map gives linear combination of elements in
Q<V> on each side of the desired equality. Thus we need to compare both sides by comparing
their respective coefficients. We have implemented these threshold shuffle identities and checked
them for thousands of cases in various weights and depths. ]

Definition

We write {_, _},, for the induced post Lie bracket and call {_, _},, the uri bracket.

Remark
The uri bracket is related to the (expected) Lie bracket

uri(_, _) = ganity, (ari(ganitpoc (L), ganit, (7))

on symmetril, polynomial moulds.
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Open problems
- prove that the Bernoulli numbers satisfy the threshold shuffle identities
- extend Lemma 19 to products with more than two factors

- find a closed formula for <0, and thereby a closed formula for A,

A nice model for multiple g-zeta values is parametrized by the quotient of (Q<V>, LLI) by an
involution. The order of summation is chosen in such a way that the coproduct A, dual to ®,,
descends (experimentally).

Future directions

(i) Prove that Burmester's bmy is a sub Lie algebra of (Q{(V), {_, _}..).

(i) What is the extension of Zagier's theorem we need for a proof of the 1-2-3 conjecture?
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Identities for Bernoulli numbers via threshold functions on

compositions
Recall

C*(n) ={ae N, ||a] = n}.
For any threshold a € N+ ¢ we have a indicator function on C*(n), which is given by

1 = 1 ] > A 18
ind, (a) 1<r}rlgl?(a) {jlai+---+a; =a} (18)

By convention we set ind, (a) = 0, if eithera = &, a > |a.
In the following we want to study some properties of ind, (a). Given any formal power series

B(z,y)= ), B(m,n)a™y",

m,n=0
with the normalizing condition B(1, 1) = 1, we can define multiplicities by
Hf,a = B({(a),indy(x)), aeN,aeCl. (19)

Here, we set 117, = 0if ind, () = 0.
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We extend the multiplicity ;LaBl linearly in the second argument, i.e., for a formal sum of indices
N1y + NoOa We set

B _ B B
lua,nlal tngans — N1 :u‘a,al + ng Ha,ous-

The concatenation of two indices k, Lis given by the index (k1 ..., Koqicy; 11, -+ Loy ) We
denote it by (k, 1) and we extend this pairing bilinear. We combine these convention with the
shuffle product of indices, for example

B B B B
Ha,(4,3.2)w(2)) = H2,(4,2(3,.2,2)+(23,2) = 2H2,(4,3,2,2) T H2,(4,2,3,2)-

By a decomposition of an index k we understand a pair of indices k1, ko such that

k = (kq,ks), where we allow either k1 or ks to be the empty index, i.e.,

k = (,k) = (k, ) is allowed in this context. Given an index k = (k1, ka2, ..., kq) its
reversed index is given by k = (—1)? (kg ..., ko, k1).
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Definition 21

We say a multiplicity ,uf:a given by (19) satisfies the threshold shuffle identities if the following
equalities hold

(i) Forallo € Ni(g ,0eN (0) and all dy, d> € N< ¢ we have that
B _ B B B B
K oe = Z i“\az|—d1,az ‘ut,(a'l\_uel,ld'z‘*(il,92) + H165|—ds,0, ut,(dlw917\92|*dzs02)’
(o1,02)=0
(61,82)=0
where t = |o| + |0] — dy — d2,

(i) Forallo € N;g), TE N 0 € Ne(e) and all di, d> € N< ¢ we have that

0 (o1 OZZ):O_M|O'2‘+‘TI‘—dl;UQM?lMt,(01m92,|02‘+‘71‘—d1,‘I'QLLI31)
(T1,72)=T
(61,02)=06

B B
+ o ' —
/ [T2|+[01|—d2,T2106, #tr(olmg27‘7-2H"61|7d270'2LU7'1)7

where t = |o| + |T| + |0| — d1 — doa.

Observe that the identities in (i) and (ii) are homogeneous with respect to scaling of each
B(¢(a),ind, () by a factor t() 1,
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The examples we calculated with PARI/GP indicate that the uri multiplicities are in fact the only
non trivial multiplicities as in (19) satisfying the threshold shuffle identities up to scaling. More
precisely, for t € R\{0} set

y2x€zt

Bu(r9) = ey = 2 Bl

and define a family of multiplicities as in (19) by

m,n=0

o = B ({(a0),indq (), a€N,aeC.
Of course, the case t = 1 gives the uri multiplicities.

Conjecture

We conijecture the following holds:
(i) Forallt # O the multiplicities ui,a satisfy the threshold shuffle identities from Definition 21.

(i) If a multiplicity N’f,a given by (19) satisfies the threshold shuffle identities from Definition 21,

then pZ,, = 4 foralla € N, a € C and

B(z.y) = | %Y if B(2,1) =0,
T,y) = ~
’ Byse)(@y) i#B(2,1) #0.
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