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Two-dimensional topological order, fusion categories,
and subfactors

Anyons are certain types of quasi-particles in
two-dimensional topological order which are expected to
be useful for realizing topological quantum
computations. A mathematical framework to study
anyons is modular tensor category.

Such tensor categories can be studied with certain
4-tensors and matrix product operators, where
everything is finite dimensional. They are the same as
bi-unitary connections studied in subfactor theory of
Jones. We understand certain results in two-dimensional
topological order in condensed matter physics in terms of
subfactor theory.
Yasu Kawahigashi (Univ. Tokyo) Two-dimensional top. order and operator alg. Edinburgh, October 2023 1 / 22



Outline of the talk

We give the following presentations. We start with an
abstract setting of fusion and modular tensor categories,
and then present methods of studying such tensor
categories using 4-tensors. Then we relate them to
subfactor theory.

1 Anyons and modular tensor categories
2 Fusion categories and Drinfel′d centers
3 4-tensors and matrix product operators
4 Subfactors and bi-unitary connections
5 Bi-unitary connections and 4-tensors
6 Hilbert spaces for gapped Hamiltonians
7 α-induction for bi-unitary connections
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Anyons and topological quantum computing

A certain quasi-particle in dimension 2 is called an anyon
and a set of finitely many anyons can display braid group
statistics.

A modular tensor category gives a mathematical
description of such a system of anyons and is expected
to be useful for topological quantum computing, where
an irreducible object of such a category corresponds to
an anyon.

Traces of n anyons on a plane gives a braid of n strands
in the 3-dimensional space. We are interested in a certain
unitary representation of such a braid group arising from
the modular tensor category and a braid plays a role of a
program for topological quantum computation.
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A modular tensor category and the Drinfel′d center

A braiding in a fusion category naturally comes in a pair
— overcrossing and undercrossing. It is more interesting
if these two are really different. If this is the case, the
fusion category is called a modular tensor category.

For a given fusion category, the Drinfel′d center
construction naturally gives a modular tensor category.
An object of the Drinfel′d center is a pair of an object in
the original fusion category and its half-braiding, which
gives certain commutativity of the tensor products with
all the other objects.

It is understood in terms of Ocneanu’s tube algebra, a
certain finite dimensional C∗-algebra arising from the
fusion category.
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Tensor networks

Suppose we have a family {am1,m2,m3,m4
} of finitely

many complex numbers depending on 4 indices
m1,m2,m3,m4. We draw a picture for this as follows.

am1 m3

m2

m4

We call this a 4-tensor since the value depends on 4
indices. Note that an ordinary vector is a 1-tensor and
an ordinary matrix is a 2-tensor. A pictorial combination
of tensors is called a tensor network. All fusion and
modular tensor categories are described with tensor
networks using 4-tensors.
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Matrix product operators

We define a matrix product operator (MPO) Ok
a as

follows, where a is a label for a 4-tensor arising from a
subfactor and k is a positive integer. (We have a finite
family of 4-tensors labeled with a.)

a a · · · a

m1

n1

m2

n2

mk

nk∑
| n1 · · ·nk〉〈m1 · · ·mk |

We show that the range of a weighted sum of Ok
a, a

Hilbert space for their gapped Hamiltonian, has a nice
interpretation in operator algebras.
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Subfactors

We are interested in an algebra M of bounded linear
operators acting on a fixed Hilbert space of states. We
require that M is closed in the ∗-operation and an
appropriate topology. If M does not decompose into a
direct sum of two such algebras, then we say M is a
factor. A finite dimensional factor is a matrix algebra
Mn(C). We are typically interested in so-called type II1
factors.

When one factor N is contained in another factor M ,
we say N ⊂ M is a subfactor. We can measure the size
of M relative to N as the Jones index [M : N ]. This
is a positive real number ≥ 1 or ∞, not necessarily an
integer.
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The Jones theory

Jones developed a Galois type theory to describe the
symmetry of N ⊂ M . From today’s viewpoint, a
natural algebraic structure for this type of symmetry is a
fusion category.

By “reflecting” the inclusion N ⊂ M , we obtain a
larger inclusion M ⊂ M1. This is called the basic
construction of Jones. We can repeat this to obtain the
Jones tower.

N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · .

The higher relative commutants N ′ ∩ Mk are finite
dimensional C∗-algebras and contain important
information about the subfactor.
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A commuting square

Consider
A ⊂ B
∩ ∩
C ⊂ D

where A,B,C,D are finite

dimensional C∗-algebras with a trace on D. We say this
is a commuting square if the restriction to C of the
conditional expectation EB from D to B is equal to the
conditional expectation EA from C to A.

In order to avoid some not-so-interesting examples, we
require that BC, the span of the products bc with
b ∈ B and c ∈ C, is equal to D. Such a commuting
square is said to be nondegenerate. In this talk, a
commuting square means a finite dimensional
nondegenerate commuting square.
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Basic construction and subfactors

We start with a commuting square and repeat basic
constructions horizontally.

A00 ⊂ A01 ⊂ A02 ⊂ A03 ⊂ · · ·
∩ ∩ ∩ ∩
A10 ⊂ A11 ⊂ A12 ⊂ A13 ⊂ · · ·

This gives a sequence of commuting squares. The
GNS-completions of

∪∞
n=1 A0n ⊂

∪∞
n=1 A1n with

respect to trace give a type II1 subfactor A0,∞ ⊂ A1,∞
of finite Jones index. The vertical basic constructions
give finite dimensional C∗-algebras Akn with trace and
we have the Jones tower:

A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ A3,∞ ⊂ · · · .
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A bi-unitary connection

For a choice of one edge each from the four Bratteli
diagrams of a commuting square, the connection W
gives a complex number to each such square with the
following, which is bi-unitarity.

Wξ1 ξ3

ξ2

ξ4

z

x

w

y

Wξ1 ξ′3

ξ2

ξ′4

z

x

w

y′∑
z,ξ1,ξ2

= δξ3,ξ′3δξ4,ξ′4

W ′ξ3 ξ1

ξ̃2

ξ̃4

w

y

z

x

Wξ1 ξ3

ξ2

ξ4

z

x

w

y

=

√
µxµw

µyµz
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Bi-unitary connections on the Dynkin diagrams

We give an example of a bi-unitary connection as follows.
Fix one of the A-D-E Dynkin diagrams and use it for
the four Bratteli diagrams. Let n be its Coxeter number

and set ε =
√
−1 exp

π
√
−1

2(n + 1)
. We write µx for the

Perron-Frobenius eigenvector entry for a vertex x. Then
our bi-unitary connection is given as follows.

W

l

j

m

k

= δklε +

√
µkµl

µjµm

δjmε̄

This is similar to a Boltzmann weight for a lattice model.
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A 4-tensor and a bi-unitary connection

Suppose we have a bi-unitary connection Wa. We then
define a 4-tensor a as follows.

aξ1 ξ4

ξ2 · ξ3

ξ6 · ξ5
WaW

′
aξ1

ξ2 ξ3

ξ4

ξ5ξ6

z

x

w

y

= 4

√
µxµw

µyµz

Here W ′
a stands for the horizontal reflection of Wa. We

also use the vertical reflection so that we can concatenate
4-tensors as usual. The reflection corresponds to basic
construction and the vertical concatenation of 4-tensors
corresponds to the product of bi-unitary connections.
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The range of a projector matrix product operator

The above matrix product operator Ok
a based on

4-tensors is studied in the context of 2-dimensional
topological order by Bultinck et al. In this situation, we
have finitely many anyons and each of them corresponds
to a 4-tensor. Their certain weighted sum is a finite
dimensional projection and its range has physical
significance related to gapped Hamiltonians.

We started with a commuting square producing a
subfactor with a certain finiteness condition. We can
construct another subfactor A∞,0 ⊂ A∞,1 by repeating
basic constructions vertically. We have proved that the
range of the above projection is equal to the higher
relative commutant of A∞,0 ⊂ A∞,1 (K 2021).
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Possible 4-tensors for describing a given fusion category

Different 4-tensors can give the same subfactor and the
same fusion category through the matrix product
operators. When this happens is described in terms of
Morita equivalence. Our 4-tensors are quantum
6j-symbols arising from a fusion 2-category (K 2022).

It is easy to see that horizontal self-concatenation of
4-tensors produces isomorphic matrix product operators
and isomorphic subfactors. There is another method,
called reduction, which also produces the isomorphic
subfactors and matrix product operators. We can show
that except for these rather trivial operations, we have
only finitely many 4-tensors that realize a given fusion
category.
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Subfactors in conformal field theory

A 2-dimensional conformal field theory is a quantum field
theory with conformal symmetry. It splits into two chiral
halves and each lives on S1, a compactified light ray. In
algebraic quantum field theory, we consider a conformal
net {A(I)}I⊂S1 where I is an interval in the circle.
Each A(I) is a factor generated by observables in I.

Unitary representations of a conformal net give a braided
category of Doplicher-Haag-Roberts superselection
sectors. If we have only finitely many irreducible
representations, we get a modular tensor category
(K-Longo-Müger). Each object is realized as an
endomorphism of A(I) and the image of this
endomorphism gives a subfactor of A(I).
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α-induction in conformal field theory

Let {A(I)}I⊂S1 be a conformal net. Suppose it has
only finitely many irreducible representations
(rationality). Its representation category is a modular
tensor category. Commutative Frobenius algebras in it
are in a bijective correspondence to conformal nets
extending {A(I)}I⊂S1.

Fix an extension {B(I)}I⊂S1 of {A(I)}I⊂S1. We
have an induction procedure for representations, called
α-induction, but we now have positive induction and
negative induction. The irreducible objects that
simultaneously arise from both positive and negative
α-inductions exactly correspond to irreducible
representations of {B(I)}I⊂S1.
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α-induction for endomorphisms

If we have a Frobenius algebra in a braided fusion
category of endomorphisms of N corresponding to a
subfactor N ⊂ M , then each endomorphism λ in the
fusion category has an extension α±

λ to M depending on
the choice of a braiding as follows.

α±
λ = ῑ−1 · Ad(ε±(λ, θ)) · λ · ῑ

Here ι is the inclusion map of N into M , θ = ῑι, and
we have M = Nv with a nice isometry v. We have
α±

λ (x) = λ(x) for x ∈ N and α±
λ (v) = ε±(λ, θ)∗v.

This was first defined by Longo-Rehren and studied by
Xu, Böckenhauer-Evans, and Böckenhauer-Evans-K in
detail.
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A fusion category and a bi-unitary connection

Suppose we have a fusion category and
λ, µ, ν1, ν2, ν3, ν4 are irreducible objects. For fixed
λ, µ, the following diagram gives a bi-unitary connection.

ν3

ν2

λ ν1 µ ν̄4 (quantum 6j-symbols)
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α-induction for bi-unitary connections

We now have α-induction, a new induction machinery,
for bi-unitary connections (K 2023).

7→

The diagrams represent complex numbers. The ones
represented by the left diagram are quantum 6j-symbols
and they contain all information about the original fusion
category. Those represented by the right diagram are
α-induced bi-unitary connections and they contain all
information about the α-induced fusion category.
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α-induced bi-unitary connections and flatness

The bi-unitary connections on the Dynkin diagrams are
classified into two classes.

Flat ones: An, D2n, E6 and E8.
Non-flat ones: D2n+1 and E7.

Here flatness represents an extra symmetry. The original
bi-unitary connections on An arise from the quantum
6j-symbols of the Wess-Zumino-Witten model
SU(2)n−1 or the quantum groups Uq(sl2) at roots of
unity.

The difference between the two classes is understood
from a viewpoint of commutativity of the Frobenius
algebra in this framework of α-induction.
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Summary

Behaviors of anyons are described with a modular tensor
category. Fusion and modular tensor categories are
described with matrix product operators arising from
4-tensors. Then everything is finite dimensional. These
4-tensors are exactly the same as bi-unitary connections
appearing in subfactor theory.

Which kind of bi-unitary connections appear in this
context is determined within the framework of subfactor
theory and they are quantum 6j-symbols arising from a
fusion 2-category. The range of a certain projector
matrix product operator is identified with the higher
relative commutant of a subfactor. A new bi-unitary
connection arising from the α-induction is determined.
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