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Discrete Painleve equations of symmetry type Eé”

Configurations of ten (ordered) points in P?:
X1 Xo ... X9 X
M=GLB,C\S [y y2 - yo y]| ¢ /(C)°
Zy 2o ... Z9 Z

Points pj = [x; : y; : zi], i = 1,...,9 are parameters, point

p = [x:y: z]is the dependent variable. The action of the affine
Weyl group W(Eé”) on M by Cremona transformations is
generated by

Si @ Pi <7 Pit1, i:172>"'78

and sg, the Cremona inversion based at py, p», ps. Discrete
Painlevé equation: action of a translation from W(Eé”).
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Configurations of eight points in P! x P

Left part of the Sakai table.
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Example: gP, vs a QRT recurrence

ya—1

5
1—c®ya

A non-autonomous version of a QRT recurrence

qPy : Ynt1Yn—1 = Cn = CoG°".
Yny1¥Yn—1 =

which can be put as f : C?> — C? (a QRT root),

2 _
fro(y) e (y) = (yx(1y—c—12y2)>

Inverse map:

~2_
1 (%) = (X, y) = <M}> .
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QRT as a birational map

Lift f to P! x P'. Then it has four indeterminacy points
p1 = (007 C)? P2 = (007 _C)> Ps = (07 1)7 Pe = (07 _1)’
while f~1 has four indeterminacy points

ps = (Cv OO), Pa = (_07 OO): p7 = (170)7 Ps = (_170)'

4 3
V=5 2
° .
6 1
° .
y=0 7 8
x=0 X = o0
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QRT as a birational map

The eight singular points define a pencil of biquadratic curves in
P! x P', which are invariant under the map f:

C.: {szxzyz X2 —yP 1 —puxy = 0}.
(Note that C is the union of four lines from the previous
picture.)
Singularity confinement for f:
{y = _C} — (_07 OO) — (007 C) - {X = 0}7
{y=ct = (¢,0) = (00,—¢) — {x=-—c},

{y=-1 = (-1,00 = (0,1) = {x=1}
{y=1} - (1,00 —» (0,-1) — {x=-1}.

Yuri B. Suris Discrete Painlevé equations and pencils of quadrics in 3



From a pencil of biquadratic curves to a QRT map

One can construct f starting with the pencil C,.

» For a given (x, y), determine 1 such that (x,y) € C,,.

» Define the vertical switch i; and the horizontal switch i> as
the second intersection point of C,, with the line x = const,
resp. y = const. One computes:

. x% —1 . y2 —1

h(x,y)= (X» m)a b(x,y) = (ma}’)-
» Define the QRT map F = iy o ix. If the pencil C,, is

symmetric under s(x, y) = (¥, x), define the QRT root

f=soip=ij08, sothat F = f.
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From a QRT recurrence to gPyy

One can consider gPy; as a sequence of maps of the type f,
but for which (some of) the points py, ..., pg depend on n
through ¢ = ¢, = ¢,q®" (de-autonomization).

Main requirement (which singles out the evolution ¢, = ¢yg?"):
the same singularity confinement patterns.

No algebraic integrals of motion! However, universally accepted
as an integrable system:
» vanishing algebraic entropy

» isomonodromic structure (hence, monodromy data serve
as transcendental integrals of motion)
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A 3D map with a similar singularity confinement

Consider a birational map P2 --» P2 given by
®=Aoo,

where A is a linear projective automorphism of P3, and
o : P3 -—s P2 is the Cremona inversion

X 1/X XoXa Xy
X 1X%| | XiXsXs
T UX | T /X% ] T [ XXX,
X, 1/X, Xy XoXa

Yuri B. Suris Discrete Painlevé equations and pencils of quadrics in 3



Algebraic geometry of Cremona inversion

The critical set and the indeterminacy set:
C(O’) = U ni7 I(O') = U él]a
i=1 1<i<j<4

where I; = {X; = 0} are the coordinate planes and ¢; = N; N,
are lines. Use also the four points

1 0 0 0
e = 0 € = 1 e = 0 €4 = 0
1= 0 b 2 — O I 3 — 1 b 4 — 0
0 0 0 1
Singularity confinement patterns:
o: Mi—e—nN;, i=1,...,4
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Map @ with longer singularity confinement patterns

Consider & = Ao 0. Setting a; := A(e)), we have:
o IN;—a, e — AN,.
Suppose
d(a)=€e <& AocoAle)=¢, i=1,...,4,
then have the following singularity patterns:
o My = a — e — A(M).

The above condition is satisfied if

-1 g 1 ¢

a2 _|a -1 a 1
A=A=11 ¢ 1 g
qg 1 g -1
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q = 1: integrability

If g = 1, the family of quadrics through eight points e; and
a; = Ae; is two-dimensional, spanned by two pencils

O\ = {X € P¥: Qy(X) — AOy(X) = 0},
Pu = {X €P*: Q(X) — uQs(X) =0},
where
Qo(X) = (X1 +Xa)(Xe + Xa),  Qi(X) = (X — Xa)(Xe — Xa).
Qo(X) = X2+ X§ — X2 — X2.

Theorem. If g = 1, both pencils {Q,}, {P,.} are invariant under
®. In other words, ® has two rational integrals

ax) QuX)
A=) AR Xy
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g = 1: action of ® on fibers 9,

Parametrize each Q) by (x, y) € P! x P! so that two families of
straight line generators of Q) are given by {x = const}, resp.
{y = const} (pencil-adapted coordinates on P3):

Xi X+ X "xy
X2 . y+1
Xs | | x=Xxy
X4 y—1
Thus,
X:X1+X3 y:X2+X4 _ Q(X)
Xo— X4’ Xo— X4’ Qi(X)
In these coordinates:
2
Ly =y Y
d: x=y, y_x(1—)r2y2)’ A=A

Each Q, is invariant, and in pencil-adapted coordinates ¢ acts
on Q) as a A-dependent 2D QRT root.

Yuri B. Suris
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Definition of 3D QRT maps

» Forany X € P3, determine \ and  so that X € @, N P,.

» Let ¢1(X), £2(X) be two straight line generators of Q)
through X.

» Denote by i1(X), i2(X) the second intersection points of
£1(X), £2(X) with P,. Birational involutions i, i : P3 --» P3
are called 3D QRT involutions defined by the pencils {Q,}
and {P,}.

» The 3D QRT map defined by the pencils {Q,} and {P,} is
F == i1 e} i2.

» If both Q) and P, are symmetric w.r.t. a linear projective
involution s on P3, then ® = j; o s = so i, is called the 3D
QRT root defined by the pencils {Q,} and {P,}, as one
has F = o0 .
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qg=1: ¢ is a 3D QRT root

Theorem. If g = 1, then the map ® = Ao o is the 3D QRT root
b=ijos=S0l,

where s(X1, Xz, X3, X4) = (Xo, X1, X4, X3).
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q # 1: a 3D Painlevé equation g-Py

Map @4 = Aq o o has for any g exactly the same singularity
confinement patterns:

d)q: |_|,' — a — e — Aq(l'l,-).

But:

The family of quadrics through eight points e; and a; = Aq(€j) is
one-dimensional, namely, the pencil Q. Map ®4 has no
rational integrals. It sends each Q) to Q. In pencil-adapted
coordinates:

L ~ y? -1 3 2

This is equivalent to g-P:

Vi1V, 1—}/’%7_1 )\n_)\qun
n n—-1 — _ b - .
1—X\,2y2

Yuri B. Suris Discrete Painlevé equations and pencils of quadrics in 3




General scheme

Input data.

1. A pencil {C,} of biquadratic curves in P! x P! with the

base points sq,...,83 € P! x P!, and the corresponding
QRT map f =iy o bo.

2. One distinguished biquadratic curve C., of the pencil.

Goal.

» Construct a discrete Painlevé equation as a
de-autonomization of f along the fiber C.
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General scheme

Construction [J. Alonso, Yu.S., K. Wei ’24].
1. Let Qo = {Xi X2 — X3 X4 = 0} C P3. Recall that Qy is the
image of the Segre embedding of P! x P! to P3, via

]P1 XIP)1 = ([X1 : Xo], [y1 :yo]) — [X1yo T XoY1 i XY Xoyo] € Qp.

2. Let Sy, ..., Sg be the images of the base points s4,..., sg
under Segre embedding.

3. To each biquadratic curve
C. : {a1X®y? + apxPy + asxy® + asx® + asy®
+ Xy + arx + dgy + ag =0} C P! x P!
there corresponds its Segre lift, the quadric
P {a XZ + ap X1 Xs + agXoXa + as X2 + as X
+ 85 XaXq + @ X1 Xa + @3 Xo Xy + g XZ = 0} C P2
(Actually, C,, can be identified with Qo N P,,.)
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General scheme

Construction (contunued).

4. Construct the pencil of quadrics {Q,} inP® spanned by Qg
and P... The base curve of {Q,} is Qy N P, the image of
C under Segre embedding. Its intersection with the base
curve of {P,} consists of Sy, ..., Ss.

5. Consider 3D QRT involutions iy, i, on P® defined by
intersections of generators /1, ¢> of Q) with the quadrics
P,. On each quadric Q), the map ® = j; o jp induces a
A-deformation of the original QRT map f.
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Issue of rationality

Problem. It is not necessarily the case that ¢1(X), ¢2(X)
depend on X rationally.

Counterexample. Let Q) be the pencil
Ox = {X? + X + X — AXZ = 0}.

In the affine patch with X; = 1, we have X2 + X2 + X2 = \.
Generators are given by (X7 + tVy, Xo + tVo, X3 + tV3), where

—X1X2 + l\/XX3 1 —X2X3 F I\/XX1
X2+X2 0 X2+ X2

[V11V21V3]—[

Thus, for any fixed A, directions of generators are rational
functions on P® with coefficients depending on v\ =

\/ X2 + X2 + X2. As functions of X, they are non-rational.
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Resolution of the issue of rationality

Proposition. For a point X from Q,, generators ¢1(X), £2(X)
are rational functions of X and of \/A(\), where A(}) is the
characteristic polynomial of the pencil Q).

In particular, if A()\) is a complete square, they are rational
functions of X and of . In the latter case, generators ¢4(X) and
(5(X) are rational functions of X € P2, and involutions i, ip are
birational maps P2 --» P3,

This is the case for 7 out of 13 projective classes of pencils of
quadrics.
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Projective classification of pencils of quadrics in P3

Six cases where A()\) is not a complete square:

AN)=(A—A1)2(A=A2)(A—Ag) AN=(A—71)3(A=20) AN=(A—71)3(A=2p)
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Projective classification of pencils of quadrics in P3

... and seven cases where A()\) is a complete square:

AN=(A=2)P(A=A2)2  AN)=(A—Ap)* AN =(A—A1)2(A=An)? A)=(A—2rp)*
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General scheme if A(\) is a complete square

Let o : P! — P! be a M8bius automorphism fixing the set

Sing(Q) := {)\ cP': Q, is degenerate}.
Let a birational map L on P° be defined by imposing on each
9, one of the formulas (depending on the case at hand):
[X1:Xo: X3 0 Xa] = [X1Xa 1 XoXa : X3 Xa—(0(N)—X) Poo(X) X2]
or
[Xi: Xo: X3 Xa] = [XiXo+(0(N\)=A)Poo(X) : XZ : Xo X3 : XoX4].

Then:
a) L preserves the pencil {Q,}, and maps each Q) to Q,(»);
b) The maps Lo ij, L o i have the same singularity
confinement properties as the QRT involutions iy, io.
Themap F = (Loij)o(Loi)is called the 3D discrete Painlevé
equation obtained by the de-autonomization of the QRT map
along the fiber Cy.
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d-Painlevé vs. g-Painlevé

If A(N) = (A — A1)?(\ — A2)?, can normalize Ay = 0, A = oo,
then o(\) = gA, resulting in a g-Painlevé equation.

If A(X) = (A — Aq)%, can normalize \; = oo, then o(\) = A + 6,
resulting in a d-Painlevé equation.

Remark. Note that g, resp. 6 are arbitrary, i.e., do not depend
on the point configuration!
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Example 1: qP(Eé”)

Point configurations:

v

Pencil of quadrics:
Q(N) = X1 Xo — X3 Xy — AX3( Xy — X3).

» Base curve: two lines {X; = X3 = 0}, {Xo> = X3 =0}, and
conic {X1 Xo — X5X4 =0,X3 = X4}
Characteristic polynomial: A(\) = (A + 1)2.
Map L linear projective:
Lo[Xy:Xo: Xz Xa] = [Xq: Xo: Xz : g7 (Xa — X3) + Xa]

with o(\) = —1 + g(A + 1).

v

v
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Example 2: dP(EL")

Point configurations:

v

Pencil of quadrics:
Q()\) = X1 Xo — X3X4 — )\(X1 + Xg)X4.
» Base curve: two lines {X; = X4 = 0}, {Xo = X4, = 0}, and
conic {X1 Xg — X3X4 = 0,X1 + X2 = 0}
Characteristic polynomial: A(X\) = 1.
Map L linear projective:

LZ[X1 2X22X3:X4]0—>[X1 2X22X3—5(X1+X2):X4]
with o(\) = A + 6.

vy
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Example 3: qP(DS))

Point configurations:

» Pencil of quadrics:
Q) = X1 Xo — X3 Xy — A X3 Xy.

» Base curve: four lines {X; = Xz = 0}, {X; = X4 = 0},
{Xo = X3 =0}, {Xo = X4 =0}.
» Characteristic polynomial: A()\) = (A + 1)2.
» Map L linear projective:
L:[Xy:Xo: Xz Xa] = [Xy: Xo: g 1 X5 1 Xy

with o(\) = —1 + g(A + 1).
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Example 4: dP(D.")

Point configurations:

v

Pencil of quadrics:
Q(N\) = X1 Xo — X3 Xy — A X1 Xy
» Base curve: two lines {X; = X5 = 0}, {Xo = X4 = 0}, and
a double line {X; = X3 = 0}.
Characteristic polynomial: A(\) = 1.
Map L linear projective:

LZ[X1 ZX2:X32X4]l—>[X1 ZX2:X3—(5X1 2X4]
with o(\) = A + 6.

vy
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Example 5: dP(A{")

Point configurations:

» Pencil of quadrics:
Q(\) = Xy Xo — XaXy — AXZ.
» Base curve: two double lines {X; = X4 = 0},
{Xo = X4 =0}.
» Characteristic polynomial: A(X) = 1.
» Map L linear projective:

L:[X1 :X22X32X4]i—>[X1 :X22X3—5X4:X4]
with o(A) = A + 6.
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Example 6: alternative dP(Eé”) [Nagao’ 2017]

Point configurations:

» Pencil of quadrics:
Q\) = X1 Xo — X3 Xy — M(XZ — X2 X4).
» Base curve: twisted cubic {[t : #? : 13 : 1]} and its tangent
line {X1 =Xy = 0}
» Characteristic polynomial: A(X) = 1.
» Map L birational of degree 2:

L:[Xy: Xo: Xa o Xa] = [ X4 Xa 0 XoXg 0 XaXag+0(XoXg—X2) : XZ]
with o(\) = X + 4.
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General scheme if A()) is not a complete square

In the six cases when A(\) is not a complete square:

» instead of A, work with R, the Riemann surface of \/A()),
a double cover of P branched at four or two points, with the
holomorphic universal covering C — R, v — A(v);

» instead of P3, work with X, the double cover of P2
branched along the singular quadrics Q),, where \; are
branching points of R.
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General scheme if A()) is not a complete square

e Define a birational map L on X by imposing on each Q,(,)
one of the formulas (depending on the case at hand):

[X1 : X2 . X3 : X4] — [X1 X4 : X2X4 : X3X4—()\(f/\)—)\(y)) POO(X) : X42]
or
[Xi: Xo 0 X3 0 Xa] = [X1 Xo+ (M) = A(V)) P (X) - X2 XoXz 1 XoXa),

where v = v + 24. Then L maps each Q,(,) to Q425 and
fixes the base curve Qg N P, pointwise.

e Factorize L into “triangular” maps:
L:L1 OR2:L20R1,
where, in the pencil-adapted coordinates

L1:(X7.yay)'_>(x’y7’/+6)7 RZZ(vaaV)'_)(}LyvV_‘_é)v
LZ:(Xay)V)}_)(}ay7V+5)7 R1:(x,y,y)f—>(x,}7,y+5).
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General scheme if A()) is not a complete square

We set
vh=1vy+2n6 for ne %Z.

Definition. A 3D Painlevé map is given by
F=RioiholioRzoirols,

or, in coordinates,

L b~ R
(Xns Yns Van—1/2) = (X, Ynsv2n) 2 (X, Vs v2n) 23 (Xnt1, Vs Vani1 /2)
L ' - R
= Xt Vs v2nit) = Xty Vs vani1) =2 (Xnsts Yn, Voany3/2)-

Thus, variables associated to the discrete Painlevé equations
known from the literature, parametrize in our formulation the
quadrics with half-integer indices:

(X, Yn:v2n-1/2) € Qr(an_y,2)s (Xnt1: Yy V2ni1/2) € Qu(wap,s 2)-
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e-Painlevé vs. g-Painlevé vs. d-Painlevé

If A(N) = (A= X1)(A—=A2)(A— A3)(A — A\g), the Riemann surface
R is a torus (elliptic curve), resulting in a e-Painlevé equation.

If A(N) = (A — A)?(X = A2)(X — A3), can normalize \y = oo,
Mo =1, A\3 = —1. Then R is a cylinder (one of the periods is
o0). We uniformize VA2 —1via A = J(e¥ + e7¥) = J(z+ z7").
The shift in the variable z is z — gz, where g = €°, resulting in
a g-Painlevé equation.

If A(N) = (A — A)3(\ — A\2), can normalize \y = oo, Ap = 0.
Then R is a plane (both torus periods are oc). We uniformize
VA via ) = 2, where v € C, resulting in a d-Painlevé equation.

Remark. Note that 4, resp. g are arbitrary, i.e., do not depend
on the point configuration!
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Example 7: dP (E!")

Point configurations:

5

» Pencil of quadrics:
Q) = Xy Xo — XaXa — A(Xq + X2)(Xi + Xo — Xa).

» Base curve: two conics, { X1 Xo — X3X; =0, X; + X = 0}
and {XiXo — X3 X4 =0, X7 + Xo — X4 = 0}.
» Base point configuration:

S = la:—a:-a&:1], i=1,...,4,
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v

Characteristic polynomial: A(\) = 4X — 1.

» Uniformization of /1 — 4\:
2
Ao ] 4” . veC
» Pencil-adapted coordinates (x, y, ) on double cover of P3:
. (1 + V)X1 — (1 — V)XQ B (1 + V)XQ — (1 — V)X1
N 2X, ’ B 2X, '

v

Base points in coordinates (x, y) on Qy,):
S,'(I/) = (a,-,—a,-), i = 1,...,47

v—1 v+ 1 )
si(v) = (a,-+T,—a,-+ 5 ), i=5,...,8.
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» Painlevé deformation map:

Xi X1 X4
LX) Xo X4
" X3 X3X4—|—(5(V—|—(5)(X1 —|—X2)(X1 + X5 —X4)
X X2

» In pencil-adapted coordinates:

) )
L:(x,y, )= (X4 D(xty)y + S (x +y), v +25).
14 1%
Factorizations: L = L4 o Ry = Ly o Ry with

o
Ly = Ry (x.y,v) = (Xy + S(x+y),v +3),

0
L2:R2:(X,y,1/)l—> <X+;(X+y)ay7y+5)'
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