Discrete Painlevé equations and pencils of quadrics in \mathbb{P}^3

Yuri B. Suris

(Technische Universität Berlin)

Geometry and Integrability (Veselov-70) Edinburgh, 14.05.2025

Configurations of ten (ordered) points in \mathbb{P}^2 :

$$M = GL(3,\mathbb{C}) \setminus \left\{ \begin{pmatrix} x_1 & x_2 & \dots & x_9 & x \\ y_1 & y_2 & \dots & y_9 & y \\ z_1 & z_2 & \dots & z_9 & z \end{pmatrix} \right\} / (\mathbb{C}^*)^{10}$$

Points $p_i = [x_i : y_i : z_i]$, i = 1, ..., 9 are *parameters*, point p = [x : y : z] is the dependent variable. The action of the affine Weyl group $W(E_8^{(1)})$ on *M* by Cremona transformations is generated by

$$s_i: p_i \leftrightarrow p_{i+1}, \quad i=1,2,\ldots,8$$

and s_0 , the Cremona inversion based at p_1, p_2, p_3 . Discrete Painlevé equation: action of a translation from $W(E_8^{(1)})$.

Configurations of eight points in $\mathbb{P}^1 \times \mathbb{P}^1$

Yuri B. Suris Discrete Painlevé equations and pencils of quadrics in P³

Example: qP_{III} vs a QRT recurrence

$$qP_{III}: \qquad y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - c_n^{-2}y_n^2}, \quad c_n = c_0 q^{2n}.$$

A non-autonomous version of a QRT recurrence

$$y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - c^{-2}y_n^2},$$

which can be put as $f : \mathbb{C}^2 \to \mathbb{C}^2$ (a *QRT root*),

$$f: (x,y) \mapsto (\widetilde{x},\widetilde{y}) = \left(y, \frac{y^2-1}{x(1-c^{-2}y^2)}\right).$$

Inverse map:

$$f^{-1}: (\widetilde{x}, \widetilde{y}) \mapsto (x, y) = \left(\frac{\widetilde{x}^2 - 1}{\widetilde{y}(1 - c^{-2}\widetilde{x}^2)}, \widetilde{x}\right).$$

QRT as a birational map

Lift *f* to $\mathbb{P}^1 \times \mathbb{P}^1$. Then it has four indeterminacy points

$$p_1 = (\infty, c), \quad p_2 = (\infty, -c), \quad p_5 = (0, 1), \quad p_6 = (0, -1),$$

while f^{-1} has four indeterminacy points

$$p_3 = (c, \infty), \quad p_4 = (-c, \infty), \quad p_7 = (1, 0), \quad p_8 = (-1, 0).$$

The eight singular points define a *pencil of biquadratic curves* in $\mathbb{P}^1 \times \mathbb{P}^1$, which are invariant under the map *f*:

$$C_{\mu}:=\Big\{c^{-2}x^{2}y^{2}-x^{2}-y^{2}+1-\mu xy=0\Big\}.$$

(Note that C_{∞} is the union of four lines from the previous picture.)

Singularity confinement for f:

$$\{ y = -c \} \rightarrow (-c, \infty) \rightarrow (\infty, c) \rightarrow \{ x = c \},$$

$$\{ y = c \} \rightarrow (c, \infty) \rightarrow (\infty, -c) \rightarrow \{ x = -c \},$$

$$\{ y = -1 \} \rightarrow (-1, 0) \rightarrow (0, -1) \rightarrow \{ x = -1 \},$$

$$\{ y = 1 \} \rightarrow (1, 0) \rightarrow (0, -1) \rightarrow \{ x = -1 \}.$$

One can construct *f* starting with the pencil C_{μ} .

- For a given (x, y), determine μ such that $(x, y) \in C_{\mu}$.
- Define the vertical switch i_1 and the horizontal switch i_2 as the second intersection point of C_{μ} with the line x = const, resp. y = const. One computes:

$$i_1(x,y) = \Big(x, \frac{x^2-1}{y(1-c^{-2}x^2)}\Big), \quad i_2(x,y) = \Big(\frac{y^2-1}{x(1-c^{-2}y^2)}, y\Big).$$

Define the QRT map F = i₁ ∘ i₂. If the pencil C_µ is symmetric under s(x, y) = (y, x), define the QRT root f = s ∘ i₂ = i₁ ∘ s, so that F = f².

One can consider qP_{III} as a sequence of maps of the type f, but for which (some of) the points p_1, \ldots, p_8 depend on n through $c = c_n = c_0 q^{2n}$ (*de-autonomization*).

Main requirement (which singles out the evolution $c_n = c_0 q^{2n}$): the same singularity confinement patterns.

No algebraic integrals of motion! However, universally accepted as an integrable system:

- vanishing algebraic entropy
- isomonodromic structure (hence, monodromy data serve as transcendental integrals of motion)

Consider a birational map $\mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ given by

$$\Phi = \mathbf{A} \circ \sigma,$$

where *A* is a linear projective automorphism of \mathbb{P}^3 , and $\sigma : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ is the *Cremona inversion*

$$\sigma: \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} \mapsto \begin{bmatrix} 1/X_1 \\ 1/X_2 \\ 1/X_3 \\ 1/X_4 \end{bmatrix} = \begin{bmatrix} X_2 X_3 X_4 \\ X_1 X_3 X_4 \\ X_1 X_2 X_4 \\ X_1 X_2 X_4 \\ X_1 X_2 X_3 \end{bmatrix}.$$

Algebraic geometry of Cremona inversion

The critical set and the indeterminacy set:

$$\mathcal{C}(\sigma) = \bigcup_{i=1}^{4} \prod_{i}, \qquad \mathcal{I}(\sigma) = \bigcup_{1 \le i < j \le 4} \ell_{ij},$$

where $\Pi_i = \{X_i = 0\}$ are the coordinate planes and $\ell_{ij} = \Pi_i \cap \Pi_j$ are lines. Use also the four points

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Singularity confinement patterns:

$$\sigma: \quad \Pi_i \to \boldsymbol{e}_i \to \Pi_i, \quad i=1,\ldots,4.$$

Map Φ with longer singularity confinement patterns

Consider $\Phi = A \circ \sigma$. Setting $a_i := A(e_i)$, we have:

$$\Phi: \quad \Pi_i \to a_i, \quad e_i \to A(\Pi_i).$$

Suppose

$$\Phi(a_i) = e_i \quad \Leftrightarrow \quad A \circ \sigma \circ A(e_i) = e_i, \quad i = 1, \dots, 4,$$

then have the following singularity patterns:

$$\Phi: \quad \Pi_i \rightarrow a_i \rightarrow e_i \rightarrow A(\Pi_i).$$

The above condition is satisfied if

$$A = A_q = \begin{pmatrix} -1 & q & 1 & q \\ q & -1 & q & 1 \\ 1 & q & -1 & q \\ q & 1 & q & -1 \end{pmatrix}$$

q = 1: integrability

If q = 1, the family of quadrics through eight points e_i and $a_i = Ae_i$ is two-dimensional, spanned by two pencils

$$egin{aligned} \mathcal{Q}_\lambda &= ig\{ X \in \mathbb{P}^3 : \mathcal{Q}_0(X) - \lambda \mathcal{Q}_1(X) = 0 ig\}, \ \mathcal{P}_\mu &= ig\{ X \in \mathbb{P}^3 : \mathcal{Q}_0(X) - \mu \mathcal{Q}_2(X) = 0 ig\}, \end{aligned}$$

where

$$egin{aligned} Q_0(X) &= (X_1 + X_3)(X_2 + X_4), \quad Q_1(X) &= (X_1 - X_3)(X_2 - X_4), \ Q_2(X) &= X_1^2 + X_2^2 - X_3^2 - X_4^2. \end{aligned}$$

Theorem. If q = 1, both pencils $\{Q_{\lambda}\}, \{\mathcal{P}_{\mu}\}$ are invariant under Φ . In other words, Φ has two rational integrals

$$\lambda = rac{Q_1(X)}{Q_0(X)}$$
 and $\mu = rac{Q_2(X)}{Q_0(X)}.$

q = 1: action of Φ on fibers Q_{λ}

Parametrize each Q_{λ} by $(x, y) \in \mathbb{P}^1 \times \mathbb{P}^1$ so that two families of straight line generators of Q_{λ} are given by $\{x = \text{const}\}$, resp. $\{y = \text{const}\}$ (*pencil-adapted coordinates* on \mathbb{P}^3):

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} x + \lambda^{-1}xy \\ y + 1 \\ x - \lambda^{-1}xy \\ y - 1 \end{bmatrix}$$

Thus,

$$x = rac{X_1 + X_3}{X_2 - X_4}, \ \ y = rac{X_2 + X_4}{X_2 - X_4}, \ \ \lambda = rac{Q_0(X)}{Q_1(X)}.$$

In these coordinates:

$$\Phi: \quad \widetilde{x} = y, \quad \widetilde{y} = \frac{y^2 - 1}{x(1 - \lambda^{-2}y^2)}, \quad \widetilde{\lambda} = \lambda.$$

Each Q_{λ} is invariant, and in pencil-adapted coordinates Φ acts on Q_{λ} as a λ -dependent 2D QRT root.

Definition of 3D QRT maps

- For any $X \in \mathbb{P}^3$, determine λ and μ so that $X \in \mathcal{Q}_{\lambda} \cap \mathcal{P}_{\mu}$.
- Let ℓ₁(X), ℓ₂(X) be two straight line generators of Q_λ through X.
- Denote by *i*₁(*X*), *i*₂(*X*) the second intersection points of ℓ₁(*X*), ℓ₂(*X*) with P_µ. Birational involutions *i*₁, *i*₂ : ℙ³ --→ ℙ³ are called 3D QRT involutions defined by the pencils {Q_λ} and {P_µ}.
- The 3D QRT map defined by the pencils $\{Q_{\lambda}\}$ and $\{\mathcal{P}_{\mu}\}$ is $F = i_1 \circ i_2$.
- If both Q_λ and P_μ are symmetric w.r.t. a linear projective involution s on P³, then Φ = i₁ ∘ s = s ∘ i₂ is called the 3D QRT root defined by the pencils {Q_λ} and {P_μ}, as one has F = Φ ∘ Φ.

$q = 1: \Phi$ is a 3D QRT root

Theorem. If q = 1, then the map $\Phi = A \circ \sigma$ is the 3D QRT root

$$\Phi = i_1 \circ s = s \circ i_2,$$

where $s(X_1, X_2, X_3, X_4) = (X_2, X_1, X_4, X_3)$.

$q \neq$ 1: a 3D Painlevé equation q-P_{III}

Map $\Phi_q = A_q \circ \sigma$ has for any *q* exactly the same singularity confinement patterns:

$$\Phi_q: \quad \Pi_i \rightarrow a_i \rightarrow e_i \rightarrow A_q(\Pi_i).$$

But:

The family of quadrics through eight points e_i and $a_i = A_q(e_i)$ is one-dimensional, namely, the pencil Q_{λ} . Map Φ_q has no rational integrals. It sends each Q_{λ} to $Q_{q^2\lambda}$. In pencil-adapted coordinates:

$$\Phi_q: \quad \widetilde{x} = y, \quad \widetilde{y} = \frac{y^2 - 1}{x(1 - \lambda^{-2}y^2)}, \quad \widetilde{\lambda} = q^2 \lambda.$$

This is equivalent to $q-P_{III}$:

$$y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - \lambda_n^{-2}y_n^2}, \qquad \lambda_n = \lambda_0 q^{2n}.$$

Input data.

- A pencil {C_μ} of biquadratic curves in P¹ × P¹ with the base points s₁,..., s₈ ∈ P¹ × P¹, and the corresponding QRT map f = i₁ ∘ i₂.
- 2. One distinguished biquadratic curve C_{∞} of the pencil.

Goal.

► Construct a discrete Painlevé equation as a de-autonomization of *f* along the fiber C_∞.

General scheme

Construction [J. Alonso, Yu.S., K. Wei '24].

1. Let $\mathcal{Q}_0 = \{X_1X_2 - X_3X_4 = 0\} \subset \mathbb{P}^3$. Recall that \mathcal{Q}_0 is the image of the *Segre embedding* of $\mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^3 , via

 $\mathbb{P}^1 \times \mathbb{P}^1 \ni ([x_1 : x_0], [y_1 : y_0]) \mapsto [x_1 y_0 : x_0 y_1 : x_1 y_1 : x_0 y_0] \in \mathcal{Q}_0.$

- Let S₁,..., S₈ be the images of the base points s₁,..., s₈ under Segre embedding.
- 3. To each biquadratic curve

$$egin{aligned} \mathcal{C}_{\mu} &: ig\{ a_1 x^2 y^2 + a_2 x^2 y + a_3 x y^2 + a_4 x^2 + a_5 y^2 \ &+ a_6 x y + a_7 x + a_8 y + a_9 = 0 ig\} \subset \mathbb{P}^1 imes \mathbb{P}^1 \end{aligned}$$

there corresponds its Segre lift, the quadric

$$\begin{aligned} \mathcal{P}_{\mu} &: \left\{a_1 X_3^2 + a_2 X_1 X_3 + a_3 X_2 X_3 + a_4 X_1^2 + a_5 X_2^2 \right. \\ &+ a_6 X_3 X_4 + a_7 X_1 X_4 + a_8 X_2 X_4 + a_9 X_4^2 = 0\right\} \subset \mathbb{P}^3. \end{aligned}$$

(Actually, C_{μ} can be identified with $\mathcal{Q}_0 \cap \mathcal{P}_{\mu}$.)

Construction (contunued).

- Construct the *pencil of quadrics* {Q_λ} in P³ spanned by Q₀ and P_∞. The base curve of {Q_λ} is Q₀ ∩ P_∞, the image of C_∞ under Segre embedding. Its intersection with the base curve of {P_μ} consists of S₁,..., S₈.
- Consider 3D QRT involutions i₁, i₂ on P³ defined by intersections of generators ℓ₁, ℓ₂ of Q_λ with the quadrics P_μ. On each quadric Q_λ, the map Φ = i₁ ∘ i₂ induces a λ-deformation of the original QRT map f.

Issue of rationality

Problem. It is not necessarily the case that $\ell_1(X)$, $\ell_2(X)$ depend on *X* rationally.

Counterexample. Let Q_{λ} be the pencil

$$\mathcal{Q}_{\lambda} = \{X_1^2 + X_2^2 + X_3^2 - \lambda X_4^2 = 0\}.$$

In the affine patch with $X_4 = 1$, we have $X_1^2 + X_2^2 + X_3^2 = \lambda$. Generators are given by $(X_1 + tV_1, X_2 + tV_2, X_3 + tV_3)$, where

$$[V_1:V_2:V_3] = \left[\frac{-X_1X_2 \pm i\sqrt{\lambda}X_3}{X_1^2 + X_3^2} : 1:\frac{-X_2X_3 \mp i\sqrt{\lambda}X_1}{X_1^2 + X_3^2}\right]$$

Thus, for any fixed λ , directions of generators are rational functions on \mathbb{P}^3 with coefficients depending on $\sqrt{\lambda}=$

 $\sqrt{X_1^2 + X_2^2 + X_3^2}$. As functions of *X*, they are non-rational.

Proposition. For a point *X* from Q_{λ} , generators $\ell_1(X)$, $\ell_2(X)$ are rational functions of *X* and of $\sqrt{\Delta(\lambda)}$, where $\Delta(\lambda)$ is the characteristic polynomial of the pencil Q_{λ} .

In particular, if $\Delta(\lambda)$ is a complete square, they are rational functions of *X* and of λ . In the latter case, generators $\ell_1(X)$ and $\ell_2(X)$ are rational functions of $X \in \mathbb{P}^3$, and involutions i_1, i_2 are birational maps $\mathbb{P}^3 \dashrightarrow \mathbb{P}^3$.

This is the case for 7 out of 13 projective classes of pencils of quadrics.

Projective classification of pencils of quadrics in \mathbb{P}^3

Six cases where $\Delta(\lambda)$ is not a complete square:

Projective classification of pencils of quadrics in \mathbb{P}^3

... and seven cases where $\Delta(\lambda)$ is a complete square:

General scheme if $\Delta(\lambda)$ is a complete square

Let $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ be a Möbius automorphism fixing the set $\operatorname{Sing}(\mathcal{Q}) := \{\lambda \in \mathbb{P}^1 : \mathcal{Q}_\lambda \text{ is degenerate}\}.$

Let a birational map *L* on \mathbb{P}^3 be defined by imposing on each \mathcal{Q}_{λ} one of the formulas (depending on the case at hand):

$$[X_1 : X_2 : X_3 : X_4] \mapsto [X_1 X_4 : X_2 X_4 : X_3 X_4 - (\sigma(\lambda) - \lambda) P_{\infty}(X) : X_4^2]$$

or

 $[X_1 : X_2 : X_3 : X_4] \mapsto [X_1 X_2 + (\sigma(\lambda) - \lambda) P_{\infty}(X) : X_2^2 : X_2 X_3 : X_2 X_4].$ Then:

- a) *L* preserves the pencil $\{Q_{\lambda}\}$, and maps each Q_{λ} to $Q_{\sigma(\lambda)}$;
- b) The maps $L \circ i_1, L \circ i_2$ have the same singularity

confinement properties as the QRT involutions i_1, i_2 .

The map $F = (L \circ i_1) \circ (L \circ i_2)$ is called the 3D discrete Painlevé equation obtained by the de-autonomization of the QRT map along the fiber C_{∞} .

If $\Delta(\lambda) = (\lambda - \lambda_1)^2 (\lambda - \lambda_2)^2$, can normalize $\lambda_1 = 0$, $\lambda_2 = \infty$, then $\sigma(\lambda) = q\lambda$, resulting in a q-Painlevé equation.

If $\Delta(\lambda) = (\lambda - \lambda_1)^4$, can normalize $\lambda_1 = \infty$, then $\sigma(\lambda) = \lambda + \delta$, resulting in a d-Painlevé equation.

Remark. Note that q, resp. δ are arbitrary, i.e., do not depend on the point configuration!

Pencil of quadrics:

$$Q(\lambda)=X_1X_2-X_3X_4-\lambda X_3(X_4-X_3).$$

- ▶ Base curve: two lines $\{X_1 = X_3 = 0\}$, $\{X_2 = X_3 = 0\}$, and conic $\{X_1X_2 X_3X_4 = 0, X_3 = X_4\}$.
- Characteristic polynomial: $\Delta(\lambda) = (\lambda + 1)^2$.
- Map L linear projective:

$$L : [X_1 : X_2 : X_3 : X_4] \mapsto [X_1 : X_2 : X_3 : q^{-1}(X_4 - X_3) + X_3]$$

with $\sigma(\lambda) = -1 + q(\lambda + 1)$.

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda (X_1 + X_2) X_4.$$

- ▶ Base curve: two lines $\{X_1 = X_4 = 0\}$, $\{X_2 = X_4 = 0\}$, and conic $\{X_1X_2 X_3X_4 = 0, X_1 + X_2 = 0\}$.
- Characteristic polynomial: $\Delta(\lambda) = 1$.
- Map L linear projective:

$$L : [X_1 : X_2 : X_3 : X_4] \mapsto [X_1 : X_2 : X_3 - \delta(X_1 + X_2) : X_4]$$

with $\sigma(\lambda) = \lambda + \delta$.

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda X_3 X_4.$$

- ▶ Base curve: four lines $\{X_1 = X_3 = 0\}$, $\{X_1 = X_4 = 0\}$, $\{X_2 = X_3 = 0\}$, $\{X_2 = X_4 = 0\}$.
- Characteristic polynomial: $\Delta(\lambda) = (\lambda + 1)^2$.
- Map L linear projective:

$$L: [X_1:X_2:X_3:X_4] \mapsto [X_1:X_2:q^{-1}X_3:X_4]$$

with $\sigma(\lambda) = -1 + q(\lambda + 1)$.

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda X_1 X_4.$$

- ► Base curve: two lines {X₁ = X₃ = 0}, {X₂ = X₄ = 0}, and a double line {X₁ = X₄ = 0}.
- Characteristic polynomial: $\Delta(\lambda) = 1$.
- Map L linear projective:

$$L: [X_1:X_2:X_3:X_4] \mapsto [X_1:X_2:X_3-\delta X_1:X_4]$$

with $\sigma(\lambda) = \lambda + \delta$.

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda X_4^2.$$

- Base curve: two double lines $\{X_1 = X_4 = 0\}, \{X_2 = X_4 = 0\}.$
- Characteristic polynomial: $\Delta(\lambda) = 1$.
- Map L linear projective:

$$L: [X_1: X_2: X_3: X_4] \mapsto [X_1: X_2: X_3 - \delta X_4: X_4]$$

with $\sigma(\lambda) = \lambda + \delta$.

Example 6: alternative $dP(E_7^{(1)})$ [Nagao' 2017]

Point configurations:

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda (X_1^2 - X_2 X_4).$$

- ► Base curve: twisted cubic {[*t* : *t*² : *t*³ : 1]} and its tangent line {*X*₁ = *X*₄ = 0}.
- Characteristic polynomial: $\Delta(\lambda) = 1$.
- Map L birational of degree 2:

$$L : [X_1 : X_2 : X_3 : X_4] \mapsto [X_1 X_4 : X_2 X_4 : X_3 X_4 + \delta(X_2 X_4 - X_1^2) : X_4^2]$$

with $\sigma(\lambda) = \lambda + \delta$.

In the six cases when $\Delta(\lambda)$ is *not* a complete square:

- Instead of λ, work with R, the Riemann surface of √Δ(λ), a double cover of ℙ branched at four or two points, with the holomorphic universal covering ℂ → R, ν ↦ λ(ν);
- Instead of P³, work with X, the double cover of P³ branched along the singular quadrics Q_{λ_i}, where λ_i are branching points of R.

General scheme if $\Delta(\lambda)$ is not a complete square

• Define a birational map *L* on \mathcal{X} by imposing on each $\mathcal{Q}_{\lambda(\nu)}$ one of the formulas (depending on the case at hand):

$$[X_1 : X_2 : X_3 : X_4] \mapsto [X_1 X_4 : X_2 X_4 : X_3 X_4 - (\lambda(\hat{\nu}) - \lambda(\nu)) P_{\infty}(X) : X_4^2]$$

or

$$[X_1:X_2:X_3:X_4]\mapsto [X_1X_2+(\lambda(\widehat{\nu})-\lambda(\nu))P_{\infty}(X):X_2^2:X_2X_3:X_2X_4],$$

where $\hat{\nu} = \nu + 2\delta$. Then *L* maps each $\mathcal{Q}_{\lambda(\nu)}$ to $\mathcal{Q}_{\lambda(\nu+2\delta)}$ and fixes the base curve $\mathcal{Q}_0 \cap \mathcal{P}_\infty$ pointwise.

• Factorize *L* into "triangular" maps:

$$L=L_1\circ R_2=L_2\circ R_1,$$

where, in the pencil-adapted coordinates

$$\begin{array}{ll} L_1:(x,y,\nu)\mapsto (x,\widetilde{y},\nu+\delta), & R_2:(x,y,\nu)\mapsto (\widetilde{x},y,\nu+\delta), \\ L_2:(x,y,\nu)\mapsto (\widetilde{x},y,\nu+\delta), & R_1:(x,y,\nu)\mapsto (x,\widetilde{y},\nu+\delta). \end{array}$$

General scheme if $\Delta(\lambda)$ is not a complete square

We set

$$\nu_n = \nu_0 + 2n\delta$$
 for $n \in \frac{1}{2}\mathbb{Z}$.

Definition. A 3D Painlevé map is given by

$$F=R_1\circ i_1\circ L_1\circ R_2\circ i_2\circ L_2,$$

or, in coordinates,

$$(x_n, y_n, \nu_{2n-1/2}) \stackrel{L_2}{\to} (x, y_n, \nu_{2n}) \stackrel{i_2}{\to} (\widetilde{x}, y_n, \nu_{2n}) \stackrel{R_2}{\to} (x_{n+1}, y_n, \nu_{2n+1/2})$$
$$\stackrel{L_1}{\to} (x_{n+1}, y, \nu_{2n+1}) \stackrel{i_1}{\to} (x_{n+1}, \widetilde{y}, \nu_{2n+1}) \stackrel{R_1}{\to} (x_{n+1}, y_{n+1}, \nu_{2n+3/2}).$$

Thus, variables associated to the discrete Painlevé equations known from the literature, parametrize in our formulation the quadrics with half-integer indices:

$$(x_n, y_n, \nu_{2n-1/2}) \in Q_{\lambda(\nu_{2n-1/2})}, \quad (x_{n+1}, y_n, \nu_{2n+1/2}) \in Q_{\lambda(\nu_{2n+1/2})}.$$

e-Painlevé vs. q-Painlevé vs. d-Painlevé

If $\Delta(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)(\lambda - \lambda_4)$, the Riemann surface \mathcal{R} is a torus (elliptic curve), resulting in a e-Painlevé equation.

If $\Delta(\lambda) = (\lambda - \lambda_1)^2 (\lambda - \lambda_2)(\lambda - \lambda_3)$, can normalize $\lambda_1 = \infty$, $\lambda_2 = 1$, $\lambda_3 = -1$. Then \mathcal{R} is a cylinder (one of the periods is ∞). We uniformize $\sqrt{\lambda^2 - 1}$ via $\lambda = \frac{1}{2}(e^{\nu} + e^{-\nu}) = \frac{1}{2}(z + z^{-1})$. The shift in the variable *z* is $z \mapsto qz$, where $q = e^{\delta}$, resulting in a q-Painlevé equation.

If $\Delta(\lambda) = (\lambda - \lambda_1)^3(\lambda - \lambda_2)$, can normalize $\lambda_1 = \infty$, $\lambda_2 = 0$. Then \mathcal{R} is a plane (both torus periods are ∞). We uniformize $\sqrt{\lambda}$ via $\lambda = \nu^2$, where $\nu \in \mathbb{C}$, resulting in a d-Painlevé equation.

Remark. Note that δ , resp. *q* are arbitrary, i.e., do not depend on the point configuration!

Pencil of quadrics:

$$Q(\lambda) = X_1 X_2 - X_3 X_4 - \lambda (X_1 + X_2) (X_1 + X_2 - X_4).$$

- ▶ Base curve: two conics, $\{X_1X_2 X_3X_4 = 0, X_1 + X_2 = 0\}$ and $\{X_1X_2 - X_3X_4 = 0, X_1 + X_2 - X_4 = 0\}$.
- Base point configuration:

$$S_i = [a_i : -a_i : -a_i^2 : 1], \quad i = 1, \dots, 4,$$

$$S_i = [a_i : 1 - a_i : a_i(1 - a_i) : 1], \quad i = 5, \dots, 8.$$

- Characteristic polynomial: $\Delta(\lambda) = 4\lambda 1$.
- Uniformization of $\sqrt{1-4\lambda}$:

$$\lambda = \frac{1 - \nu^2}{4}, \quad \nu \in \mathbb{C}.$$

▶ Pencil-adapted coordinates (x, y, ν) on double cover of \mathbb{P}^3 :

$$x = \frac{(1+\nu)X_1 - (1-\nu)X_2}{2X_4}, \quad y = \frac{(1+\nu)X_2 - (1-\nu)X_1}{2X_4}.$$

▶ Base points in coordinates (x, y) on $Q_{\lambda(\nu)}$:

$$\begin{aligned} s_i(\nu) &= (a_i, -a_i), \quad i = 1, \dots, 4, \\ s_i(\nu) &= \left(a_i + \frac{\nu - 1}{2}, -a_i + \frac{\nu + 1}{2}\right), \quad i = 5, \dots, 8. \end{aligned}$$

Painlevé deformation map:

$$L: \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} \mapsto \begin{bmatrix} X_1 X_4 \\ X_2 X_4 \\ X_3 X_4 + \delta(\nu + \delta)(X_1 + X_2)(X_1 + X_2 - X_4) \\ X_4^2 \end{bmatrix}.$$

In pencil-adapted coordinates:

$$L: (\mathbf{x}, \mathbf{y}, \nu) \mapsto \Big(\mathbf{x} + \frac{\delta}{\nu}(\mathbf{x} + \mathbf{y}), \mathbf{y} + \frac{\delta}{\nu}(\mathbf{x} + \mathbf{y}), \nu + 2\delta\Big).$$

Factorizations: $L = L_1 \circ R_2 = L_2 \circ R_1$ with

$$L_1 = R_1 : (x, y, \nu) \mapsto \left(x, y + \frac{\delta}{\nu}(x+y), \nu + \delta\right),$$

$$L_2 = R_2 : (x, y, \nu) \mapsto \left(x + \frac{\delta}{\nu}(x+y), y, \nu + \delta\right).$$

- 1. J. Alonso, Yu.S., K. Wei. Discrete Painlevé equations and pencils of quadrics in \mathbb{P}^3 . arXiv:2403.11349
- 2. J. Alonso, Yu.S. Discrete Painlevé equations and pencils of quadrics in \mathbb{P}^3 . 2. Pencils with branching generators. (In preparation)