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Two-term Fermat functional equations

One of the most famous problems in number theory is the Fermat’s Last
Theorem which says that there is no natural numbers x , y and z such

xn + yn = zn (1)

for any natural number n greater than 2.

The problem was eventually solved by Andrew Wiles (1995).

The corresponding problem in one complex variable function theory is
whether the equation (1) has entire function solutions (x , y , z).
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Two-term Fermat functional equations

This is equivalent to asking if the following functional equation has
non-constant meromorphic solutions f and g on the complex plane C:

f n + gn = 1 (2)

It was proved by Iyer (1939) that (2) has no non-constant entire
solutions when n > 2 and when n = 2, all entire solutions are of the
form f (z) = cos(α(z)) and g = sin(α(z)), where α is a non-constant
entire function.

Gross (1966) showed that (2) has no non-constant meromorphic
solutions when n > 3 and when n = 2, all the meromorphic solutions
are of the form

f (z) =
2β(z)

1 + β(z)2
, g(z) =

1− β(z)2

1 + β(z)2
,

where β is a meromorphic function.
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f n + g n = 1

For n = 3, Baker (1966) showed that all meromorphic solutions are of the
form

f (z) = F (α(z)) andg = cG (α(z))

where α is an entire function, F and G are the elliptic functions

1 + 3−1/2℘′(z)

2℘(z)
and

1− 3−1/2℘′(z)

2℘(z)

respectively.

Here c is a cubic root of unity and ℘ is the Weierstrass ℘ function.
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Three-term Fermat functional equations

We consider the three-term Fermat functional equations,

f n + gn + hn = 1, (3)

where n is an integer and f , g , h are functions on C. For each integer n,
one can ask whether there are non-constant solutions (non-trivial
solution) to (1) that are

(a) meromorphic;

(b) rational;

(c) entire; or

(d) polynomial.

Trivial solutions: Solutions of the form (f (t), ω1f (t), ω2) or by
permutation of the indices, where ω1, ω2 ∈ C such that ωn

1 = −1 and
ωn
2 = 1.
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f n + g n + hn = 1

The results to date regarding non-constant solutions to three-term Fermat
functional equations:

Requirement Exist Don’t exist Unknown

Meromorphic n ≤ 6 n ≥ 9 n = 7, 8

Rational n ≤ 5 n ≥ 8 n = 6, 7

Entire n ≤ 5 n ≥ 7 n = 6

Polynomial n ≤ 3 n ≥ 6 n = 4, 5

Non-existence proofs regarding meromorphic or rational solutions
employ H. Cartan’s version of Nevanlinna theory (1933) by Hayman
in 1985.

Actually, Toda (1971) also proved a more general results for the
entire case and Fujimoto (1974) proved the meromorphic case for
meromorphic maps on Ck .

Examples of transcendental meromorphic and entire solutions were
constructed by Green, Gross, Gundersen, Reznick, Tohge, etc.
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f n + g n + hn = 1

Examples of entire solutions also exist for n ≤ 5. They are given as follows
where α is a non-constant entire function:
Case n = 1. f , g non-constant entire, h = −f − g + 1.

Case n = 2. f =
α2 − 2√

3
, g =

(α2 + 1)i√
3

, h =
√
2α

Case n = 3. Lehmer (1956): f = 9α4, g = −9α4 + 3α, h = −9α3 + 1

Case n = 4. Gross (1966):

f = 21/4(sin2 α− cos2 α+ i sinα cosα)

g = (−1)1/4(2i sinα cosα+ sin2 α)

h = (−1)1/4(2i sinα cosα− cos2 α)

or Green (1975):

f = 8−1/4(e3α + e−α), g = (−8)−1/4(e3α − e−α), h = (−1)1/4e2α.
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f n + g n + hn = 1

Case n = 5. Gundersen and Tohge (2004):

f =
1

3
[(2−

√
6)eα + 1 + (2 +

√
6)e−α]

g =
1

6
[{
√
6− 2 + (3

√
2− 2

√
3)i}eα + 2− {

√
6 + 2− (3

√
2 + 2

√
3)i}e−α]

h =
1

6
[{
√
6− 2 + (2

√
3− 3

√
2)i}eα + 2− {

√
6 + 2 + (3

√
2 + 2

√
3)i}e−α]

In 1998, Gundersen constructed meromorphic (elliptic) solutions for
n = 6 by expressing certain binary form as sum of powers of linear
form (see also Tohge (2011) for a detailed explanation of Gundersen’s
construction).

Then in 2001, Gundersen again constructed meromorphic solutions
for the case n = 5 using a result on the unique range sets of
meromorphic functions.
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Remaining open problems for f n + g n + hn = 1

Problem A: Whether there exist non-trivial entire solutions when n = 6 ?

Problem B: Whether there exist non-trivial meromorphic (non-entire)
solutions when n = 7 ?

Problem C: Whether there exist non-trivial meromorphic (non-entire)
solutions when n = 8 ?

The above three problems were asked by Hayman in many occasions.

These problems are also mentioned in the work of Ishizaki (2002),
Gundersen(2003), Gundersen and Tohge (2004).

In 2015, Gundersen (2015) proposed to study these problems again in
his problem list (see Question 3.1–3.4 of this list).
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Remaining open problems for f n + g n + hn = 1

Problem A: Whether there exist non-trivial entire solutions when n = 6 ?

A result of Toda (1971) implies that if (f , g , h) is non-trivial, then
each f , g and h must have at least one zeros.

Y.H. Li and M. Su (2009) proved that if one of f , g , h has order
strictly less than 1, then (f , g , h) is trivial.
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Fermat surface

We will study Brody curves on the Fermat surface Mn defined by

X n + Y n + Zn = W n (4)

on the complex projective space P3 = {[W : X : Y : Z ]}.

On the affine part of P3 (W ̸= 0), the equation is given by

xn + yn + zn = 1 (5)

where x := X
W , y := Y

W and z := Z
W .

So any entire solution (f , g , h) will give a holomorphic curve F : C → P3

defined by [1 : f : g : h].
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Brody curve solution

Definition

Let f : C → Pn be a holomorphic curve. Let f = [f0 : ... : fn] be a reduced
representation of f where f0, ..., fn are entire functions in C.
Let ||f ||2 =

∑n
j=0 |fj |2 and ∥df ∥s be the Fubini–Study derivative of f

which is given by

∥df ∥2s = ||f ||−4
n∑

i ,j=0

|fi f ′j − fj f
′
i |2.

A holomorphic curve is called a Brody curve if its Fubini–Study derivative
is bounded.

Theorem (N. and Yeung)

There exists no non-trivial Brody curve on a Fermat surface of degree 6 of
the form [1 : f : g : h] given by entire holomorphic functions f , g , h.
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Key ingredients of the proof

1. A version of Wiman-Valiron theory for vector-valued entire functions
developed by Jank and Volkmann in 1986.

Proposition 1

There is no non-trivial entire solution to f 6 + g6 + h6 = 1 if one of f , g , h
has order strictly less than 119/117.

2. A potential theoretical result in Eremenko’s work on Brody curves
omitting hyperplanes in 2010.

Proposition 2

Assume that F = [1 : f1 : f2 : f3] is a Brody curve on a Fermat surface of
degree 6 and all the fj are entire. Let ρ be the order of fi for j = 1, 2, 3.
Then ρ ≤ 1 unless F is trivial.
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Wiman-Valiron theory for vector-valued entire functions

For one variable entire functions gi , let

g(z) =


g1(z)
g2(z)
...

gn(z)

 =
∞∑
k=0

akz
k , ak ∈ Cn. (6)

The maximum term and the central index of g are defined by

µ(r) = µ(r , g) = max
k≥0

||ak ||rk

ν(r) = ν(r , g) = max{m| ||am||rm = µ(r , g)}

Here, we always use the maximum norm || · || in Cn and we let
M(r) = M(r , g) = max|z|=r ||g(z)|| for r > 0.
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Wiman-Valiron theory for vector-valued entire functions

The function g is called transcendental if at least one of the components
gj in (6) is transcendental. Then we have

Theorem A (Jank and Volkmann, 1986) Let g(z) = (g1(z), . . . , gn(z))
be a vector-valued transcendental entire function, 0 < δ < 1

4 and suppose
z with |z | = r satisfies

||g(z)|| > M(r , g)[ν(r , g)]−
1
4
+δ. (7)

Then, for m ∈ N∣∣∣∣∣∣∣∣ 1

||g(z)||

[(
z

ν(r)

)m

g(m)(z)− g(z)

]∣∣∣∣∣∣∣∣ ≤ ν(r)−δ/2 = o(1), (8)

and hence

g(m)(z) =

(
ν(r)

z

)m

(I + o(1))g(z), r ̸∈ E ,

where I is the n × n identity matrix, o(1) is a matrix which goes to 0 as
|z | → ∞ for z ̸∈ E and E is a set with finite logarithmic measure.
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Wiman-Valiron theory for vector-valued entire functions

It follows from (8) that for each i ,(
z

ν(r)

)m

g
(m)
i (z) = gi (z) + Rim(z) (9)

where |Rim(z)| ≤ ν(r)−δ/2||g(z)|| as r = |z | → ∞ for r ̸∈ E .

Proposition 1

There is no non-trivial entire solution to f 6 + g6 + h6 = 1 if one of f , g , h
has order strictly less than 119/117.

Remark. Y.H. Li and M. Su (2009) proved a similar result when one of
f , g , h has order strictly less than 1.
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Proof of Proposition 1

We will first construct 2-jet differentials from the following:

1 = xn−1x + yyn−1 + zzn−1 (3)

By taking derivatives of equation (3), we obtain

0 = xn−1dx + yn−1dy + zn−1dz (10)

0 = xn−1D2x + yn−1D2y + zn−1D2z (11)

where D2F = d2F + n−1
F (dF )2 for a function F .

From equations (3), (10)
and (11) and apply Crammer’s rule, it follows that

Φ :=

∣∣∣∣ dy dz
D2y D2z

∣∣∣∣
xn−1

=

∣∣∣∣ dz dx
D2z D2x

∣∣∣∣
yn−1

=

∣∣∣∣ dx dy
D2x D2y

∣∣∣∣
zn−1

(12)
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Proof of Proposition 1

We shall need the following properties of the 2-jet differential Φ:

Φ =

∣∣∣∣∣∣
x y z
dx dy dz
D2x D2y D2z

∣∣∣∣∣∣ = (xyz)Mxyz , (13)

where

Mxyz =

∣∣∣∣∣∣∣
1 1 1
dx
x

dy
y

dz
z

D2x
x

D2y
y

D2z
z

∣∣∣∣∣∣∣ .
Hence for

Myz =

∣∣∣∣∣
dy
y

dz
z

D2y
y

D2z
z

∣∣∣∣∣ , Mzx =

∣∣∣∣ dz
z

dx
x

D2z
z

D2x
x

∣∣∣∣ , Mxy =

∣∣∣∣∣ dx
x

dy
y

D2x
x

D2y
y

∣∣∣∣∣ ,
Φ =

(yz)Myz

xn−1
=

(zx)Mzx

yn−1
=

(xy)Mxy

zn−1
= (xyz)Mxyz . (14)
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Proof of Proposition 1

Lemma (1)

Let F := [1 : f : g : h]. If p := F ∗(xyzΦ) = 0, then (f , g , h) is a trivial
solution.

Suppose F ∗(xyzΦ) = 0. Then from

Φ =
(yz)Myz

xn−1 = (zx)Mzx

yn−1 =
(xy)Mxy

zn−1 = (xy)
zn−1

∣∣∣∣∣ dx
x

dy
y

D2x
x

D2y
y

∣∣∣∣∣, unless F (C) lies in
a coordinate plane, we may assume that F ∗Mxy = 0, since the former case
can be handled easily.

Patrick, Tuen Wai Ng (Joint work with Sai Kee Yeung, Purdue) The University of Hong KongSupported by RGC grant 17301115Brody holomorphic curves on the degree six Fermat surface1 July 2024, ICMS, Edinburgh 19 / 47



Proof of Proposition 1

Lemma (1)

Let F := [1 : f : g : h]. If p := F ∗(xyzΦ) = 0, then (f , g , h) is a trivial
solution.

Suppose F ∗(xyzΦ) = 0. Then from

Φ =
(yz)Myz

xn−1 = (zx)Mzx

yn−1 =
(xy)Mxy

zn−1 = (xy)
zn−1

∣∣∣∣∣ dx
x

dy
y

D2x
x

D2y
y

∣∣∣∣∣, unless F (C) lies in
a coordinate plane, we may assume that F ∗Mxy = 0, since the former case
can be handled easily.

Patrick, Tuen Wai Ng (Joint work with Sai Kee Yeung, Purdue) The University of Hong KongSupported by RGC grant 17301115Brody holomorphic curves on the degree six Fermat surface1 July 2024, ICMS, Edinburgh 19 / 47



Proof of Proposition 1

F ∗Mxy = 0 gives

f ′(g ′′ +
n − 1

g
(g ′)2)− g ′(f ′′ +

n − 1

f
(f ′)2) = 0

⇒ f ′g ′′ − f ′g ′′ = −(n − 1)f ′g ′((ln g)′ − (ln f )′)

⇒ f ′g ′′ − g ′f ′′ = −(n − 1)f ′g ′(ln(
g

f
))′

⇒ (
g ′

f ′
)′ = −(n − 1)

g ′

f ′
(ln(

g

f
))′

⇒ ln(
g ′

f ′
) = −(n − 1) ln(

g

f
) + c

⇒ g ′

f ′
= k1(

g

f
)−(n−1)

⇒ gn = k1f
n + k2, (15)

where k1 and k2 are constants.
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Proof of Proposition 1

If both k1 and k2 are non-zero, the genus of the algebraic curve
yn = k1x

n + k2 is greater than one and hence the curve is hyperbolic and
f or g must be a constant.

Therefore, k1 = 0 or k2 = 0 and in either case, we conclude that the image
of F lies in a rational curve of the form (f (t), ω1f (t), ω2, 1) or by
permutation of the indices, where ω1, ω2 ∈ C such that ωn

1 = −1 and
ωn
2 = 1.
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Proof of Proposition 1

Consider the mapping F = [1 : f : g : h] : C → P3 where f 6 + g6 + h6 = 1.
It suffices to show that,

p := F ∗(xyzΦ) = 0

where

Φ =

∣∣∣∣∣∣
x y z
dx dy dz
D2x D2y D2z

∣∣∣∣∣∣ (16)

and D2G = d2G + n−1
G (dG )2 for a function G .
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Proof of Proposition 1

Lemma (Ishizaki 2003)

Let (f , g , h) be an entire solution of (3) when n = 6 such that
F = [1 : f : g : h] : C → M6 ⊂ P3.

Suppose F ∗Mxyz ̸≡ 0. Then we have
(a). T (r , f ) + S(r) = T (r , g) + S(r) = T (r , h) + S(r).
(b). p := F ∗(xyzΦ) is a polynomial whenever one of f , g and h is of finite
order.
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Proof of Proposition 1

Let g1 = f 6, g2 = g6 and g3 = h6 and we will apply Theorem A to
g(z) = (g1(z), g2(z), g3(z)).

We may assume that there is some uncountable S ⊂ (0,+∞)\E such that
for any r ∈ S , there is some w = w(r) ∈ C such that

M(r , g1) = |g1(w)| ≥ |g2(w)| ≥ |g3(w)|. (17)

In addition, from f 6(w) + g6(w) + h6(w) = g1 + g2 + g3 = 1, we have

M(r , g1) ≤ |g2(w)|+ |g3(w)|+ 1 ≤ 2|g2(w)|+ 1

and hence

|g2(w)| ≥ 1

3
M(r , g1), (18)

for r ∈ S .
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Proof of Proposition 1

By Theorem A, for each r ∈ S and the corresponding w = w(r) satisfying
M(r , g) = |g(w)|, we have

g
(m)
i (w) =

(
ν(r)

w

)m

(gi (w) + Rim(w))

where m = 1, 2 and |Rim(w)| ≤ 1

ν(r)δ/2
||g(w)|| = 1

ν(r)δ/2
|g1(w)|.

Let

rim(w) = Rim(w)
gi (w) , then |r1m| ≤

1

ν(r)δ/2
and |r2m| ≤

3

ν(r)δ/2
.

Therefore, we have for i = 1, 2,

g
(m)
i (w) =

(
ν(r)

w

)m

gi (w)(1 + rim(w)), (19)

|rim(w)| ≤ O(
1

ν(r)δ/2
).
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Proof of Proposition 1

One can prove that

(g ′
1g

′′
2 − g ′

2g
′′
1 )

3 = 363p3g2
3 g

2
1 g

2
2 . (20)

Apply (19) to (20), we have{(ν(r)
w

)3
g1(w)g2(w)R(w)

}3

= 66p3(w)(g3(w))2g2
1 (w)g2

2 (w),

where |R(w)| ≤ O(
1

ν(r)δ/2
).

Eventually, we have for rn ∈ S and rn = |wn| = w(rn)| → ∞,

|g2
3 (wn)| ≤

1

66
|g1(wn)| |g2(wn)|

ν(rn)
9− 3δ

2

r9n

1

|p3(wn)|
(21)
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Proof of Proposition 1

By interchanging the role of g2 and g3 and g1 and g3 in (20), we also have

(g ′
1g

′′
3 − g ′

3g
′′
1 )

3 = 363(−p3)g2
2 g

2
1 g

3
2 . (22)

(g ′
3g

′′
2 − g ′

2g
′′
3 )

3 = 363(−p3)g2
2 g

2
1 g

2
3 . (23)

We can obtain inequalities similar to (21) by the Logarithmic Derivative
Lemma and finally to get

|p(wn)| ≤ O(r cn )

where c < 0 if one of the order of f , g , h <
119

117
.

In this case, |p(wn)| → 0 as rn = |wn| → ∞.
As p is a polynomial, p ≡ 0 and we are done.
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Proof of Proposition 2

Proposition 2

Assume that F = [1 : f1 : f2 : f3] is a Brody curve on a Fermat surface of
degree 6 and all the fj are entire. Let ρ be the order of fi for j = 1, 2, 3.
Then ρ ≤ 1 unless F is trivial.

First let us make some observations.

Lemma (2)

(a). Suppose F = [1 : f1 : f2 : f3] is a Brody curve to the Fermat surface of
degree 6 in P3. The projection of F to each coordinate plane P2 is a
Brody curve. Hence Fij = [1 : fi : fj ] is a Brody curve for i ̸= j .

(b). Assume that the spherical derivative ∥dF∥s ⩽ c∥z∥ℓ, so is the
projection to each coordinate, that is ∥dFij∥s ⩽ c ′∥z∥ℓ for each i , j .
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Proof of Proposition 2

Lemma (3)

Suppose F = [1 : f1 : f2 : f3] is a Brody curve to the Fermat surface of
degree 6 in P3. Then there exists some c > 0 such that whenever w ∈ C
satisfying |f1(w)| = 1, we have

∥dfj(w)∥s :=
|f ′j (w)|

1 + |fj(w)|2
⩽ c

for j = 2, 3.
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Proof of Proposition 2

Theorem B (Eremenko 2010)

For entire functions f0, ..., fn in C, let f = [f0 : · · · : fn] and ui = log |fi | for
i = 0, ..., n. Suppose f0 has a zero a. Let z ∈ such that |z | > |a| and
u0(z) ⩾ max1⩽j⩽n uj(z).

Let B(z ;R) be the largest ball of radius R so that u0(s) ⩾ max1⩽j⩽n uj(s)
for all s ∈ B(z ;R). Hence there exists z1 ∈ B(z ;R) with
u0(z1) = max1⩽j⩽n uj(z1).

Then
u0(z) ⩽ max

1⩽j⩽n
uj(z) + 4(n + 1)R∥df ∥s(z1) (24)

where R ⩽ 2|z |
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Brody curves omitting hyperplanes

Theorem C (Eremenko 2010)

Brody curves f : C → Pn omitting n hyperplanes in general position satisfy

T (r , f ) :=

∫ r

0

dt

t
(
1

π

∫
∆(t)

∥df ∥2s (z)dmz) = O(r)

Remark. This extends Clunie and Hayman(1966)’s result when n = 1.
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Proof of Proposition 2

We are going to prove the Proposition 2 in three steps:

Step 1, to prove that either ρ < 5
3 or that the entire holomorphic

curve is a trivial one, on the assumption that it is a Brody curve, and

Step 2, to prove that ρ < 4
3 or that it is trivial, on the assumption

that it has order ρ < 5
3 ,

Step 3, to prove that ρ ⩽ 1 or that it is trivial, on the assumption
that it has order ρ < 4

3 .

Remark. If F = [1 : f1 : f2 : f3] is a Brody curve in M6, then ρfi = ρF ≤ 2
for i = 1, 2, 3.
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Proof of Proposition 2 (Step 1)

Denote ui = log |fi |. It suffices for us to show that for some positive ϵ,

uj(z) ⩽ O(|z |
5
3
−ϵ) for all |z | sufficiently large as it is the same as showing

that fi has order less than < 5
3 − ϵ for each i = 1, 2, 3.

Let ϵ be a sufficiently small positive number.

Let A := {z : max1⩽j⩽3 uj(z) > |z |
5
3
−ϵ}.

We will assume A is an unbounded set and try to deduce that F is trivial.
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Proof of Proposition 2 (Step 1)

For 1 ⩽ i ̸= j ⩽ 3, let Fij = [1 : fi : fj ]. Then (24) implies that for |z |
sufficiently large,

ui (z) ⩽ max(uj(z), 0) + 24|z | sup ∥dFij∥s ⩽ max(uj(z), 0) + 24C0|z | (25)

and C0 := max{sup ∥dF12∥s , sup ∥dF13∥s , sup ∥dF23∥s}, note that C0 < ∞
follows from the fact that each Fij is a Brody curve.
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Proof of Proposition 2 (Step 1)

Hence, for any 1 ⩽ i , j ⩽ 3 and |z | sufficiently large,

ui (z) ⩽ max{uj(z), 0}+ 24C0|z | (26)

Let r > 0 be a fixed sufficiently large number so that (26) holds for |z | > r .

Now let z ∈ A\B(0; r)(̸= ϕ) be a fixed number in C.

We first show that ui (z) > 0 for each 1 ≤ i ≤ 3.

Without loss of generality assume at z that u1(z) ⩽ u2(z) ⩽ u3(z).

If u1(z) < 0, then from (26), we have u3(z) ⩽ 0 + 24C0|z | which is
impossible as z ∈ A and r can be arbitrarily large.

Therefore, u1(z) > 0 and so are u2(z) and u3(z).
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Proof of Proposition 2 (Step 1)

As each fi has at least one zero bi so that ui (bi ) < 0, we can consider the
largest radius Ri > 0 such that ui (w) > 0 for all w ∈ B(z ;Ri ).

Clearly for each i , there exists some si ∈ ∂B(z ;Ri ) with ui (si ) = 0.

Let R = max3i=1 Ri and we may assume R1 ≤ R2 ≤ R3 = R.

Consider now two subcases,

(1a) R ⩽ |z |
5
3
−2ϵ, and

(1b) R > |z |
5
3
−2ϵ.
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Proof of Proposition 2 (subcase 1a)

Consider first subcase (1a). Applying Theorem B to the mapping
Gj = [fj : 1] :→ P1 for j = 1, 2, 3 we get

uj(z) ⩽ 8Rj∥dG ′
j (zj)∥s . (27)

for some point zj ∈ ∂B(z ;Rj) with uj(zj) = 0. In fact, zi is a candidate of
si above.

Let jz1 be the index satisfying |fjz1 (z1)| = max3j=1 |fj(z1)|. In our setting, jz1
can be taken to be either 2 or 3 as u1(z1) = 0 and R2,R3 ≥ R1.

Applying w = z1 in the statement of Lemma 3, noting that |f1(z1)| = 1 as
u1(z1) = 0, we conclude that ∥dGjz1

(z1)∥s ⩽ c and hence the above
estimate (27) implies that

|ujz1 (z)| ⩽ 8cR.
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Proof of Proposition 2 (subcase 1a)

Apply now Theorem B to the map [1 : f1 : fjz1 ] :→ P2, we conclude from
(24) or (26) that

u1(z) ≤ max{ujz1 (z), 0}+24C0|z | ⩽ C1|z |
5
3
−2ϵ+24C0|z | ⩽ C |z |

5
3
−2ϵ (28)

for ϵ sufficiently small which is impossible as z ∈ A\B(0; r).

Hence subcase 1a leads to a contradiction if A is unbounded.
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Proof of Proposition 2 (subcase 1b)

Subcase (1b), R > |z |
5
3
−2ϵ.

Use the notation that F1 = f 61 ,F2 = f 62 ,F3 = f 63 and ui = log |Fi |. At a
point z , we assume without loss of generality that
|F3(z)| ⩾ |F2(z)| ⩾ |F1(z)|, otherwise we may just permute the
coordinates in the following argument, where p is independent of the
choice.

We rewrite p := F ∗(xyzΦ) in the following way.

p = (
F1
F3

F2
F3

)1/3{(u′1(log
F2
F1

)′′ + (log
F2
F1

)′u′′1 + u′1u
′
2(log

F2
F1

)′)}

From our choices, |(F1
F3

F2
F3
)1/3| ⩽ 1.
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Proof of Proposition 2 (Subcase 1b)

Lemma (4)

Let f1, f2 and f3 be entire functions of order ρ satisfying f 61 + f 62 + f 63 = 1
and we denote f 6i by Fi .

Let ρ′ > ρ and |z | = r be sufficiently large so that log |Fi (z)| = O(rρ
′
) for

all i . Assume that log |Fi | > 0 on B(z ;R) for i = 1, 2, 3.

Then the following holds, where we denote ∂h
∂z by h′.

(a). |(log Fi )′(z)| ⩽ c rρ
′

R .

(b). |(log Fi )′′(z)| ⩽ c rρ
′

R2 .

(c). |F
′′
i
Fi
(z)| ⩽ c r2ρ

′

R2 .

(d). |(log Fi
Fj
)(z)| ⩽ c(log( r

9ρ′

R9 ) + 3ρ′ log r) for i ̸= j .

(e). |(log Fi
Fj
)′(z)| ⩽ c log r

R for i ̸= j if R ⩾ 1.

(f). |(log Fi
Fj
)′′(z)| ⩽ c log r

R2 for i ̸= j .
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Proof of Proposition 2 (subcase 1b)

Since R > r
5
3
−2ϵ, where r = |z |. Then from Lemma 4,

i) |u′i (z)| ⩽ crρ
′− 5

3
+ϵ,

ii) |u′′i (z)| ⩽ crρ
′− 10

3
+2ϵ,

iii) |(log F2
F1
)′(z)| ⩽ c log r

r
5
3−2ϵ

,

iv) |(log F2
F1
)′′(z)| ⩽ c log r

r
10
3 −4ϵ

.

p = (
F1
F3

F2
F3

)1/3{(u′1(log
F2
F1

)′′ + (log
F2
F1

)′u′′1 + u′1u
′
2(log

F2
F1

)′)}

The dominating term above is u′1u
′
2(log

F2
F1
)′, which is of order r2ρ

′
log r

R3 . In

this case, can take R = r
5
3
−2ϵ. Hence

|p| ⩽ cr2ρ
′−5+6ϵ log r .

Hence p = 0 if ρ ⩽ 2, after taking r sufficiently large. From earlier
discussions, p = 0 implies that f is trivial.
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Proof of Proposition 2 (subcase 1b)

We conclude that for subcase 1b, f is trivial if A is unbounded.

In conclusion, if A is unbounded, f has to be trivial.

So if f is non-trivial Brody curve in M6, then ρf < 5/3.

This completes the proof for Step 1.

Similarly, we can prove

Step 2, to prove that ρ < 4
3 or that it is trivial, on the assumption

that it has order ρ < 5
3 ,

Step 3, to prove that ρ ⩽ 1 or that it is trivial, on the assumption
that it has order ρ < 4

3 .
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Green-Griffiths’conjecture (compact case)

Green-Griffiths’conjecture (compact case)

If D is a nonsingular hypersurface in the projective space Pn of degree
d ≥ n+ 2, then the image of any holomorphic mapping f : Cp → D lies in
some proper algebraic subvariety of D

In the case where D is a Fermat type hypersurface, Green obtained the
following results

Theorem D (Green 1975)

Let p ≥ 1,n ≥ 2 be positive integers. Let M be the Fermat hypersurface of
degree d in Pn. If d > n2 − 1, then the image of every holomorphic map
f : Cp → M lies in a linear subspace of dimension at most [n−1

2 ].

For p = 1, the unsettled cases for Green-Griffiths’conjecture (Fermat
surface) are d = 6 and 5,
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Nevanlinna current

Let α be a smooth (1, 1)-form on a complex projectuve variety X of
dimension two.

Let ω be a fixed Kähler form on X and T (r ,G , ω) be the characteristic
function of an entire holomorphic curve G : C → M defined by∫ r

0

dt

t

∫
∆(t)

G ∗ω

Define the family of positive currents of bounded mass Rω,r [G ] by

Rω,r [G ](α) = ⟨Rω,r [G ], α⟩ := 1

T (r ,G , ω)

∫ r

0

dt

t

∫
∆(t)

G ∗α (29)
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Nevanlinna current

McQuillan (1998) showed that there exist infinitely many sequences {rk}
converging to ∞ such that the sequence of currents {Rω,rk [G ]} converges
in weak topology to a closed positive (1, 1) current given by

Rω[G ] := lim
k→∞

Rω,rk [G ], (30)

where rk → ∞ as k → ∞.

Such limit currents are called Nevanlinna currents for G . Nevanlinna
currents can be considered as the logarithmic average analogs of Ahlfors
currents.

Lemma (McQuillan 2012)

Let T be a Nevanlinna current in a projective manifold X of dimension
two. Assume that T charges a compact subset K of X . Then there exists
a Brody curve intersecting K with non-zero area.

Duval (2008) first established a similar result for Ahlfors currents.
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Nevanlinna current

From Siu’s decomposition of positive currents (1974), we have

Rω[G ] =
∑
i

βi [Di ] + A,

where the sum is a possibly countably infinite sum, Di are distinct
irreducible algebraic curves, [Di ] are the currents of integration over Di , βi
are the generic Lelong numbers of Rω[G ] along Di , and A is a positive
closed (1, 1) current which has positive Lelong number only on a set of
dimension 0.
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Nevanlinna current

Theorem (N. and Yeung)

Let C1, . . . ,Cl be trivial rational curves on M6. Let G : C → M6 be
holomorphic.

Then Rω[G ] can be represented as

Rω[G ] =
l∑

i=1

βi [Ci ] + A (31)

in Siu’s decomposition of positive current, where βi ⩾ 0, and A is a
countable set of points supported on ∪i [Ci ]. Furthermore,∑

i

βi ⩽ 1. (32)
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