Stochastic quantization of Liouville conformal field theory

Yuzhao Wang

University of Birmingham

June 24, 2022

with

Tadahiro Oh (University of Edinburgh), Tristan Robert (Univ Rennes, CNRS), Nikolay Tzvetkov (Université de Cergy-Pontoise).

Harmonic Analysis, Stochastics and PDEs

in Honour of the 80th Birthday of Nicolai Krylov

(ロ) (個) (E) (E) (E)

Consider the Liouville action $\mathcal{S}_{\mathcal{L}}$ is defined on paths $u:\mathcal{M}\to\mathbb{R}$ by

(LCFT)
$$S_{\mathcal{L}}(u;g) \stackrel{\text{def}}{=} \frac{1}{4\pi} \int_{\mathcal{M}} \left\{ |\nabla_g u|^2 + Q \mathcal{R}_g u + 4\pi \nu e^{\beta u} \right\} dV_g,$$

- (M,g) is a two-dimensional connected, closed (compact, boundaryless), orientable Riemannian manifold.
- \mathcal{R}_{g} is the Ricci scalar curvature.

•
$$\nu > 0$$
, $\beta > 0$ and the charge $Q = \frac{2}{\beta} + \frac{\beta}{2}$.

Consider the Liouville action $\mathcal{S}_{\mathcal{L}}$ is defined on paths $u:\mathcal{M}\to\mathbb{R}$ by

(LCFT)
$$S_{\mathcal{L}}(u; g) \stackrel{\text{def}}{=} \frac{1}{4\pi} \int_{\mathcal{M}} \left\{ |\nabla_{g} u|^{2} + Q \mathcal{R}_{g} u + 4\pi \nu e^{\beta u} \right\} dV_{g},$$

- (M, g) is a two-dimensional connected, closed (compact, boundaryless), orientable Riemannian manifold.
- *R*_g is the Ricci scalar curvature.
- $\nu > 0, \beta > 0$ and the charge $Q = \frac{2}{\beta} + \frac{\beta}{2}$.

Question: For which ν , β , and g we can define

$$d\rho_{\rm g}(u)=Z_{\rm g}^{-1}e^{-S_{\mathcal{L}}(u)}Du.$$

Consider the Liouville action $\mathcal{S}_{\mathcal{L}}$ is defined on paths $u:\mathcal{M}\to\mathbb{R}$ by

(LCFT)
$$S_{\mathcal{L}}(u;g) \stackrel{\text{def}}{=} \frac{1}{4\pi} \int_{\mathcal{M}} \left\{ |\nabla_g u|^2 + Q \mathcal{R}_g u + 4\pi \nu e^{\beta u} \right\} dV_g,$$

- (M, g) is a two-dimensional connected, closed (compact, boundaryless), orientable Riemannian manifold.
- *R*_g is the Ricci scalar curvature.
- $\nu > 0, \beta > 0$ and the charge $Q = \frac{2}{\beta} + \frac{\beta}{2}$.

Question: For which ν , β , and g we can define

$$d\rho_{\rm g}(u)=Z_{\rm g}^{-1}e^{-S_{\mathcal{L}}(u)}Du.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Answer: No.

Consider the Liouville action $\mathcal{S}_{\mathcal{L}}$ is defined on paths $u:\mathcal{M}\to\mathbb{R}$ by

(LCFT)
$$S_{\mathcal{L}}(u;g) \stackrel{\text{def}}{=} \frac{1}{4\pi} \int_{\mathcal{M}} \left\{ |\nabla_g u|^2 + Q \mathcal{R}_g u + 4\pi \nu e^{\beta u} \right\} dV_g,$$

- (M, g) is a two-dimensional connected, closed (compact, boundaryless), orientable Riemannian manifold.
- *R*_g is the Ricci scalar curvature.
- $\nu > 0, \beta > 0$ and the charge $Q = \frac{2}{\beta} + \frac{\beta}{2}$.

Question: For which ν , β , and g we can define

$$d\rho_{\rm g}(u)=Z_{\rm g}^{-1}e^{-S_{\mathcal{L}}(u)}Du.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Answer: No.

- $e^{\beta u}$ does not make sense for rough u.
- Uniform disribution at the zero mode.

LCFT - punctures and renormalization

Consider

$$d\rho_{\{a_{\ell},x_{\ell}\},g}(u) = \prod_{\ell=1}^{L} e^{a_{\ell}u(x_{\ell})} e^{-\frac{1}{4\pi}\int_{\mathcal{M}}\{|\nabla_{g}u|^{2} + Q\mathcal{R}_{g}u + 4\pi\nu} : e^{\beta u} : dV_{g}Du.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $a_{\ell} \in \mathbb{R} \setminus \{0\}$ and $x_{\ell} \in \mathcal{M}$.

LCFT - punctures and renormalization

Consider

$$d\rho_{\{a_{\ell},x_{\ell}\},g}(u) = \prod_{\ell=1}^{L} e^{a_{\ell}u(x_{\ell})} e^{-\frac{1}{4\pi}\int_{\mathcal{M}}\{|\nabla_{g}u|^{2} + QR_{g}u + 4\pi\nu} \underbrace{e^{\beta u}:}_{:e^{\beta u}:} dV_{g}Du.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

where $a_{\ell} \in \mathbb{R} \setminus \{0\}$ and $x_{\ell} \in \mathcal{M}$.

- Sub-critical regime: $0 < \beta < 2$; First Seiberg bound: $\chi(\mathcal{M})Q < \sum_{\ell=1}^{L} a_{\ell}$; Second Seiberg bound: $\max_{1 \le \ell \le L} a_{\ell} < Q = \frac{2}{\beta} + \frac{\beta}{2}$.

LCFT - punctures and renormalization

Consider

$$d\rho_{\{a_{\ell},x_{\ell}\},g}(u) = \prod_{\ell=1}^{L} e^{a_{\ell}u(x_{\ell})} e^{-\frac{1}{4\pi}\int_{\mathcal{M}}\{|\nabla_{g}u|^{2} + QR_{g}u + 4\pi\nu} \underbrace{e^{\beta u}:}_{:e^{\beta u}:} dV_{g}Du.$$

where $a_{\ell} \in \mathbb{R} \setminus \{0\}$ and $x_{\ell} \in \mathcal{M}$.

- Sub-critical regime: $0 < \beta < 2$; First Seiberg bound: $\chi(\mathcal{M})Q < \sum_{\ell=1}^{L} a_{\ell}$; Second Seiberg bound: $\max_{1 \le \ell \le L} a_{\ell} < Q = \frac{2}{\beta} + \frac{\beta}{2}$.

Remark: The above implies $\chi(\mathcal{M}) < L$. Therefore $\chi(\mathbb{S}^2) = 2$ implies $L \ge 3$; and $\chi(\mathbb{T}^2) = 0$ implies L > 1.

Background: Stochastic Liouville equations

Stochastic Liouville equations (SL): Consider

(SL)
$$\partial_t u - \frac{1}{4\pi} \Delta_g u + \frac{Q}{8\pi} \mathcal{R}_g + \frac{1}{2} \nu \beta : e^{\beta u} := \frac{1}{2} \sum_{\ell=1}^L a_\alpha \delta_{\mathbf{x}_{\ell}} + \xi_g,$$

- $\delta_{x_{\ell}}$ are delta functions, deterministic singular terms
- ξ_g is the space-time white noise

Background: Stochastic Liouville equations

Stochastic Liouville equations (SL): Consider

(SL)
$$\partial_t u - \frac{1}{4\pi} \Delta_g u + \frac{Q}{8\pi} \mathcal{R}_g + \frac{1}{2} \nu \beta : e^{\beta u} := \frac{1}{2} \sum_{\ell=1}^L a_\alpha \delta_{\mathbf{x}_{\ell}} + \xi_g,$$

- $\delta_{x_{\ell}}$ are delta functions, deterministic singular terms
- ξ_g is the space-time white noise

Main Goa

(i) Local and global dynamics on *M*.
(ii) Invariance of the measure *ρ*_{{*a*_ℓ,*x*_ℓ},g} under the resulting flow.

Main result - stochastic quantisation

Main Theorem (Oh-Robert-Tzvetkov-W., 20)

Let $a_{\ell_{max}} = \max\{a_{\ell}\}$ and assume

- Sub-critical regime: $0 < \beta < \sqrt{2}$;
- First Seiberg bound: $\chi(\mathcal{M})Q < \sum_{\ell=1}^{L} a_{\ell}$;
- Integrable insertions: $a_{\ell_{\max}} < \frac{2}{\beta}$.

Measure construction independent of the approximation procedure.

《曰》 《聞》 《臣》 《臣》 三臣 …

• Extra condition: $0 < \beta < \sqrt{a_{\ell_{\max}}^2 + 4} - a_{\ell_{\max}}$.

Globally well-posed and the invariance of the measure.

Remark: The conditions are not optimal.

For measure construction:

• $\mathcal{R}_g > 0$, David-Kupiainen-Rhodes-Vargas (2016),

- $\mathcal{R}_g = 0$, David-Rhodes-Vargas (2016)
- $\mathcal{R}_{g} < 0$, Guillarmou-Rhodes-Vargas (2019)

For measure construction:

- $\mathcal{R}_{g} > 0$, David-Kupiainen-Rhodes-Vargas (2016),
- $\mathcal{R}_{g} = 0$, David-Rhodes-Vargas (2016)
- $\mathcal{R}_{g} < 0$, Guillarmou-Rhodes-Vargas (2019)

Remark: (i) Oh-Robert-Tzvetkov-W. dealt with all cases at once, but with a smaller range.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

(ii) They used the circle average process $X_{\varepsilon}(z) = \int_{0}^{2\pi} X(z + \varepsilon e^{i\theta}) \frac{d\theta}{2\pi}$.

Fix a metric g_0 , consider

$$g = e^{u}g_{0},$$

where the function u is the conformal factor. Consider

$$\partial_t \mathbf{u} = \mathbf{e}^{-2\mathbf{u}} \Delta_{\mathbf{g}_0} \mathbf{u} + \nu \mathbf{e}^{-\mathbf{u}} \xi_{\mathbf{g}_0} - \lambda$$

- Dubédat-Shen '19 constructed weak solutions.
- The measure is not normalizable.

A related model

$$\partial_t u + mu - \frac{1}{4\pi} \Delta_g u + \frac{1}{2} \nu \beta : e^{\beta u} := \xi_g$$

《曰》 《聞》 《臣》 《臣》 三臣 …

with m > 0 and $\mathcal{M} = \mathbb{T}^2$.

- For $\beta < \sqrt{2}$, Hoshino-Kawabi-Kusuoka, Oh-Robert-W. '19.
- For $\beta < 2$, Hoshino-Kawabi-Kusuoka '20.
- Hyperbolic case with $\beta < \sqrt{0.43}$, Oh-Robert-W. '19.

A related model

$$\partial_t u + mu - rac{1}{4\pi} \Delta_g u + rac{1}{2} \nu \beta : e^{\beta u} := \xi_g$$

with m > 0 and $\mathcal{M} = \mathbb{T}^2$.

- For $\beta < \sqrt{2}$, Hoshino-Kawabi-Kusuoka, Oh-Robert-W. '19.
- For $\beta < 2$, Hoshino-Kawabi-Kusuoka '20.
- Hyperbolic case with $\beta < \sqrt{0.43}$, Oh-Robert-W. '19.

Remark: (i) Albeverio-Röckner '91 constructed weak solutions on \mathbb{R}^2 . (ii) The mass terms with m > 0 destructs the conformal invariance of the Gibbs measure.

《曰》 《聞》 《臣》 《臣》 三臣 …

For the dynamical problem:

Garban (2019) considered when $\mathcal{M} = \mathbb{S}^2$ or \mathbb{T}^2 , the last condition replaced by

$$\frac{\beta^2}{2} - 2\sqrt{2}\beta + \min\left(0, \frac{\beta}{2\sqrt{2}} - a_{\ell_{\max}}\beta\right) > -2.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

For instance, if $\mathcal{M} = \mathbb{T}^2$, L = 1, and $a_1 = \beta$,

For the dynamical problem:

Garban (2019) considered when $\mathcal{M} = \mathbb{S}^2$ or \mathbb{T}^2 , the last condition replaced by

$$\frac{\beta^2}{2} - 2\sqrt{2}\beta + \min\left(0, \frac{\beta}{2\sqrt{2}} - a_{\ell_{\max}}\beta\right) > -2.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

For instance, if $\mathcal{M} = \mathbb{T}^2$, L = 1, and $a_1 = \beta$,

• (Garban) $0 < \beta < \frac{\sqrt{2}}{2} \approx 0.707$; • (ORTW) $0 < \beta < \sqrt{\frac{4}{3}} \approx 1.15$.

Main tools - Green's function

We set $\{\varphi_n\}_{n\geq 0} \subset C^{\infty}(\mathcal{M})$ to be a basis of $L^2(\mathcal{M}, g)$ consisting of eigenfunctions of Δ_g associated with the eigenvalue $-\lambda_n^2$, assumed to be arranged in increasing order: $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \dots$ In particular $\varphi_0 \equiv V_g(\mathcal{M})^{-\frac{1}{2}}$ is constant.

The Green's function

$$G_{\mathrm{g}}(x,y) = \sum_{n\geq 1} rac{arphi_n(x)arphi_n(y)}{\lambda_n^2} \sim -rac{1}{2\pi}\log\left(\mathsf{d}_{\mathrm{g}}(x,y)
ight) + f(x,y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main tools - Green's function

We set $\{\varphi_n\}_{n\geq 0} \subset C^{\infty}(\mathcal{M})$ to be a basis of $L^2(\mathcal{M}, g)$ consisting of eigenfunctions of Δ_g associated with the eigenvalue $-\lambda_n^2$, assumed to be arranged in increasing order: $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \dots$ In particular $\varphi_0 \equiv V_g(\mathcal{M})^{-\frac{1}{2}}$ is constant.

The Green's function

$$G_{\mathrm{g}}(x,y) = \sum_{n\geq 1} rac{arphi_n(x)arphi_n(y)}{\lambda_n^2} \sim -rac{1}{2\pi}\log\left(\mathsf{d}_{\mathrm{g}}(x,y)
ight) + f(x,y).$$

Lemma (Oh-Robert-Tzvetkov-W., 20)

Let $\psi \in S(\mathbb{R})$ such that $\psi(0) = 1$. Then,

$$\left| (oldsymbol{\psi} \otimes oldsymbol{\psi}) ig(- N^{-2} \Delta_{\mathrm{g}} ig) G_{\mathrm{g}}(x,y) + rac{1}{2\pi} \log ig(\mathbf{d}_{\mathrm{g}}(x,y) + N^{-1} ig)
ight| \lesssim 1$$

▲口> ▲舂> ▲産> ▲産> 三種一

Remark: We may choose different ψ for approximations, they are all equivalent.

Main tools - stochastic convolution

Stochastic convolution:

$$\Psi(t) = e^{\frac{t}{4\pi}\Delta_g} X_g + \int_0^t e^{\frac{t-t'}{4\pi}\Delta_g} dW_g(t').$$

Mass-less Gaussian free field,

$$X_g(\omega) = \sum_{n \ge 1} \frac{\sqrt{2\pi}h_n}{\lambda_n} \phi_n$$

Wiener process

$$W_{g}(t) = \sum_{n \geq 1} \langle \xi_{g}, \mathbf{1}_{[0,t]} \phi_{n} \rangle_{t,g} \phi_{n}.$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣 ─

• $\Psi \in C(\mathbb{R}_+ : H_0^s(\mathcal{M}))$ for any s < 0.

Ideals - "punctured" Gaussian multiplicative chaos

Define the truncated "punctured" Gaussian multiplicative chaos Θ_N :

$$\Theta_{N}(t,x) = e^{\pi\beta^{2}C_{\mathbf{P}}}N^{-\frac{\beta^{2}}{2}} \exp\left(\beta\mathbf{P}_{N}\Psi(t,x) + 2\pi\beta\sum_{\ell=1}^{L}a_{\ell}(\mathbf{P}_{N}\otimes\mathbf{P}_{N})G_{g}(x_{\ell},x)\right)$$

where $C_{\mathbf{P}}$ is a constant depends on $\{\mathbf{P}_N\}$, \mathbf{P}_N is a regularization operators.

Ideals - "punctured" Gaussian multiplicative chaos

Define the truncated "punctured" Gaussian multiplicative chaos Θ_N :

$$\Theta_{N}(t,x) = e^{\pi\beta^{2}C_{\mathbf{P}}}N^{-\frac{\beta^{2}}{2}} \exp\left(\beta\mathbf{P}_{N}\Psi(t,x) + 2\pi\beta\sum_{\ell=1}^{L} a_{\ell}(\mathbf{P}_{N}\otimes\mathbf{P}_{N})G_{g}(x_{\ell},x)\right)$$

where C_P is a constant depends on $\{P_N\}$, P_N is a regularization operators.

Lemma (ORTW 2020)

$$\int_{H^{s}_{0}(\mathcal{M},\mathrm{g})} \mathbb{E}\big[|Q_{M}\Theta_{N}(t,x)|^{p} \big] d\mu_{\mathrm{g}} \lesssim M^{p(\alpha-\varepsilon)} \Big(f_{\alpha-\varepsilon, \{x_{\ell}\}}(x) \Big)^{\frac{p}{2}}$$

Here \mathcal{Q}_{M} is a projection, $a_{\ell}^{+} = \max(a_{\ell}, 0),$ and

$$f_{\alpha-\varepsilon,\{\mathbf{x}_{\ell}\}}(\mathbf{x}) = \sum_{\substack{\ell_{1},\ell_{2}=1\\\ell_{1}\neq\ell_{2}}}^{L} \left(1 + \mathbf{d}_{g}(\mathbf{x}_{\ell_{1}},\mathbf{x})^{\alpha-\varepsilon-\beta a_{\ell_{1}}^{+}}\right) \left(1 + \mathbf{d}_{g}(\mathbf{x}_{\ell_{2}},\mathbf{x})^{\alpha-\varepsilon-\beta a_{\ell_{2}}^{+}}\right) \\ + \sum_{\ell=1}^{L} \mathbf{d}_{g}(\mathbf{x}_{\ell},\mathbf{x})^{2\alpha-2\varepsilon-(p-1)\beta^{2}-2\beta a_{\ell}^{+}}$$

After using the Da Prato-Debussche trick, (SL) is reduced to

$$\partial_t U - \frac{1}{4\pi} \Delta_{\mathrm{g}} U + \frac{1}{2} \nu \beta e^{\beta(z+U)} \Theta = 0,$$

with $z = z(t, x, \overline{X})$ bounded.

After using the Da Prato-Debussche trick, (SL) is reduced to

$$\partial_t U - rac{1}{4\pi} \Delta_{\mathrm{g}} U + rac{1}{2}
u eta e^{eta(z+U)} \Theta = 0,$$

with $z = z(t, x, \overline{X})$ bounded.

Sign-definite structure: the above can be written as,

$$\boldsymbol{U}(t,x) = -\frac{\nu\beta}{2} \int_0^t \int_{\mathcal{M}} \boldsymbol{P}_{g}(t-t',x,y) [\boldsymbol{e}^{\beta(z+\boldsymbol{U})}\boldsymbol{\Theta}](t',y) dV_{g}(y) dt'$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

where $\nu, \beta > 0$ and P_g is the heat kernel on (\mathcal{M}, g) .

Thanks

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで