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Multiple q-zeta values

Definition

For s1 . . . , sl´1 ě 0 and Q1ptq . . . , Ql´1ptq P Qrts and sl ě 1 and Qlptq P tQrts we
define

ζqps1, . . . , sl;Q1, . . . , Qlq “
ÿ

0ăn1ă¨¨¨ănl

Q1pqn1q . . . Qlpq
nlq

p1 ´ qn1qs1 ¨ ¨ ¨ p1 ´ qnlqsl
P Qrrqss.

- Recall, for natural numbers s1, ..., sl´1 ě 1 and sl ě 2 the sum

ζps1, ..., slq “
ÿ

0ăn1ă...ănl

1

ns1
1 . . . nsl

l

is called a multiple zeta value (MZV) of weight s1 ` ... ` sl and depth l.

- If sl ą 1 and s1 . . . , sl´1 ě 1, then we get q-analogues of multiple zeta values:

lim
qÑ1

p1 ´ qqs1`¨¨¨`slζqps1, . . . , sl;Q1, . . . , Qlq “ Q1p1q . . . Qlp1q ¨ ζps1, . . . , slq .
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Algebra of multiple q-zeta values

Definition
We define the algebra of multiple q-zeta values to be theQ-algebra

Zq :“
A

ζqps1, . . . , sl;Q1, . . . , Qlq
ˇ

ˇ l ě 0, degpQjq ď sj

E

Q
.

- Zq is anQ-algebra, for example it is

ζqps1;Q1q¨ζqps2;Q2q “ ζqps1, s2;Q1, Q2q`ζqps2, s1;Q2, Q1q`ζqps1`s2;Q1¨Q2q ,

and clearly degQ1 ¨ Q2 ď s1 ` s2 if degQj ď sj for j “ 1, 2.

- a notion of weight and depth is defined using a spanning set of Zq . Caution, we have
ζqps;Qq “ ζqps ` 1, p1 ´ tq ¨ Qq.

- we have conjectures for the weight, resp. weight and depth, graded pieces of Zq similar to the
conjectures of Zagier resp. of Broadhurst and Kreimer
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Schlesinger-Zudilin model for multiple q-zeta values
We call a Schlesinger-Zudilin multiple q-zeta value the q-series

ζSZ
q ps1, . . . , slq “ ζqps1, . . . , sl; t

s1 , . . . , tslq.

We have

Zq “
@

ζSZ
q ps1, . . . , slq

ˇ

ˇ l ě 0, s1, . . . , sl´1 ě 0, sl ě 1,
D

Q
,

Z˝
q “

A

ζqps1, . . . , sl;Q1, . . . , Qlq P Zq

ˇ

ˇ Q1, . . . , Ql P tQrts
E

Q

“
@

ζSZ
q ps1, . . . , slq

ˇ

ˇ l ě 0, s1, . . . , sl ě 1
D

Q
.

Observe Z˝
q Ă Zq is a subalgebra. We set

Zq,123 “
@

ζSZ
q ps1, . . . , slq

ˇ

ˇ l ě 0, s1, . . . , sl P t1, 2, 3u
D

Q
.

Spanning Conjectures (Bachmann-K.)
Each of the following inclusions is an equality:

Zq,123 Ď Z˝
q Ď Zq.

4 / 43

https://arxiv.org/abs/1708.07464


Motivation

The final aim is to prove the conjecture Zq,123 “ Zq along the path of Brown’s proof for
Hoffman’s conjecture, i.e., the multiple zeta values ζps1, ..., sdq with si P t2, 3u span the
spaces of all multiple zeta values. A major first step in this direction is the following conjecture:

Structure Conjectures (Bachmann-K. + Burmester + ...)

(i) Zq is a free polynomial algebra

(ii) Zq – qMFbHq for some commutative Hopf algebra pHq,�,∆uq

(iii) pHq,�,∆uq “ Upbm0q_ for some Lie algebra pbm0, t , uuq

(iv) we have a coaction ∆u : Zq Ñ Hq b Zq

- understand the restriction of ∆u to Zq,123

- find a multiple q-version of Zagier’s theorem

- refined conjectures on the generation of the Lie algebra bm0 would imply the beautiful
dimension conjectures for Zq .

- understand the relations in between the 123-multiple q-zeta values

We worked out this circle of ideas for formal multiple zeta values, see
https://arxiv.org/abs/2406.13630.
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Post-Lie algebra

Definition 1 (Post-Lie algebra)

A post-Lie algebra
`

g, r_, _s,Ź
˘

is a Lie algebra pg, r_, _sq together with a bilinear map
Ź : gb g Ñ g such that for all x, y, z P g

xŹry, zs “ rxŹ y, zs ` ry, xŹ zs (1)

rx, ys Ź z “ xŹpy Ź zq ´ pxŹ yq Ź z ´ y ŹpxŹ zq ` py Źxq Ź z. (2)

- Post Lie algebras are currently under research in various fields of mathematics (e.g.
Zentralblatt search found "post-Lie algebra" in 103 documents )

- We will present and study further examples that are motivated by multiple zeta values or its
q-analogs in below.

Proposition 2

Given a post-Lie algebra
`

g, r_, _s,Ź
˘

, then pg, t_, _uq with

tx, yu :“ xŹ y ´ y Źx ` rx, ys

is also a Lie algebra. We call this Lie bracket the post-Lie bracket .
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Extension of the post Lie product

Definition 3

Let pg, r_, _s,Źq be a post-Lie algebra. We extend the post-Lie product to a bilinear pairing
Ź : Upgq b Upgq Ñ Upgq via

AŹ1 “ pA | 1q (3)

1ŹA “ A (4)

xAŹ y “ xŹpAŹ yq ´ pxŹAq Ź y (5)

AŹBC “
`

Ap1q ŹB
˘`

Ap2q ŹC
˘

(6)

for all A,B,C P Upgq and x, y P g.

Definition 3 yields a unique and well-defined bilinear product on Upgq.

Remark

Let x, y, z P g and xy, yx P Upgq, then (2) corresponds by (5) to the identity

rx, ys Ź z “ pxy ´ yxq Ź z.
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Theorem (Ebrahimi-Fard, Munthe-Kaas, Lundervold)

Let pg, r , s,Źq be a post-Lie algebra.

(i) The Grossman-Larson product on Upgq given by

AfB :“ Ap1qpAp2q ŹBq for A,B P Upgq (7)

is associative.

(ii)
`

Upgq,f,∆
˘

is a Hopf algebra.

It is pUpgq, conc,∆,Źq a post-Hopf algebra and
`

Upgq,f,∆
˘

its subadjacent Hopf algebra.

Theorem (Ebrahimi-Fard, Munthe-Kaas, Lundervold )

Let g “ pg, r_, _s,Źq be a post-Lie algebra and let ḡ “ pg, t_, _uq be the related Lie algebra
from Proposition 2. Then there is an isomorphism of Hopf algebras

pUpḡq, conc,∆q – pUpgq,f,∆q

a1a2 ¨ ¨ ¨ an ÞÑ a1 f a2 f . . . an.

Details can be found here https://arxiv.org/abs/1410.6350v2 .
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Remark

(i) Let a, b P g. Since ∆paq “ a b 1`1b a we get

af b “ ab ` aŹ b

and thus by symmetry the post-Lie bracket from Proposition 2 satisfies

ta, bu “ af b ´ bf a. (8)

(ii) If ∆paq “ a b a, then

af b “ apaŹ bq.

Remark 4

Let A, b1 ¨ ¨ ¨ bm P Upgq. We can calculate Af b1 . . . bm by applying (6) iteratively

Af b1 ¨ ¨ ¨ bm “ Ap1qpAp2q Ź b1qpAp3q Ź b2q ¨ ¨ ¨ pApm`1q Ź bmq. (9)

Then, each factor Ai`1 Ź bi can be determined iteratively using (5).
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Assume that pg, r , s,Źq is a graded post-Lie algebra, i.e., we have g “
À

ně0 gn with each
gn finite dimensional and rgn, gms, gn Ź gm Ă gn`m for all m,n ě 0. The grading on g
induces a grading on the universal enveloping algebras Upgq and Upgq as Hopf algebras.
We may summarize our discussion in the commutative diagrams:

`

Upgq_,�,∆dec

˘ `

Upgq, conc,∆�
˘

`

indecpUpgq_q, δ
˘ `

g, r , s
˘

.

mod products

graded dual

graded dual

(10)

Here, indecpUpgq_q is the Lie coalgebra of the indecomposables elements of Upgq_.
We analyse the change of the picture (10) by altering the Lie bracket with a post-Lie structure:

`

Upgq_,�,∆f

˘ `

Upgq,f,∆�
˘

`

indecpUpgq_q, δf

˘ `

g, t , u
˘

.

mod products

graded dual

graded dual

(11)
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Free Lie algebras

Notation 5

- V “ tv0, v1, . . .u is a countable set, whose elements vi we call letters

- V ˚ is the set of words w with letters in V

- 1 denotes the empty word, we let 1 P V ˚

- QxV y is the non-commutative free algebra equipped with concatenation

- LiepV q Ă QxV y is the free Lie Algebra on the set V

- UpLiepV qq “ pQxV y, conc,∆�q is the universal enveloping algebra

We fix a duality pairing p | q and identify V _ with V via v ÞÑ pv| q.
The map dual to ∆� is the usual shuffle product�, which is recursively defined on V ˚ by
1�w “ w “ w� 1 and

viw1 � vjw2 “ vipw1 � vjw2q ` vjpviw1 � w2q

for vi, vj P V and w,w1, w2 P V ˚ and extended byQ-linearity.

11 / 43



Calculating the coproduct ∆f

A naive way determine the coproduct ∆f is to calculate tables of a large number of f-products
and then use the duality

`

∆fpwq | f b g
˘

“
`

f f g | w
˘

for all w P V ˚ and f, g P V ˚ to collect all the coefficients of ∆fpwq. In fact it suffices to
calculate

`

Ÿirr pwq | f b v
˘

“
`

f Ź v | w
˘

for all w P V ˚, f P V ˚ and v P V .

Theorem 6

Let V be an alphabet and
`

LiepV q, r , s,Ź
˘

be a graded post-Lie algebra. Then, we have for
and A P V ˚

∆fpAq “
ÿ

A“A1¨¨¨An

pA1 b 1q�‚ ŸirrpA2q�‚ ¨ ¨ ¨�‚ ŸirrpAnq.

Here, Ÿirr is the dual map to the triangle map Ź restricted to letters in the right factors. The
product�‚ onQxV yb2 is the shuffle product on the left factor and concatenation on the right
factor.

12 / 43



A nonassociative point of view on free post-Lie products

Recall a set with a binary operation is called a magma. We consider here the free magma
MpV q generated by a set V with operation ‹ : MpV q ˆ MpV q Ñ MpV q. TheQ-vector
space MpV qQ spanned by MpV q is nothing else than the free noncommutative,
nonassociative algebra generated by V .

A derivation is a linear map d : MpV qQ Ñ MpV qQ such that dpa ‹ bq “ da ‹ b ` a ‹ db.
Let pMpV qQ, ‹q be the free magma on V . Assume, we are given another map

Ź : MpV qQ ˆ V Ñ MpV qQ (12)

pt, vq ÞÑ tŹ v,

then for each t P MpV q we extend tŹ to a derivation on pMpV qQ, ‹q. This allows us to view
Ź as a bilinear pairing on MpV qQ.
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Notation 7 (Non-commutative setup)

Let pMpV q, ‹,Źq as before. Denote by
`

QxMpV qy, ¨, ∆
˘

the free associative,
noncommutativeQ-algebra generated by MpV q with its natural coproduct. We extend the pairing
Ź on MpV qQ further to a bilinear pairing

Ź : QxMpV qy ˆQxMpV qy Ñ QxMpV qy

via the requirements

AŹ1 “ pA | 1q (13)

1ŹA “ A (14)

px ¨ Aq Ź y “ xŹpAŹ yq ´ pxŹAq Ź y (15)

AŹpB ¨ Cq “
`

Ap1q ŹB
˘`

Ap2q ŹC
˘

(16)

for all A,B,C P QxMpV qy and x, y P MpV q.
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From magmas to Lie algebras

The identity on V extends naturally to homomorphism

Lie : MpV qQ Ñ LiepV qQ

a ‹ b ÞÑ ra, bs,

whose kernel is the ideal ILie generated by x ‹ x and px ‹ yq ‹ z ` py ‹ zq ‹ x ` pz ‹ xq ‹ y.
We use the same notation for an element x P MpV qQ as well as for its class x P LiepV q.

Proposition

The above described extension of a map Ź : MpV qQ ˆ V Ñ MpV qQ determines a post-Lie
algebra

`

LiepV q, r , s,Ź
˘

, if and only if Ź descends to a bilinear pairing on LiepV q and for all
x, y, z P MpV qQ

Lie
´

`

x ‹ y ´ x ¨ y ` y ¨ x
˘

Ź z
¯

“ 0
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Application 1: Ihara bracket and Goncharov coproduct
As a motivation we consider a Lie algebra, which is well-known in the theory of multiple zeta
values.

Definition

Keep the notations 5 and 7. Let V0 Ă V “ tv0, v1, v2, ...u be a subset and consider

ŹI : MpV qQ ˆ V Ñ MpV qQ

pt, vq ÞÑ

#

0 v P V0

v ‹ t v P V zV0 .

We denote by ŹI also its extensions to a derivation on MpV qQ and toQxMpV qy.

Lemma

The pairing ŹI descends to LiepV q.

Proof: Obviously, it is necessary and sufficient for Ź to descend to a pairing on LiepV q, that
ILie ŹMpV qQ Ď ILie and MpV qQ Ź ILie Ď ILie. The first condition follows by definition of
ŹI and the second holds as tŹI is a derivation for all t P MpV qQ l
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Lemma 8

We have for v P V zV0

pt1 ¨ ... ¨ tnq ŹI v “ pppv ‹ t1q ‹ t2q...q ‹ tn .

Proof. We prove the claim by induction. Assume it holds for n ´ 1 factors, then by construction
and using (16)

pt1 ¨ ... ¨ tnq ŹI v “ t1 ŹI

´

pt2 ¨ ... ¨ tnq ŹI v
¯

´

´

`

t1 ŹIpt2 ¨ ... ¨ tnq
˘

ŹI v
¯

“ pppt1 ŹI vq ‹ t2q...q ‹ tn `

n
ÿ

i“2

`

pppv ‹ t2q...q ‹ pt1 ŹI tiqq...
˘

‹ tn

´

n
ÿ

i“2

`

pppv ‹ t2q...q ‹ pt1 ŹI tiqq...
˘

‹ tn

“ pppv ‹ t1q ‹ t2q...q ‹ tn.

l
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Theorem

The triple
`

LiepV q, r_, _s,ŹI

˘

is a post-Lie algebra.

Proof. We have by definition of ŹI

pt1 ‹ t2q ŹI v “ v ‹ pt1 ‹ t2q

and by Lemma 8

pt1 ¨ t2 ´ t2 ¨ t1q ŹI v “ pv ‹ t1q ‹ t2 ´ pv ‹ t2q ‹ t1

Applying the Lie-map gives by means of the Jacobi relation

Lie
´

v ‹ pt1 ‹ t2q ´
`

pv ‹ t1q ‹ t2 ´ pv ‹ t2q ‹ t1
˘

¯

“ rv, rt1, t2ss ´ rrv, t1s, t2s ` rrv, t2s, t1s

“ 0.

l
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We write t_, _uI for the induced post Lie bracket and call t_, _uI the Ihara bracket. The
universal algebra Upgq is isomorphic to the free non-commutative algebra QxV y and the
extension 3 yields a bilinear pairing

ŹI : QxV y ˆ QxV y Ñ QxV y.

Because of Remark 4 it suffices to understand AŹI v for A P QxV y and v P V .

Proposition 9

For all A P V ˚ and v P V , we have for ŹI given by Definition 3

AŹI v “ χpA, vqS
`

Ap1q

˘

vAp2q,

where

χpA, vq “

#

δA,1, if v P V0,

1, else,

Proof. By Lemma 8 and the definitions of the coproduct ∆ and the antipode S for QxV y we
have for v P V zV0 and for A “ a1 ¨ ¨ ¨ an P UpLiepV qq, where a1, . . . , an P LiepV q, that

AŹI v “ r. . . rrv, a1s, a2s, . . . , ans “ S
`

Ap1q

˘

vAp2q.

l
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explicit Grossman-Larson product for the Ihara bracket

Theorem 10

Let A P QxV y and w “ w1vi1 ¨ ¨ ¨wdvidwd`1 P V ˚ with w1, . . . , wd`1 P V ˚
0 and

vi1 , . . . , vid P V zV0. Then

A fI w “ Ap1qw1S
`

Ap2q

˘

vi1Ap3qw2 ¨ ¨ ¨wdS
`

Ap2dq

˘

vidAp2d`1qwd`1.

Proof. We deduce from (7) and several applications of (6) that

A fI w “ Ap1qpAp2q ŹI wq

“ Ap1q

`

Ap2q ŹI w1vi1
˘

¨ ¨ ¨
`

Apd`1q ŹI wdvid
˘`

Apd`2q ŹI wd`1

˘

“ Ap1qw1

`

Ap2q ŹI vi1
˘

¨ ¨ ¨wd

`

Apd`1q ŹI vid
˘

wd`1.

Now recall Proposition 9, i.e. we have for vi P V zV0 that

AŹI vi “ S
`

Ap1q

˘

viAp2q,

which in turn proves the claimed formula. l
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A variation of Goncharov’s coproduct

Proposition 11

For a1, . . . , an P V , we have

Ÿirr
I pa1 ¨ ¨ ¨ anq “

n
ÿ

j“1

I
`

Spa1 ¨ ¨ ¨ aj´1q� aj`1 ¨ ¨ ¨ an; aj
˘

b aj .

Here I : QxV y ˆ V Ñ QxV y is theQ-linear map defined for words w P V ˚ and a letter
v P V by

Ipw; vq “ χpw, vqw.
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With the the explicit formula for the reduced triangle map in Proposition 11 and Theorem 6, we
are able to describe the dual coproduct ∆I for the Grossman-Larson product fI corresponding
to the Ihara bracket.

Theorem
For a1, . . . , an P V , we have

∆Ipa1 ¨ ¨ ¨ anq “

ř

0ďkďn
0ďi1ăj1ďi2ăj2ď¨¨¨ďikăjkďn

´

a1 ¨ ¨ ¨ ai1 � I
`

Spai1`1 ¨ ¨ ¨ aj1´1q� aj1`1 ¨ ¨ ¨ ai2 ; aj1
˘

� ¨ ¨ ¨

�I
`

Spaik`1 ¨ ¨ ¨ ajk´1q� ajk`1 ¨ ¨ ¨ an; ajk
˘

¯

b aj1 ¨ ¨ ¨ ajk .

Remark

In fact ∆I equals precisely the Goncharov coproduct in the case V “ tx0, x1u and V0 “ tx0u.
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Application 2: The ari bracket of Ecalle

Let V “ tv0, v1, v2, ...u and V0 “ tv0u. There is a one-to-one correspondence of MpV q

and planar, rooted, binary trees with leaves labelled by elements of V . For example the tree

vi1 vi2 vi3

vi4 vi5

corresponds to ppvi1 ‹ vi2q ‹ pvi3 ‹ pvi4 ‹ vi5qq. If we order the leaves of such a tree, e.g.
from left to the right, then we may consider a tree t with d leaves as a map V d Ñ MpV q. More
generally we can even restrict ourselves to subsets of leaves with a fixed property.
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Elements as function on indices

In the following we write tpkq, whenever we consider the element t P MpV q as a function

t : V d Ñ MpV q

pvk1
, . . . , vkd

q ÞÑ tpvk1
, . . . , vkd

q.

For example, if t “ v1 ‹ ppv0 ‹ v1q ‹ pv4 ‹ v0qq, then t “ tpv1, v0, v1, v4, v0q and
tpv7, v2, v8, v9, v13q equals v7 ‹ ppv2 ‹ v8q ‹ pv9 ‹ v13qq. Even more generally we view such
t as a function on the indices

t : Nd Ñ MpV q

k ÞÑ tpkq,

where tpkq is given by tpvk1 , . . . , vkd
q.
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Notation

- N “ t0, 1, 2, 3, . . .u

- |k| “ k1 ` ... ` kd for k “ pk1, ..., kdq P Nd

- l ď k holds for k, l P Nd, if li ď ki for all i “ 1, ..., d

- we set
`

0
´1

˘

“
`

´1
0

˘

“ 0 and
`

´1
´1

˘

“ 1

Definition

For k “ pk1, . . . , kdq, l “ pl1, . . . , ldq P Nd we define their ari multiplicity by

mk,l :“ p´1q|k|`|l| ¨

ˆ

k1 ´ 1

l1 ´ 1

˙

¨ ¨ ¨

ˆ

kd ´ 1

ld ´ 1

˙

.

Observe that, if l ą k, then mk,l “ 0. Also mk,l “ 0, if ki “ 0 and li ‰ 0 or if ki ą 0 and
li “ 0.
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Definition 12
Keep the previous notation and consider

Źa : MpV q ˆ V Ñ MpV qQ

ptpkq, vaq ÞÑ

$

&

%

0 va “ v0
ř

lPNℓpkq

mk,l va`|k´l| ‹ tplq va ‰ v0

and denote Źa also its extensions to a derivation on MpV qQ and toQxMpV qy.

Lemma

The pairing Źa on MpV qQ descends to a bilinear pairing Źa on LiepV q.

Proof: We need to check ILie Źa MpV qQ Ď ILie. l
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Lemma 13
We have for va ‰ v0

pt1pk1q ¨ ... ¨ tnpknqq Źa va

“
ÿ

1ďl1,...,ln

´

n
ź

i“1

mki,li

¯

¨
```

v
a`

n
ř

i“1
p|ki´li|q

‹ t1pl1q
˘

‹ t2pl2q
˘

...
˘

‹ tnplnq .

Idea of proof. Using the general properties of Ź, we obtain an equivalence of Lemma 13 and the
following identity for the ari multiplicities :
Let k, l,n P Nd and a, b P N, then we have

ÿ

nďrďk

p´1q|k|`|r| mk´n`1,r´n`1 ¨ ma`|k|´|r|,b “ ma,b´|k´n|.

This identity for binomial coefficients can be proven by standard methods. l
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Theorem

Let Źa be given by Definition 12, then
`

LiepV q, r_, _s,Źa

˘

is a post-Lie algebra.

Proof. Set k “ pk1,k2q and l “ pl1, l2q. We have by definition of Źa that

pt1pk1q ‹ t2pk2qq Źa v “
ÿ

1ďlďk

mk,l va`|k´l| ‹ pt1pl1q ‹ t2pl2qq

and by Lemma 13

pt1pk1q ¨ t2pk2q ´ t2pk2q ¨ t1pk1qq Źa v

“
ÿ

1ďlďk

mk,l

´

pva`|k´l| ‹ t1pl1qq ‹ t2pl2q ´ pva`|k´l| ‹ t2pl2qq ‹ t1pl1q

¯

Applying the Lie-map gives by means of the Jacobi relation for each l “ pl1, l2q

Lie
´

va`|k´l| ‹ pt1pl1q ‹ t2pl2qq ´
`

pva`|k´l| ‹ t1pl1qq ‹ t2pl2q ´ pva`|k´l| ‹ t2pl2qq ‹ t1pl1q
˘

¯

“ rva`|k´l|, rt1pl1q, t2pl2qss ´ rrva`|k´l|, t1pl1qs, t2pl2qs ` rrva`|k´l|, t2pl2qs, t1pl1qs

“ 0.

l
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Definition

We write t_, _ua for the induced post Lie bracket and call t_, _ua the Ecalle ari bracket.

The universal algebra UpLiepV qq is isomorphic to the free non-commutative algebra QxV y and
the extension of Źa, which we described in Definition 3, yields a bilinear pairing

Źa : QxV y ˆ QxV y Ñ QxV y.

Remark
We call the induced post Lie bracket the ari bracket, as it translates into the ARI Lie bracket of
polynomial bimoulds using a certain mapQxV y Ñ QrX1, X2, ..., Y1, Y2, ...s. For more
details we refer to the thesis of A. Burmester.
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Proposition 14

For all Apkq P QxV y and vi P V , we have

Apkq Źa vi “

$

&

%

0 if vi “ v0
ř

l

mk,l Aplp1qqvi`|k´l|Aplp2qq if vi ‰ v0.

Here we use the notation ∆pApkqq “ Ap1qpkq b Ap2qpkq “ Apkp1qq b Apkp2qq.

Proposition 15

Let Apkq P Upgq and w “ w1vi1 ¨ ¨ ¨wdvidwd`1 P V ˚ with w1 “ vj10 , . . . , wd`1 “ vjd0
and vi1 , . . . , vid P V ztv0u. Then

Apkq fa w “
ÿ

lPNℓpkq

mk,l Apkp1qqw1S
`

Aplp2qq
˘

vi1`|kp2q`kp3q|´|lp2q`lp3q|Aplp3qqw2 ¨ ¨ ¨

wdS
`

Aplp2dqq
˘

vid`|kp2dq`kp2d`1q|´|lp2dq`lp2d`1q|Aplp2d`1qqwd`1.
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Some observations

Proposition

(i) It is
`

Qxv1, v2, v3, ...y,fa,∆
˘

a sub Hopf algebra of Ha “
`

QxV y,fa,∆
˘

.

(ii) It is
`

Qxx0, x1y,fI,∆
˘

–
`

Qxv0, v1y,fa,∆
˘

a sub Hopf algebra of Ha.

Proposition

- Let i ě 0, then the space

oapviq “
␣

w P LiepV ztv0uq
ˇ

ˇw Źa vi “ 0
(

is a Lie subalgebra of pLiepV q, t , uaq.

- For all w P oapv1q and for all b P Liepv0, v1q we have tw, bua “ 0.

Corollary

Consider Upoapv1qq as a Hopf subalgebra of Ha. Then for any w P Upoapv1qq and any
b P Qxv0, v1y, we have

w fa b “ bfa w.
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Proposition 16

For k “ pk1, . . . , kdq P Nd with d ě 1, we have

Ÿirr
a pvk1 . . . vkd

q “

d
ÿ

i“1

ÿ

l“pl1,...,pli,...,ldqPNd´1

l“H or |l|ďki´1

m
pki`l,pki

`

Spvk1`l1 . . . vki´1`li´1
q� pvki`1`li`1

. . . vkn`lnq
˘

b vki´|l|.

Observe the case l “ H only occurs if d “ 1 and then

Ÿirr
a pvq “ 1bv

for any letter v P V .
If d ě 2 and we have ki “ 0 for some i, the summation index of the sum is empty and hence
the sum vanishes by convention. So for any word w with at least two letters, the letter v0 will
never occur as a right factor in Ÿirr

a pwq. In particular, Ÿirr
a pvm0 q “ 0 for all m ě 2.
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Having a formula for the reduced triangle map, we can use Theorem 6 to give an explicit formula
for the coproduct ∆a dual to the Grossman-Larson product fa.

Theorem

For k “ pk1, . . . , kdq P Nd, we have

∆apvk1 ¨ ¨ ¨ vkd
q “

ÿ

0ďnďd
0ďi1ăj1ďi2ăj2ď¨¨¨ďinăjnďd

ÿ

l“pl1,...,lnq

ls“plis`1,...,xljs ,...,lis`1
q

ls“H or |ls|ďkjs´1

m
pkj1,...,jn`l,pkj1,...,jn

´

vk1
¨ ¨ ¨ vki1

� Spvki1`1`li1`1
¨ ¨ ¨ vkj1´1`lj1´1

q� vkj1`1`lj1`1
¨ ¨ ¨ vki2`li2

�

¨ ¨ ¨� vkjn`1`ljn`1
¨ ¨ ¨ vkd`ld

¯

b vkj1
´|l1| ¨ ¨ ¨ vkjn´|ln|,

where we formally set in`1 “ d.

By the discussion after Proposition 16, a v0 at the s-th position in the right factor corresponds to
is ` 1 “ is`1 and ls “ H.
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Proposition 17

Let B123 “ Qxv1, v2, v3y Ă QxV y, then

∆a : B123 ÝÑ QxV y b B123.

In particular, ∆a of a 1-2-3 word has only 1-2-3 words as right factors.

By observation we found the following conjecture, which we checked then numerically for a large
number of words.

Conjecture

For k ě 0 we define the k-level of a word vk1
¨ ¨ ¨ vkd

by

k-levelpvk1
¨ ¨ ¨ vkd

q “ d ´ #tj | kj “ ku,

and extend this to an increasing filtration on QxV y. For w P QxV y, write as usual
∆apwq “ wp1q b wp2q. Then, we always have

k-levelpwp2qq ď k-levelpwq.

If w P Qxv1, v2, v3y, then conjecturally the right tensor product factors of ∆apwq have not
more indicies distinct to 2 than w. This is a another indication that there might be a generalization
of Brown’s result on a generating set for multiple zeta values.
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Application 3: The uri bracket
Recall mk,l “ p´1q|k|`|l| ¨

`

k1´1
l1´1

˘

¨ ¨ ¨
`

kd´1
ld´1

˘

for k, l P Nd. Set

Cspnq “ ta P Ns
ą0 | |a| “ nu.

For any threshold a P Ną0 we have a indicator function on Cspnq, which is given by

indapaq “ min
1ďjďℓpaq

tj | a1 ` ¨ ¨ ¨ ` aj ě au . (17)

By convention we set indapaq “ 0, if either a “ H, a ą |a|.

Definition 18
Given a composition α and a threshold a, then their uri multiplicity is given by

µa,α “ B1pℓpαq, indapαqq,

where Bk is the k-th Bernoulli number and

B1pm,nq “
1

m!

n´1
ÿ

k“0

ˆ

m

k

˙

Bk.
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Definition
Keep the previous notation and consider

Źu : MpV q ˆ V Ñ MpV qQ

ptpkq, vaq ÞÑ

$

’

&

’

%

0 va “ v0
ř

1ďlďk
αPCpa`|k|´|l|q

mk,l µa,α vα1
‹ pvα2

‹ p... ‹ pvαr`1
‹ tplqqqq va ‰ v0

and denote Źu also its extensions to a derivation on MpV qQ and toQxMpV qy.

Lemma

The pairing Źu on MpV qQ descends to a bilinear pairing Źu on LiepV q.

Proof: We need to check ILie Źu MpV qQ Ď ILie. l
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Lemma 19
Let a ą 0, then

`

t1pk1q ¨ t2pk2q
˘

Źu va “
ř

1ďl1ďk1
1ďl2ďk2

mk1,l1mk2,l2

ř

αPCpa`|k2|´|l2|q

µa,α

ℓpαq
ř

i“1

ř

βPCpαi`|k1|´|l1|q

µαi,β

vα1
‹
`

... ‹
`

vαi´1
‹
`

pvβ1
‹ pvβ2

‹ p... ‹ pvβℓpβq
‹ t1pl1qqqqq

loooooooooooooooooooooomoooooooooooooooooooooon

i-th position

‹
`

vαi`1
... ‹ pvαℓpαq

‹ t2pl2qq
˘˘˘˘

Idea of proof. Both sides are a linear combination of elements in M(V) and thus we need to
compare both sides by comparing their respective coefficients: For k,n P Nd, a P N and
β P Ns, we have

ÿ

nďrďk

p´1q|k|`|r| mk´n`1,r´n`1

ÿ

ρPCspa`|k´r|q

mρ,β µa,ρ

“ ma,|β|´|k´n| µ|β|´|k´n|,β .

l
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Theorem 20
If the Bernoulli numbers satisfy the threshold shuffle identities, then for the above Źu the triple
´

LiepV q, r_, _s,Źu

¯

is a post-Lie algebra.

Idea of proof: Extracting the image of the Lie-map gives linear combination of elements in
QxV y on each side of the desired equality. Thus we need to compare both sides by comparing
their respective coefficients. We have implemented these threshold shuffle identities and checked
them for thousands of cases in various weights and depths. l

Definition

We write t_, _uu for the induced post Lie bracket and call t_, _uu the uri bracket.

Remark
The uri bracket is related to the (expected) Lie bracket

urip_, _q “ ganitpic

`

aripganitpocp_q, ganitpocp_q
˘

on symmetril, polynomial moulds.
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Open problems
- prove that the Bernoulli numbers satisfy the threshold shuffle identities

- extend Lemma 19 to products with more than two factors

- find a closed formula for Ÿu and thereby a closed formula for ∆u

A nice model for multiple q-zeta values is parametrized by the quotient of
`

QxV y,�q by an
involution. The order of summation is chosen in such a way that the coproduct ∆u dual to fu

descends (experimentally).

Future directions

(i) Prove that Burmester’s bm0 is a sub Lie algebra of pQxV y, t_, _uuq.

(ii) What is the extension of Zagier’s theorem we need for a proof of the 1-2-3 conjecture?
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Identities for Bernoulli numbers via threshold functions on

compositions
Recall

Cspnq “ ta P Ns
ą0 | |a| “ nu.

For any threshold a P Ną0 we have a indicator function on Cspnq, which is given by

indapaq “ min
1ďjďℓpaq

tj | a1 ` ¨ ¨ ¨ ` aj ě au . (18)

By convention we set indapaq “ 0, if either a “ H, a ą |a|.
In the following we want to study some properties of indapaq. Given any formal power series

Bpx, yq “
ÿ

m,ně0

Bpm,nqxmyn,

with the normalizing condition Bp1, 1q “ 1, we can define multiplicities by

µB
a,α “ B pℓpαq, indapαqq , a P N,α P C. (19)

Here, we set µB
a,α “ 0 if indapαq “ 0.
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We extend the multiplicity µB
a,_ linearly in the second argument, i.e., for a formal sum of indices

n1α1 ` n2α2 we set

µB
a,n1α1`n2α2

“ n1 µ
B
a,α1

` n2 µ
B
a,α2

.

The concatenation of two indices k, l is given by the index pk1, ..., kℓpkq, l1, ..., lℓplqq. We
denote it by pk, lq and we extend this pairing bilinear. We combine these convention with the
shuffle product of indices, for example

µB
2,p4,p3,2q�p2qq “ µB

2,p4,2 p3,2,2q`p2,3,2qq “ 2µB
2,p4,3,2,2q ` µB

2,p4,2,3,2q.

By a decomposition of an index k we understand a pair of indices k1,k2 such that
k “ pk1,k2q, where we allow either k1 or k2 to be the empty index, i.e.,
k “ pH,kq “ pk,Hq is allowed in this context. Given an index k “ pk1, k2, . . . , kdq its
reversed index is given by k “ p´1qd pkd, . . . , k2, k1q.
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Definition 21

We say a multiplicity µB
a,α given by (19) satisfies the threshold shuffle identities if the following

equalities hold

(i) For all σ P Nℓpσq

ą0 , θ P Nℓpθq

ą0 and all d1, d2 P Ną0 we have that

µB
t,σ�θ “

ř

pσ1,σ2q“σ
pθ1,θ2q“θ

µB
|σ2|´d1,σ2

µB
t,pσ1�θ1,|σ2|´d1,θ2q

` µB
|θ2|´d2,θ2

µB
t,pσ1�θ1,|θ2|´d2,σ2q

,

where t “ |σ| ` |θ| ´ d1 ´ d2,

(ii) For all σ P Nℓpσq

ą0 , τ P Nℓpτ q

ą0 , θ P Nℓpθq

ą0 and all d1, d2 P Ną0 we have that

0 “
ř

pσ1,σ2q“σ
pτ1,τ2q“τ
pθ1,θ2q“θ

µB
|σ2|`|τ1|´d1,σ2�τ1

µB
t,pσ1�θ2,|σ2|`|τ1|´d1,τ2�θ1q

`µB
|τ2|`|θ1|´d2,τ2�θ1

µB
t,pσ1�θ2,|τ2|`|θ1|´d2,σ2�τ1q

,

where t “ |σ| ` |τ | ` |θ| ´ d1 ´ d2.

Observe that the identities in (i) and (ii) are homogeneous with respect to scaling of each
Bpℓpαq, indapαqq by a factor tℓpαq´1.
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The examples we calculated with PARI/GP indicate that the uri multiplicities are in fact the only
non trivial multiplicities as in (19) satisfying the threshold shuffle identities up to scaling. More
precisely, for t P Rzt0u set

Btpx, yq “
y2xext

p1 ´ yqpexyt ´ 1q
“

ÿ

m,ně0

Btpm,nqxmyn,

and define a family of multiplicities as in (19) by

µt
a,α “ Bt pℓpαq, indapαqq , a P N,α P C.

Of course, the case t “ 1 gives the uri multiplicities.

Conjecture
We conjecture the following holds:

(i) For all t ‰ 0 the multiplicities µt
a,α satisfy the threshold shuffle identities from Definition 21.

(ii) If a multiplicity µB̃
a,α given by (19) satisfies the threshold shuffle identities from Definition 21,

then µB̃
a,α “ µB

a,α for all a P N, α P C and

Bpx, yq “

#

xy if B̃p2, 1q “ 0,

B2B̃p2,1q
px, yq if B̃p2, 1q ‰ 0.
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