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Liouville conformal field theory (LCFT)
Consider the Liouville action SL is defined on paths u : M → R by

SL(u;g) def
=

1
4π

ˆ
M

{
|∇gu|2 + QRgu + 4πνeβu

}
dVg,(LCFT)

(M, g) is a two-dimensional connected, closed (compact,
boundaryless), orientable Riemannian manifold.

Rg is the Ricci scalar curvature.

ν > 0, β > 0 and the charge Q = 2
β
+ β

2 .

Question: For which ν, β, and g we can define

dρg(u) = Z−1
g e−SL(u)Du.

Answer: No.
eβu does not make sense for rough u.

Uniform disribution at the zero mode.
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LCFT - punctures and renormalization

Consider

dρ{aℓ,xℓ},g(u) =

punctures︷ ︸︸ ︷
L∏

ℓ=1

eaℓu(xℓ) e− 1
4π
´
M{|∇gu|2+QRgu+4πν

renormalization︷ ︸︸ ︷
: eβu : }dVg Du.

where aℓ ∈ R\{0} and xℓ ∈ M.

Sub-critical regime: 0 < β < 2;

First Seiberg bound: χ(M)Q <
L∑

ℓ=1

aℓ ;

Second Seiberg bound: max
1≤ℓ≤L

aℓ < Q =
2
β

+
β

2
.

Remark: The above implies χ(M) < L. Therefore χ(S2) = 2 implies L ≥ 3; and
χ(T2) = 0 implies L ≥ 1.
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Background: Stochastic Liouville equations

Stochastic Liouville equations (SL): Consider

∂tu − 1
4π

∆gu +
Q
8π

Rg +
1
2
νβ : eβu :=

1
2

L∑
ℓ=1

aαδxℓ + ξg,(SL)

δxℓ are delta functions, deterministic singular terms

ξg is the space-time white noise

Main Goal
(i) Local and global dynamics on M.
(ii) Invariance of the measure ρ{aℓ,xℓ},g under the resulting flow.
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Main result - stochastic quantisation

Main Theorem (Oh-Robert-Tzvetkov-W., 20)

Let aℓmax = max{aℓ} and assume

Sub-critical regime: 0 < β <
√

2;

First Seiberg bound: χ(M)Q <
∑L

ℓ=1 aℓ ;

Integrable insertions: aℓmax < 2
β

.

Measure construction independent of the approximation procedure.

Extra condition: 0 < β <
√

a2
ℓmax

+ 4 − aℓmax .

Globally well-posed and the invariance of the measure.

Remark: The conditions are not optimal.



Related results - I: measure construction

For measure construction:

Rg > 0, David-Kupiainen-Rhodes-Vargas (2016),
Rg = 0, David-Rhodes-Vargas (2016)
Rg < 0, Guillarmou-Rhodes-Vargas (2019)

Remark: (i) Oh-Robert-Tzvetkov-W. dealt with all cases at once, but with a
smaller range.

(ii) They used the circle average process Xε(z) =
´ 2π

0 X (z + εeiθ) dθ
2π .
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Related results - II: stochastic Ricci flow

Fix a metric g0, consider
g = eug0,

where the function u is the conformal factor. Consider

∂tu = e−2u∆g0u + νe−uξg0 − λ

Dubédat-Shen ’19 constructed weak solutions.
The measure is not normalizable.



Related results - III: Hoegh-Krohn model

A related model

∂tu + mu − 1
4π

∆gu +
1
2
νβ : eβu := ξg

with m > 0 and M = T2.

For β <
√

2, Hoshino-Kawabi-Kusuoka, Oh-Robert-W. ’19.
For β < 2, Hoshino-Kawabi-Kusuoka ’20.
Hyperbolic case with β <

√
0.43, Oh-Robert-W. ’19.

Remark: (i) Albeverio-Röckner ’91 constructed weak solutions on R2.
(ii) The mass terms with m > 0 destructs the conformal invariance of
the Gibbs measure.
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Known results - IV Garban (2019)

For the dynamical problem:

Garban (2019) considered when M = S2 or T2, the last condition
replaced by

β2

2
− 2

√
2β +min

(
0,

β

2
√

2
− aℓmaxβ

)
> −2.

For instance, if M = T2, L = 1, and a1 = β,

(Garban) 0 < β <
√

2
2 ≈ 0.707;

(ORTW) 0 < β <
√

4
3 ≈ 1.15.
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Main tools - Green’s function

We set {φn}n≥0 ⊂ C∞(M) to be a basis of L2(M,g) consisting of
eigenfunctions of ∆g associated with the eigenvalue −λ2

n, assumed to
be arranged in increasing order: 0 = λ0 < λ1 ≤ λ2 ≤ .... In particular
φ0 ≡ Vg(M)−

1
2 is constant.

The Green’s function

Gg(x , y) =
∑
n≥1

φn(x)φn(y)
λ2

n
∼ − 1

2π
log

(
dg(x , y)

)
+ f (x , y).

Lemma (Oh-Robert-Tzvetkov-W., 20)

Let ψ ∈ S(R) such that ψ(0) = 1. Then,∣∣∣(ψ ⊗ ψ)
(
− N−2∆g

)
Gg(x , y) +

1
2π

log
(
dg(x , y) + N−1)∣∣∣ ≲ 1

Remark: We may choose different ψ for approximations, they are all
equivalent.
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Main tools - stochastic convolution

Stochastic convolution:

Ψ(t) = e
t

4π∆gXg +

ˆ t

0
e

t−t′
4π ∆gdWg(t ′).

Mass-less Gaussian free field,

Xg(ω) =
∑
n≥1

√
2πhn

λn
ϕn.

Wiener process
Wg(t) =

∑
n≥1

⟨ξg, 1[0,t]ϕn⟩t,gϕn.

Ψ ∈ C(R+ : Hs
0(M)) for any s < 0.



Ideals - “punctured” Gaussian multiplicative chaos

Define the truncated “punctured” Gaussian multiplicative chaos ΘN :

ΘN(t , x) = eπβ2CP N− β2
2 exp

(
βPNΨ(t , x) + 2πβ

L∑
ℓ=1

aℓ(PN ⊗ PN)Gg(xℓ, x)
)

where CP is a constant depends on {PN}, PN is a regularization operators.

Lemma (ORTW 2020)
ˆ

Hs
0 (M,g)

E
[
|QMΘN(t , x)|p

]
dµg ≲ Mp(α−ε)

(
fα−ε,{xℓ}(x)

) p
2

Here QM is a projection, a+
ℓ = max(aℓ, 0), and

fα−ε,{xℓ}(x) =
L∑

ℓ1,ℓ2=1
ℓ1 ̸=ℓ2

(
1 + dg(xℓ1 , x)

α−ε−βa+
ℓ1
)(

1 + dg(xℓ2 , x)
α−ε−βa+

ℓ2
)

+
L∑

ℓ=1

dg(xℓ, x)2α−2ε−(p−1)β2−2βa+
ℓ
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Ideas - sign-definite structure

After using the Da Prato-Debussche trick, (SL) is reduced to

∂tU − 1
4π

∆gU +
1
2
νβeβ(z+U)Θ = 0,

with z = z(t , x ,X ) bounded.

Sign-definite structure: the above can be written as,

U(t , x) = −νβ
2

ˆ t

0

ˆ
M

Pg(t − t ′, x , y)[eβ(z+U)Θ](t ′, y)dVg(y)dt ′

where ν, β > 0 and Pg is the heat kernel on (M, g).
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Thanks

Thank you for your attention!
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