
INFINITE-DIMENSIONAL LIE ALGEBRAS AND THEIR MULTIVARIABLE

GENERALIZATIONS

LECTURES BY BRIAN R. WILLIAMS

Here is a brief summary of the lectures:

• Lecture 1. We begin by introducing two important examples of infinite-dimensional Lie

algebras, the Kac–Moody and Virasoro Lie algebras. We will provide a brief survey of the

importance of these objects in contexts of representation theory, the moduli of Riemann

surfaces, and conformal field theory. Along the way, we will provide background on some

fundamental concepts in Lie theory including central extensions, Lie algebra (co)homology,

and universal enveloping algebras. We will define a class of modules called vacuum modules

and highlight an important construction known as the “free field realization”.

• Lecture 2. In this lecture, we introduce an algebraic structure present in the modules

covered in the first lecture. In some sense, this structure is comparable to that of an

associative algebra, and we will provide a geometric interpretation that unifies the two.

The key technical tool in formulating this structure is through a certain colored operad that

is built from holomorphic disks inside of a Riemann surface. Algebras over this colored

operad, so-called “prefactorization algebras”, will be the central objects of study in the

remainder of the lecture series. In part, the data of a prefactorization algebra on certain

Riemann surfaces encodes all of the infinite-dimensional Lie algebras in Lecture 1, together

with the structure of a “vertex algebra” on the corresponding vacuum modules.

• Lecture 3. We begin this lecture with the following question: what are the “multivariable”

generalizations of the infinite dimensional Lie algebras introduced in Lecture 1? We will

see that prefactorization algebras on higher dimensional complex manifolds provide a very

natural family of such enhancements, including generalizations of the associated vacuum

modules. A necessary structure to understand is the central extensions present in the

multivariable case, where we will find it is necessary to work in a derived context. We

will give a purely algebraic definition of the higher dimensional Kac–Moody and Virasoro

algebras and end with an eye towards their theory of representations, where we provide a
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free field realization that can be understood in terms of a very simple higher dimensional

algebra.
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1. Lecture 1: Kac–Moody and Virasoro algebras and their representations

This lecture series introduces a family of infinite dimensional Lie algebras that form the bedrock

for many modern topics in representation theory. Much like their finite dimensional counterparts,

infinite dimensional Lie algebras appear naturally as the symmetries of certain systems.

We begin with an example from “gauge theory”. Consider a vector bundle E over a smooth mani-

fold M . The space of “infinitesimal gauge symmetries” is the space of sections of the endomorphism

bundle Γ(M,End(E)). The space of gauge symmetries forms a Lie algebra using the commutator

of endomorphisms. Given a section s ∈ Γ(M,E), and a gauge symmetry φ ∈ Γ(M,End(E)), we

obtain a new section φ(s) of E. In this way, infinitesimal gauge symmetries act on sections of E.

Exercise 1.1. This Lie algebra of infinitesimal gauge symmetries can be thought of as the Lie algebra

of some (infinite-dimensional) Lie group. Describe it.

Many important structures associated to a vector bundle are preserved under a gauge symmetry.

For instance, suppose E is equipped with a connection ∇ : Γ(M,E)→ Ω1(M,E) whose curvature

will be denoted F∇ ∈ Ω2(M,End(E)). If φ is a gauge symmetry, we obtain a new connection ∇φ.

Moreover, if F∇φ is the curvature of this new connection, the difference F∇ − F∇φ is ddR-exact:

F∇ − F∇φ = dωφ

for some ωφ ∈ Ω1(M,End(E)). Thus, the cohomology class of the curvature is left unchanged upon

performing a gauge transformation.

The Kac–Moody algebra is rooted in the study of holomorphic gauge symmetries on Riemann

surfaces. It is built from the loop algebra Lg = g[z, z−1], consisting of Laurent polynomials valued

in a Lie algebra g. admits a non-trivial central extension ĝ for each choice of invariant pairing on

g.

Our other main example, the Virasoro algebra, is built from the Lie algebra of vector fields on

a Riemann surface. This describes the symmetry of any natural bundle that can be built on a

Riemann surface, and so has fundamental relationship the moduli space of Riemann surfaces.

1.1. The Virasoro algebra. Let D denote the algebraic disk, whose algebra of functions is the

algebra of polynomials in a single variable

O(D̂) = C[z].
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In other words, D = SpecC[z]. Let D× denote the formal punctured disk, whose algebra of

functions is the algebra of Laurent polynomials

O(D×) = C[z, z−1]

In other words, D× = SpecC[z, z−1].

Definition 1.2. The Witt algebra vir0 is the Lie algebra of derivations of the commutative algebra

C[z, z−1]. In other words, the Witt algebra is the Lie algebra of vector fields on the punctured disk

D×.

Remark 1.3. There are “formal” versions of each of the objects above. This amounts to replacing

polynomials by power series.

Remark 1.4. Geometrically, the Witt algebra plays an essential role in studying the moduli space of

Riemann surfaces. There is a way to “describe” a Riemann surface which one obtains by first fixing

a disk D ⊂ Σ. The Riemann surface Σ can be glued from the disk D and its complement Σ \ D

along the punctured disk D×. The possible gluing data is described, then, but automorphisms of

the punctured disk. The infinitesimal, or Lie algebraic, version is precisely the Witt algebra.

A basis for the Witt algebra is provided by the symbols

Ln = zn+1 d

dz
, n ∈ Z

which satisfy the commutation relations

[Ln, Lm] = (m− n)Ln+m.

We are interested in central extensions of the Witt algebra.

Definition 1.5. A central extension of a Lie algebra g by a Lie algebra c is a Lie algebra g̃ which

sits in an exact sequence of Lie algebras

c→ g̃→ g

with the property that c lies in the center of g̃.

Exercise 1.6. Define an equivalence relation on the set of central extensions.
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Before classifying central extensions, we remark on a fundamental aspect of Lie theory. Given a

Lie algebra g, we let Ug denote its universal enveloping algebra which is equipped with a canonical

map g → Ug. The algebra is universal in the sense that if A is any other algebra which admits a

Lie algebra map f : g→ A, there is a unique map f̃ : Ug→ A, for which

g A

Ug

f

f̃

is commutative. Explicitly, one obtains Ug as a quotient of the tensor algebra T (g) = ⊕n≥0g
⊗n.

The famous Poincaré-Birkhoff-Witt theorem identifies Ug with Sym(g) as vector spaces (but not

algebras!).

There is a classification of central extensions in terms of Lie algebra cohomology. Given a Lie

algebra g and a module M , the Lie algebra cohomology is the derived functor

Hn(g;M) = ExtnUg(C,M).

Here, we view C as a trivial g-representation.

We will use a particular model for Lie algebra cohomology.

Definition 1.7. Let g be a Lie algebra and M a g-representation. The Chevalley–Eilenberg cochain

complex C•Lie(g;M) computing Lie algebra cohomology is the cochain complex whose underlying

graded vector space is

Hom (Sym (g[1]) ,M) = Hom
(
⊕k≥0(∧kg)[k]),M

)
.

The differential is defined as follows. Given a k-cochain ϕ : ∧kg→M , the (k + 1)-cochain dCE(ϕ)

is defined by

dCE(ϕ)(x1, . . . , xk+1) =

k+1∑
i=1

(−1)i+1xi · ϕ(x1, . . . , x̂i, . . . , xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jϕ([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1).

It is a tedious, but straightforward exercise to verify that dCE ◦ dCE = 0, hence this defines a

cochain complex. The Chevalley–Eilenberg cochain complex computes the Lie algebra cohomology

H•(g;M) = H•(C•Lie(g;M)).
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Remark 1.8. There is a linear dual cochain complex CLie
• (g;M) which computes Lie algebra homol-

ogy. As a graded vector space CLie
• (g;M) is

Sym(g[1])⊗C M =
(
⊕k≥0(∧kg)[k])

)
⊗C M.

We leave it as an exercise to write down the differential of this cochain complex which is linear dual

to the one above.

Lemma 1.9. Central extensions of g by a a are in one-to-one correspondence with the second

cohomology group of g with values in a

H2(g ; a).

Proof. We will use our model for Lie algebra cohomology. Suppose ϕ is a CE 2-cocycle representing

a class in H2(g; a). Then, define the Lie algebra g̃, which as a vector space is (x, a) ∈ g ⊕ a with

Lie brackets

[x, x′] = [x, x′]g + ϕ(x, x′)

[x, a] = 0

[a, a] = 0.

Here [·, ·]g denotes the original Lie bracket on g.

Conversely, suppose g̃ is such a central extension with Lie bracket [·, ·]. Then, define the 2-cochain

ϕ(x, x′) = [x, x′]− [x, x′]g

It is immediate to check that ϕ is a 2-cocycle.

We leave it as an exercise to show that equivalent central extensions determine cohomologous

2-cocycles. �

The following result is well-known. See [1] for more details.

Proposition 1.10. The space of central extensions of the Witt algebra vir0 is one-dimensional and

is spanned by the class of the 2-cocycle ϕVir ∈ C2
Lie(vir0;C) defined by

ϕVir(Lm, Ln) =
1

12
δm,−n(m3 −m).

Remark 1.11. The Lie algebra vir0 is infinite dimensional, so one must use caution when defining

the CE cochain complex. When we write Hom in the definition of Lie algebra cohomology, we

mean continuous linear homomorphisms. With this convention, the CE complex is the one studied

by Gelfand and Fuks [1].
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Remark 1.12. Let Res : C((z))dz → C be the formal residue map, which sends a Laurent 1-form∑
anz

ndz to a−1. In terms of vector fields on the formal punctured disk, one can rewrite this

cocycle as

ϕVir

(
f(z)

d

dz
, g(z)

d

dz

)
=

1

12
Resz

(
f ′(z)dg′(z)

)
.

Here, d is the formal de Rham differential d(h(z)) = h′(z)dz. The factor of 1
12 is conventional and

can be traced back to bosonic string theory.

Definition 1.13. The Virasoro algebra vir is the Lie algebra central extension of the Witt algebra

vir0 defined by the 2-cocycle ϕVir.

Remark 1.14. Geometrically, we remarked that the Witt algebra played an essential role in the

description of the moduli space of Riemann surfaces. The Virasoro algebra naturally acts on

sections of a certain determinant line bundle over the moduli space of Riemann surfaces. This line

bundle is uniquely characterized by the central charge.

1.2. Oscillator algebras. We move on to our first example of a representation for the Virasoro

algebra. This is an example of an algebra obtained from a “free field” in conformal field theory.

Introduce the following Lie algebra s spanned by elements {anK | n ∈ Z} with commutation

relations

[an, am] = mδm,−n~

[an,K] = 0.

Exercise 1.15. Show that s is isomorphic to the central extension of the abelian Lie algebra C((z))

defined by the 2-cocycle

f(z), g(z) 7→ Resz(fdg).

There is an abelian sub Lie algebra

C[[z]]⊕ C ·K ⊂ s

which is spanned by the elements {an,K | n ≥ 0}. In other words, this is the algebra of “non-

negative” modes. Denote by Ck the one-dimensional module for the abelian Lie algebra C[[z]]⊕C·K

whereby C[[z]] acts trivially and K acts by k ∈ C.
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Definition 1.16. The vacuum module of s at level k ∈ C is the induced module

Vack = Inds
C[[z]]⊕CCk

= U(s)⊗U(C[[z]])[K] Ck.

We briefly explain the reason why this is called the “vacuum module”. Notice that as a vector

space, there is an identification of the vacuum module with the vector space

Sym(z−1C[z−1]) = C[z−1, z−2, . . .]

Typically in physics, this is called the “Fock module”. The element |0〉 = 1 is a “vacuum vector”

since it is annihilated by ak ∈ s for k ≥ 0. Furthermore, the vacuum module is spanned by elements

of the form

a−kn · · · a−k1 |0〉

for k1, . . . , kn ≥ 0. For this reason, the “negative modes” {a−k|k ≥ 0} are called creation operators.

Exercise 1.17. For µ ∈ C, we can modify the module structure to a0 · |0〉 = µ|0〉 and we obtain

what is known as a “Verma module” of s weight µ and level k. Show that this results in a new

module for s.

Proposition 1.18. For k 6= 0, define the operators acting on Vack:

LFock
n

def
=

1

2k

∑
j∈Z

a−jaj+n.
1

Then, the {LFock
n }n∈Z define an action of the Virasoro algebra on Vack of central charge c =??.

Remark 1.19. We view this result as the simplest “free field realization” of the Virasoro algebra.

Roughly, we have exhibited the commutation relations of a very nontrivial Lie algebra vir in terms

of some algebra of operators on the Fock module associated to the oscillator algebra. In physics,

this Fock module describes a “free quantum theory”, which are among the simplest to study.

An important invariant of a Virasoro module is its q-character, or q-dimension. Suppose M is

such a module where L0 ∈ vir acts diagonally. The conformal weight of a v ∈ M is the number

|v| ∈ C such that L0(v) = |v|v. For M such a module, one writes the q-character as the formal

q-expansion

χq(M) =
∑
n

qn · dimM (n)

where M (n) ⊂M is the subspace of elements of conformal weight n.

1We always assume “normal ordering”, so (aiai)b = ai(ajb) if i ≤ j and (aiaj)b = aj(aib) for i > j.
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Exercise 1.20. Show that χq(Vack(M)) = η(q)−1 where η(q) is the Dedekind η-function

η(q) =
∏
n≥1

(1− qn).

1.3. The Kac–Moody algebra. Suppose that g is a Lie algebra. For applications in represen-

tation theory, one often restricts to the case that g is semi-simple, but for now it will make no

difference.

We can tensor the commutative algebra O(D̂×) = C((z)) with the Lie algebra g to obtain a new

Lie algebra

C((z))⊗ g.

We refer to this as the current algebra associated to g. Equivalently, if we think of g as an affine

variety, this Lie algebra is the same as maps from the formal punctured disk D̂× to g. We will

write elements of this Lie algebra as f(z)⊗ x. Explicitly, the Lie bracket is defined by

[f(z)⊗ x, g(z)⊗ y] = (f · g)(z)⊗ [x, y].

As in the previous section, we will be interested in a certain central extension of this Lie algebra.

To define it, we introduce the following terminology. The algebra of polynomials on a vector space

V is

C[V ] = Sym(V ∗).

When V = g we note that g acts on its polynomials C[g] by the adjoint representation, which we

will denote by adx.

Definition 1.21. An invariant polynomial of g is a polynomial P on g such that adx(P ) = 0 for

all x ∈ g.

Definition 1.22. Suppose κ is an invariant quadratic polynomial of g. Define the 2-cochain

ϕκ ∈ C2
Lie(C((z))⊗ g;C) by the formula

ϕκ(f(z)⊗ x, g(z)⊗ y) = Resz(fdg)κ(x, y).

It is immediate to verify that ϕκ is a cocycle and hence defines the following central extension.

Definition 1.23. The Kac–Moody algebra, or affine algebra, ĝκ associated to the invariant qua-

dratic polynomial κ is the central extension of C((z))⊗ g defined by the 2-cocycle ϕκ.

Remark 1.24. Notice that when g is the one-dimensional Lie algebra, the Kac-Moody algebra is

the oscillator algebra of the previous section.
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Example 1.25. There is a natural quadratic invariant polynomial associated to any Lie algebra.

Note that g acts on itself by the adjoint. The Killing form is the invariant polynomial

κKill(x, y) = Tr (adx ◦ ady)

where the trace on the right-hand side is in the adjoint representation. When g is simple, this is

the unique invariant quadratic polynomial up to scale. Furthermore, g is semisimple if and only if

κKill is nondegenerate.

We end this lecture by giving a definition of a Fock or vacuum module associated to any Kac–

Moody algebra. For this definition, we observe that there is a subalgebra g[[z]] ⊕ C ⊂ ĝκ, where

the Lie bracket is just the Lie bracket induced from g.

The reader should notice the similarities with Definition 1.16

Definition 1.26. Let g be a Lie algebra and κ a non-degenerate quadratic invariant polynomial.

The Kac–Moody vacuum module at level k ∈ C is the induced ĝκ-module

Vack(g) = Indĝ
g[[z]]⊕CCk = U(ĝκ)⊗U(g[[z]])[K] Ck.

Remark 1.27. In the previous section, we saw how to represent the Virasoro algebra on a the Fock

module for the oscillator algebra. There is a “nonabelian” version of this which represents the

Virasoro algebra acting on the vacuum module Vack(g) provided that k does not equal the critical

level κc = −h∨, where h∨ is the dual Coxeter number of the Lie algebra g. This is known as the

Sugawara construction, but we will not spend any more time on it here.

Remark 1.28. The q-character of the Kac–Moody vacuum module can be computed using the

so-called Weyl–Kac denominator formula.

Exercise 1.29. Introduce the analogous “vacuum module” for the Virasoro algebra. Hint: consider

the subalgebra of formal vector fields on the (unpunctured) disk.

The affine Lie algebra ĝκ and its cousin, the Kac-Moody vertex algebra, which we will meet in

the next lecture, are foundational objects in representation theory and conformal field theory. A

natural question then arises: do there exists multivariable, or higher dimensional, generalizations

of the affine Lie algebra and Kac-Moody vertex algebra?
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2. Lecture 2: Holomorphic (pre)factorization algebras and higher dimensional

algebras

In this section, we provide a unifying geometric interpretation of the affine and Virasoro algebras

of the previous section together with their vacuum modules. In fact, the vacuum modules in

the previous section have an extra algebraic structure known as a vertex algebra. The language

of vertex algebras provides a very efficient landscape for the study of affine algebras and their

representations. In their own right, additionally, vertex algebras describe the physics of “local

operators” in conformal field theory on Riemann surfaces.

By a standard procedure, there is a way of enhancing the affine algebra to a vertex algebra.

The so-called Kac-Moody or Virasoro vertex algebras, as developed in [2]–[4]. Roughly, a vertex

algebra is a vector space equipped V with some algebraic structure. The fundamental piece of data

is called a vertex operator, which is a map of the form

Y (−; z) : V → End(V )[z, z−1].

One should think of this as a z-dependent family of multiplication maps of the form V ⊗ V → V

where z ∈ D×, the punctured disk.

The rigorous definition of a vertex algebra is quite complicated at first glance. For this reason,

we will choose to work with a more geometric description using the language of prefactorization

algebras.

2.1. Prefactorization algebras. The geometric description of a vertex algebra will be given in

terms of an algebra over some (colored) operad of disks. This is a holomorphic analog of an

important structure historically studied in topology and homotopy theory.

We begin with some abstract definitions.

Definition 2.1. A colored operad D� consists of a collection of objects together with:

(i) for every finite nonempty set I a ΣI -equivariant set of “multi-homs”

D� (�i∈Idi, e)

where {di}i∈I is a I-indexed collection of objects and B is a single object;

(ii) for every surjection of finite sets π : J � I a ΣI × (×i∈I Σπ−1(i))-equivariant composition

rule

◦ : D� (�i∈Idi, e)×

(
×
i∈I

D� (�j∈π−1(i)fj , di
))
→ D� (�j∈Jfj , e) .

11



The composition maps must obey some natural associativity laws which we do not spell out here.

By a map of colored operads, we mean a map on objects and multihoms which intertwines the

composition laws.

Remark 2.2. A colored operad with one object is called a (symmetric) operad. Examples include

the commutative operad, associative operad, Lie operad, etc..

A monoidal category is a category C⊗ equipped with a “tensor product”

⊗ : C× C→ C

which obeys associativity and unit axioms. A symmetric monoidal category is a monoidal category

with a natural equivalence A ⊗ B → B ⊗ A. Examples of symmetric monoidal categories include

Set×, Vect⊗kk , Top×, Topt, Repg.

Exercise 2.3. Suppose C⊗ is a symmetric monoidal category. Construct a colored operad whose

objects are the same as the objects of C⊗.

The collection of open sets on a manifold M form a poset. In fact, this can be enhanced to the

structure of a colored operad as follows.

Definition 2.4. Let M be a manifold. The colored operad OpentM has objects given by the open

sets of M , and mutli-homs

OpentM (�i∈IUi, V )

defined by:

• the singleton set {?} if the collection of open sets {Ui} is mutually disjoint and each Ui is

contained in V ;

• the empty set, otherwise.

Exercise 2.5. Define the composition law and formulate the associativity axiom for OpentM .

Let D� be a colored operad and suppose C⊗ is a symmetric monoidal category. A D�-algebra

with values in C⊗ is a map of colored operads

A : D� → C⊗.

Spelling this data out, an algebra consists of an object A(d) ∈ C⊗ for each object d ∈ D� together

with a “multiplication rule”

mF : ⊗i∈IA(di)→ A(e)
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for every element F of D�(�i∈Idi, e).

Definition 2.6. A prefactorization algebra on M with values in a symmetric monoidal category

C⊗ is an OpentM -algebra with values in C⊗. Unpacking, this is an assignment

A : U ⊂M 7→ A(U)

together with a “multiplication rule”

m{Ui},V : ⊗i∈IA(Ui)→ A(V )

whenever the open sets {Ui} are mutually disjoint and contained in V . These multiplications are

required to satisfy some natural associativity axiom.

A prefactorization algebra is called locally constant if for every embedding of open balls B ↪→ B′

in M that the induced map

A(B)
'−→ A(B′)

is an isomorphism.

Theorem 2.7 (Lurie). There is an equivalence of categories between locally constant prefactoriza-

tion algebras on R and associative algebras.

2.1.1. Working in the differentially graded setting. From hereon, we will mostly be working in the

setting where “vector spaces” are replaced by dg vector spaces, or cochain complexes. In particular,

unless we say otherwise all of the prefactorization algebras we will mention will take values in some

category of cochain complexes. These provide an efficient resolution, as we will see, of the affine

algebras of the previous section.

A cochain complex is a Z-graded vector space V • = ⊕kV k[−k] equipped with a linear operator

of degree +1, d : V • → V •+1. We will often write this as a pair (V •, d).

A dg Lie algebra is a triple (g•,d, [·, ·]) where (g,d) is a cochain complex and

[·, ·] : g× g→ g

is a bilinear map of degree zero which satisfies three conditions:

(i) graded skew symmetry [a, b] = (−1)|a||b|+1[b, a] for all a, b ∈ g ;

(ii) graded Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].
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(iii) graded derivation

d[a, b] = [da, b] + (−1)|a|[a,db]

Of course, one can just remember the underlying cochain complex of a dg Lie algebra. Its

cohomology has the structure of a graded Lie algebra.

Finally, a commutative dg algebra is a triple (A,d, ·) such that (A,d) is a cochain complex, · is a

graded commutative product on A, and together they satisfy the graded derivation rule

d(a · b) = (da) · b+ (−1)|a|a · db.

We saw that given a commutative algebra and a Lie algebra we can tensor them together to

obtain a new Lie algebra. Similarly, if A is a commutative dg algebra and g is a dg Lie algebra,

then A ⊗ g can also be given the structure of a dg Lie algebra. This is one of the most common

ways dg Lie algebras appear for us.

2.1.2. Examples on Riemann surfaces. Recall, given a Lie algebra g, its CE cochain complex

CLie
• (g;M) = (Sym(g[1])⊗M, dCE) computing Lie algebra homology is defined. In fact, this CE

cochain complex is defined for any dg Lie algebra (g,d, [·, ·]). One simply takes the definition from

before but uses the new differential

dCE + d

which acts on Sym(g[1])⊗M in the obvious way way.

Example 2.8. The level zero Kac–Moody prefactorization algebra. Let Σ be a Riemann surface, and

consider the cosheaf of commutative dg algebras Ω0,•
Σ,c of compactly supported Dolbeault forms.

On each open set, the differential is given by the ∂-operator and the product is wedge product of

differential forms.

By tensoring with a Lie algebra g, we obtain a precosheaf2 of dg Lie algebras Ω0,•
Σ,c ⊗ g. The

differential is ∂⊗ idg and the bracket uses the wedge product of forms together with the Lie bracket

of g.

For each open set U ⊂ Σ, we can consider the Chevalley–Eilenberg cochain complex computing

Lie algebra homology:

CLie
• (Ω0,•

c (U)⊗ g).

As a graded vector space, this cochain complex is

Sym
(
Ω0,•
c (U)⊗ g[1]

)
= ⊕k≥0 Symk

(
Ω0,•
c (U)⊗ g[1]

)
.

2The direct sum is not a categorical coproduct in the category of Lie algebras.
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The differential splits as a sum of two terms ∂ + dg, where ∂ is the usual ∂ differential and dg

encodes the Lie bracket of g.

Letting U vary, the assignment U 7→ CLie
•

(
Ω0,•
c (U)⊗ g

)
has the structure of a prefactorization

algebra.

The structure maps for the configuration i : U t V ↪→W are defined by the following composite

Sym
(

Ω0,•
c (U)⊗ g[1]

)
⊗ Sym

(
Ω0,•
c (V )⊗ g[1]

)
Sym

(
Ω0,•
c (U)⊗ g[1]⊕ Ω0,•

c (V )⊗ g[1]
)

Sym
(

Ω0,•
c (W )⊗ g[1]

)
.

mU,V ;W

∼=

i∗

We denote this prefactorization by KM0(g).

Example 2.9. The central charge zero Virasoro prefactorization algebra. Consider now the holo-

morphic tangent bundle TΣ of a Riemann surface Σ. The compactly supported Dolbeault complex

Ω0,•(Σ, TΣ) carries the structure of a precosheaf of dg Lie algebras. The differential is the ∂-

operator and the Lie bracket is induced from the ordinary Lie bracket of vector fields together with

the wedge product of Dolbeault forms.

One can show similarly to above that U ⊂ Σ 7→ CLie
• (Ω0,•(U, TU) has the structure of a prefac-

torization algebra. This is the charge zero Virasoro prefactorization algebra and will be denoted

Vir0.

2.1.3. Holomorphic translation invariance. The theory of vertex algebras is a “holomorphic” ana-

log of the theory of associative algebras. We will see this analogy at the level of prefactorization

algebras. Associative algebras, we have seen, correspond to locally constant prefactorization alge-

bras on R. In the holomorphic setting one asks for a weaker, though still important condition that

we not introduce.

Definition 2.10. A ((n) infinitesimal) translation invariant prefactorization algebra on Rn is a fac-

torization algebra equipped with an action by the n-dimensional abelian Lie algebra {∂x1 , . . . , ∂xn}.

In complex analysis, one way to formulate holomorphicity is to impose the requirement that a

certain object be annihilated by the ∂-operator. At the level of prefactorization algebras, it will be

useful for us to work with this condition in a homotopical way.

Definition 2.11. A holomorphically translation invariant prefactorization algebra on Cn is a trans-

lation invariant factorization algebra whereby the anti-holomorphic translations {∂zi} act homo-

topically trivially.
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Consider a prefactorization algebra built from the cosheaf of compactly supported Dolbeault

forms Ω0,•
c (Σ). When Σ = C, there is a natural action of the Lie algebra of translations {∂z, ∂z}.

Moreover, Cartan’s magic formula provides a canonical trivialization of the anti-holomorphic trans-

lations: [
∂, ι∂z

]
= ∂z.

This is how we endow the structure of a holomorphically translation invariant factorization algebra

for the examples of the Kac–Moody and Virasoro prefactorization algebras

Exercise 2.12. Show that on Σ = C, the prefactorization algebra CLie
• (Ω0,•

c ⊗g) carries the structure

of a holomorphically translation invariant prefactorization algebra.

2.2. A functorial relationship. We now turn to the holomorphic analog of Theorem 2.7.

Theorem 2.13 ([5]). Suppose F is a holomorphic prefactorization algebra on C. Then, for any

disk D centered at zero, the graded vector space

Vert(F)
def
= ⊕n∈ZH•(F(n)(D))

has the structure of a Z-graded vertex algebra. The assignment F 7→ Vert(F) determines a functor

from the category of holomorphically translation invariant prefactorization algebras to Z-graded

vertex algebras.

Remark 2.14. By a holomorphic prefactorization algebra we mean a holomorphically translation

invariant prefactorization algebra on Σ = C which satisfies some additional technical conditions.

For details see [5].

Sketch of the construction. Since we haven’t given the formal definition of a vertex algebra, we will

only sketch the idea of how one can recover a “z-dependent family” of multiplications.

We can restrict the factorization algebra to the submanifold C× ⊂ C. Then, we obtain a

prefactorization algebra r∗F on R>0 where r : C× → R>0 is radial projection. The subfactorization

algebra

(2.1) Arad
def
= r∗

(
⊕n∈ZF(n)

)
= ⊕nr∗F(n)

is locally constant hence can be identified with an associative algebra.

The factorization product of an annulus on a disk gives ⊕n∈ZH•(F(n)(D)) the structure of a

module for Arad. In fact, this is the “vacuum module” in all of the examples we have introduced

in the first lecture. �
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2.3. Local cocycles. We now want to consider how to “centrally extend” the holomorphic pref-

actorization algebras we introduced earlier in the lecture. The key idea is that at the level of

prefactorization algebras, these extensions appear as deformations of the differential. We will focus

on the Kac–Moody example first.

Consider the cosheaf of Lie algebras Ω0,•
c ⊗ g that we used to built the prefactorization algebra

of Example 2.8. Given an invariant quadratic polynomial κ, we notice that on this cosheaf we have

a very similar “2-cocycle” to the one ϕκ introduced in the first lecture. It is defined by the formula

ψκ(α, α′) =

∫
Σ
κ(α∂α′).

Notice that instead of taking the residue, as in the definition of ϕκ, we are integrating along Σ.

Because of this, we see that ψκ is actually of cohomological degree +1.

Using ψk, we can perform the following deformation of the factorization algebra introduced in

Example 2.8. To an open set U ⊂ Σ consider the cochain complex

KMκ(U) =

(
Sym

(
Ω0,•
c (U)⊗ g[1]

)
[K] , ∂ + dg +Kψκ

)
.

Notice that the first two terms in the differential are identical to the differential in CLie
• (Ω0,•

c (U)⊗g).

We have also introduced a polynomial variable K, which we will see plays the role of the central

term. This polynomial variable can be specialized at any complex number K = k ∈ C.

Theorem 2.15. The assignment U 7→ KMκ(U) is a holomorphic prefactorization algebra with

values in dg C[K]-modules. On Σ = C, the resulting vertex algebra

Vert (KMκ|K=k)

is isomorphic to the Kac–Moody vertex algebra at level k ∈ C. In particular the value of the

prefactorization algebra on a disk is precisely the level k vacuum module.

A key step in the proof of this fact is to identify the “radial algebra” of Equation 2.1 Arad

associated to the prefactorization algebra KMκ with U(ĝκ).

There is a totally analogous result for the Virasoro algebra. Here, the local cocycle one deforms

by can be written as

α(z, z)∂z, β(z, z)∂z 7→
1

12

∫
Σ

(∂zα)∂(∂zβ).
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3. Lecture 3: Higher dimensional algebras

We turn to the driving question of this lecture series. To what extent are there multivariable

generalizations of Kac–Moody and Virasoro algebras? Furthermore, what do their category of

representations look like?

In the second lecture we have seen how to recover affine algebras and their modules using the

notion of a prefactorization alegbra. Our approach for finding multivariable enhancements is geo-

metric and a direct higher dimensional generalization of the constructions in the previous lecture.

3.1. A naive generalization. Before turning to our geometric approach, we briefly point out

some subtleties in defining multivariable versions of affine algebras.

One fundamental issue is the following. In defining central extensions, we have extensively used

the fact that there is a residue pairing on the algebra of functions on the punctured one-dimensional

disk O(D̂×). Furthermore, the modules we have built have all essentially been induced along the

map of algebras O(D)→ O(D×).

If Dd is a d-dimensional disk, with d > 1, then the obvious map of algebras O(Dd)→ O((Dd)×)

is an isomorphism. This is a classical fact from algebraic geometry known as “Hartog’s theorem”.

In particular, the naive generalization leads to a trivial theory of algebras and their modules in

higher dimensions.

Notice that in the case of prefactorization algebras on Riemann surfaces, we used the Dolbeault

complex to provide a “free resolution” of holomorphic sections. If X is a complex n-manifold we still

have the Dolbeault complex Ω0,•(X), which is a resolution for the sheaf of holomorphic functions

on X. When X = Cd \ 0, d > 1, Hartog’s theorem implies that H0,•(X) is the same as Ohol(X).

However, there is higher cohomology!

For now, let’s return to the algebraic category. Let (Dd)× ⊂ Dd denote the punctured algebraic

disk. Then

H i((Dd)×,O) =


0, i 6= 0, d− 1

C[z1, . . . , zd], i = 0

C[z−1
1 , . . . , z−1

d ] 1
z1···zd , i = d− 1

.

(For instance, use the cover by the affine opens of the form Dd \ {zi = 0}.) When d = 1, this

computation recovers the Laurent polynomials, so we should view the cohomology in degree d− 1

as providing the derived replacement of the polar part of the Laurent polynomials.
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There is a convenient model for the derived global sections of the structure sheaf of the punctured

d-disk which we summarize below.

Proposition 3.1. There is a dg algebra (A•d, ∂) satisfying the following properties:

• the complex A•d is concentrated in degrees 0, . . . , d− 1.

• there is an isomorphism of graded algebras H•(Ad) ∼= H•((Dd)×,O).

• there is a map of dg algebras

j : (Ad, ∂) ↪→ (Ω0,•(Cd), ∂)

which is dense at the level of cohomology.

• there is a “residue map”

Res : A•d → C[−d+ 1]

satisfying

Res(ω) =

∮
S2d−1

j(ω)ddz

for any ω ∈ Ad−1.

This particular dg algebra Ad has appeared in [6] in their definition of the higher dimensional

Kac–Moody algebra, which we will arrive at below.

3.2. Higher dimensional holomorphic prefactorization algebras. Let X be a complex mani-

fold of complex dimension d. The construction of the prefactorization algebras on Riemann surfaces

of the previous lectures carry over with no more difficulty to define the following two factorization

algebras on X:

• the level zero Kac–Moody prefactorization algebra on X, KMd,0, which assigns to an open

set U ⊂ X the cochain complex

CLie
• (Ω0,•

c (U)⊗ g).

• the charge zero Virasoro prefactorization algebra on X, Vird,0, which assigns to an open set

U ⊂ X the cochain complex

CLie
• (Ω0,•

c (U, TU)).
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3.2.1. Classification of central extensions. A natural question to ask is what data we can use to

“twist” these higher dimensional prefactorization algebras. Actually, the situation is very close to

the one-dimensional case.

As in the one-dimensional case, we obtain such twists by deforming the differential on CLie
• (Ω0,•

c (X)⊗

g) and CLie
• (Ω0,•

c (X,TX)). Consequently, we are interested in degree +1 cocycles.

Theorem 3.2. Let X be a complex d-dimensional manifold.

• There is a linear embedding

Symd+1(g∗)g ↪→ H1
Lie(Ω

0,•
c (X)⊗ g).

To an invariant polynomial θ, we assign the cocycle

ψθ(α1, . . . , αd+1) =

∫
X
θ(α1∂α2 · · · ∂αd).

• There is a linear embedding

H2d+1(wd) ↪→ H1
Lie(Ω

0,•
c (X,TX)).

As in the one-dimensional case, we find that the cocycles on Ω0,•
c (X) ⊗ g and Ω0,•

c (X,TX) are

built from natural polydifferential operators. In fact, when restricted functionals of this type, the

cocycles described in the previous theorem classify all such cocycles up to equivalence, see [7].

Remark 3.3. The precise formulas for the Lie algebra cocycles on holomorphic vector fields are more

difficult to describe than in the Kac–Moody case. In dimension one, the fact that H2(vir1,0) =

H3(w1) is one-dimensional means that there is essentially a one notion of “central charge”.

Equip

vird,0
def
= Ad ⊗ T0 = Ad {∂z1 , . . . , ∂zd}

with the Lie bracket of vector fields. Let wd be the Lie algebra of vector fields on the unpunctured

disk. Then, there is natural map of Lie algebras wd → vird,0 which factors through H0 of vird,0.

In higher dimensions, it turns out that H2(vird,0) = H2d+1(wd) is isomorphic to H2d+2(BU(d)).

For example, in dimension two, there are two central charge parameters.

There is an isomorphism of vector spaces

ϕVir : H2d+1(wd)→ H2(vird,0)
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defined as follows. Suppose ϕ : (wd)
⊗(2d+1) → C is a cochain. We can restrict this to a cochain

ϕ : (vir0)⊗(2d+1) → C. Consider the translation invariant vector fields ∂z1 , . . . , ∂zd . Then, define

ϕ(X1, . . . , Xd+1) = ϕ(∂z1 , . . . , ∂zd , X1, . . . , Xd+1) + symmetrize.

We then obtain a cochain of vir0 by the formula

ϕ̃(X1, . . . , Xd+1) = Res
(
ϕ(X1, . . . , Xd+1)ddz

)
.

The advantage of working with our model of prefactorization algebra is that the derived nature

of the problem is naturally built into the formalism via the Dolbeault resolutions.

3.3. Multivariable Lie algebras. In the previous lecture, we pointed out how to extract an

important associative algebra from the data of a prefactorization algebra on Σ = C. The idea is

to restrict to the punctured line C× ⊂ C and to pushforward along the radial projection r : C× →

R>0. The algebra Arad was defined as a certain sub factorization algebra of this one-dimensional

prefactorization algebra that had the property that it was locally constant (its value did not depend

on the size of the interval).

In the case of the Kac–Moody prefactorization algebra on Σ = C, the radial algebra Arad is

isomorphic to the enveloping algebra of ĝκ. Similarly, for the one-dimensional Virasoro prefactor-

ization algebra the radial algebra is U(vir).

For the higher dimensional Kac–Moody and Virasoro algebras on Cn, we can perform and anal-

ogous construction. Like the one-dimensional case, the content of this result is to interpret the

geometrically defined radial algebra in terms of some algebra obtained from a central extension of

the multivariable versions of g-currents and vector fields.

Proposition 3.4. The radial algebra of both the higher Kac–Moody and Virasoro algebra is iso-

morphic the enveloping algebra of a central extension of some dg Lie algebra:

• The radial algebra Arad of the prefactorization algebra KMθ,k on Cd is quasi-isomorphic to

an algebra of the form U(ĝd,θ).

• The radial algebra Arad of the prefactorization algebra Virc on Cd is quasi-isomorphic to

an algebra of the form U(vird,c).

We proceed to describe ĝd,θ and vird,c in algebraic terms.
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3.3.1. An “algebraic” description. Recall that we have introduced the dg model Ad for the derived

global sections of the punctured d-disk. Ad is a commutative dg algebra whose cohomology is

isomorphic to the cohomology of the punctured d-disk.

Definition 3.5. Define the following two dg Lie algebras.

• For a Lie algebra g, the current algebra in complex dimension d is the dg Lie algebra Ad⊗g.

We denote it by g•d.

• The d-dimensional Witt algebra is the dg Lie algebra vird,0 which is spanned by elements

of the form

α(z, z)
∂

∂zi

where α ∈ Ad and i = 1, . . . , d. The Lie bracket is the natural extension of the Lie bracket

of vector fields.

There are natural central extensions of this dg current algebra as prescribed by the following

cocycles.

Definition 3.6. Define the multivariable Kac–Moody and Virasoro dg Lie algebras as follows.

• For any invariant polynomial of degree d

θ ∈ Symd+1(g∗)g ⊂ C[g],

the d-dimensional Kac–Moody algebra ĝ•d,θ is the central extension of the dg current algebra

Ad ⊗ g determined by the degree +2 cocycle

ϕθ : (Ad ⊗ g)⊗(d+1) → C

a0 ⊗ · · · ⊗ ad 7→ Resz=0 θ(a0∂a1 · · · ∂ad)
.

• For any c ∈ H2n+1(wd) ∼=ϕVir H2(vird,0), the d-dimensional Virasoro algebra of charge c,

vird,c, is the central extension of the dg Witt algebra vird,0.

The multivariable Kac–Moody algebra has first appeared in the literature [6]. It’s relationship

to quantum field theory and factorization algebras, which we follow here, can be found in [7]. The

multivariable Virasoro has appeared in the works [8] and in [9].
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3.3.2. L∞-models. We’d like to point out a subtle point in the definition above. We have shown in

Lecture 1 that degree two cohomology classes of an ordinary Lie algebra are in bijective correspon-

dence with equivalences classes of central extensions by C. The same proof carries over with no

more difficulty to the dg Lie algebra case. So, abstractly, we know that the cohomology classes in

ϕθ and ϕVir(c) correspond bijectively to central extensions of the dg Lie algebras Ad ⊗ g and vird,0

respectively.

To construct an explicit model, however, it is convenient to use a slightly weaker notion of a dg

Lie algebra. An L∞-algebra h is a like a dg Lie algebra except the Jacobi identity only holds up

to a (prescribed) homotopy. This is encoded by a sequence of maps {`k}k≥1 where `k is a graded

alternating map

`k : h⊗k → h[2− k]

which satisfies a list of relations. The first few relations read

`21 = 0

`1 ◦ `2 + `2 ◦ (`1 ⊗ 1 + 1⊗ `1) = 0

`1 ◦ `3 + `3(`1 ⊗ 1⊗ 1 + 1⊗ `1 ⊗ 1 + 1⊗ 1⊗ `1) = `2 ◦ (1⊗ `2) + `2 ◦ (`2 ⊗ 1) ◦ (1⊗ τ)

...
...

The first equation implies that `1 is a differential and the second equation implies that it is a

derivation for the “bracket” `2. The third equation states that `2 satisfies the ordinary Jacobi

identity up the a homotopy defined by `3.

There are L∞ models for the higher Kac–Moody and Virasoro algebras that we consider which

are fairly easy to comprehend. For example, the d-dimensional Kac–Moody Lie algebra ĝd,θ has

`1 = ∂, `2 = [−,−] and `d+1 = θ. Notice that here the Jacobi identity strictly holds since `d+1 = θ

is closed for `1 = ∂.

3.4. dg vacuum modules. Interpreting the multivariable algebras geometrically in terms of pref-

actorization algebras leads one to the very natural notion of “vacuum modules”.

A key step in passing from prefactorization algebras to vertex algebras was in the identification

of a subspace of the value of the factorization algebra on a disk

Vdisk ⊂ F(D)

as a module for the radial algebra Arad.
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For higher dimensional Kac–Moody and Virasoro algebras, we have an analogous construction.

Let F denote either prefactorization algebra on Cd (with or without central term introduced).

Consider the action by dilations Gm on Ω0,•(Cn). Denote by Vdisk the direct sum over all weights

Vdisk = ⊕n≥0F
(n)(Cd).

Then, it is immediate to check that the factorization structure maps of disks and spheres gives

Vdisk the structure of a Arad-module.

Definition 3.7. The Arad-module Vdisk associated to the Kac–Moody or Virasoro prefactorization

algebra on Cd is called the dg disk module associated to Arad = U(ĝd,θ) or Arad = U(vird,θ)

respectively.

It turns out that we can recast this definition in completely algebraic terms mimicking the notion

of a “vacuum module” in complex dimension one.

Definition 3.8. Let d > 1, and consider the dg algebra Ad. Define the Ad-module of positive

modes

Ad,+ = Hd−1(Ad).

Note that there is a natural map of dg Ad-modules Ad → Ad,+[−d + 1]. Define the dg ideal of

negative modes

Ad,− = ker (Ad → Ad,+[−d+ 1]) .

Remark 3.9. We are modeling our terminology on the usual definition of positive and negative

modes for Laurent polynomials in one-variable A1 = C[z, z−1] via

A1,+ = C[z] ⊂ C[z, z−1] and A1,− = z−1C[z−1] ⊂ C[z, z−1]

respectively.

Definition 3.10. Fix an element θ ∈ Symd+1(g∗)g and let k ∈ C. The vacuum module Vac(θ,k)

associated to the pair (θ, k) is the induced ĝd,θ-module

Ind
U(gd,θ)

U(Ad,+⊗g)[K](CK) = U(gd,θ)⊗U(Ad,+⊗g)[K] Ck.

When θ is understood, we refer to this as the level k vacuum module.
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Remark 3.11. There is a variant of this definition that makes sense for a fixed θ and no specification

of k. It is defined by

Vacθ = U(ĝd,θ)⊗U(Ad,+⊗g)[K] C[K].

This is a U(ĝd,θ)-module in the category of C[K]-modules.

Proposition 3.12. Let Vdisk be the disk module of U(ĝd,θ). There is an isomorphism of dg U(ĝd,θ)-

modules

Vdisk
∼= Vac(θ,k).

Exercise 3.13. Define the notion of a dg Virasoro module in the style of the above definition for

the Kac–Moody.

3.5. Higher vertex structure. A result of [5], which we summarized in Theorem 2.13, states

how the holomorphic factorization algebra associated to a Lie algebra recovers the Kac–Moody

vertex algebra. The key point is that the operator product expansion is encoded by the factoriza-

tion product between disks embedded in C. Our proposed factorization algebra, then, provides a

higher dimensional enhancement of this vertex algebra through the factorization product of balls

or polydisks in Cd. This structure can be thought of as a holomorphic analog of an algebra over the

operad of little d-disks. Writing down the precise axioms of a “higher dimensional vertex algebra”

is currently work in progress.
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