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Overview

The goal of these lectures is to introduce the audience to some of the key concepts and tools in
the field of geometric representation theory, using the Springer correspondence as a motivating
example.

• In the first lecture, we will go over the background necessary to state the Springer corre-
sponce for an arbitary semisimple Lie algebra.

• In the second lecture, we will study the notion of convolution in Borel-Moore homology and
see how to apply it to the Springer correspondence.

• In the third lecture we will reframe these ideas in the language of perverse sheaves and
intersection homology.

These notes are not intended as a detailed reference with complete proofs. Rather, they are
designed, in conjunction with the lectures, to give a somewhat informal overview of the subject
broadly aimed at new(ish) PhD students.
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Further reading

Textbooks

• A good place to start is the textbook Representation Theory and Complex Geometry by
Chriss and Ginzburg [CG97]. Chapters 2 and 3 form the basis for these lectures.

• There are many good textbooks on algebraic groups and Lie theory, e.g. Springer’s book
[Spr08] is an appropriate choice.

• For background on derived categories and Perverse sheaves, there is the book of Dimca
[Dim04], and the (somewhat more technical) classic by Kashiwara and Schapira [KS90].

• For those looking for some further reading on geometric representation theory, the book D-
modules, Perverse Sheaves, and Representation Theory [HTT08] by Hotta, Takeuchi, and
Tanisaki, and Takeuchi has good background on D-modules and Perverse Sheaves and a
nice introduction to Kazhdan-Lusztig theory.

Other online resources

There are plenty of other lecture notes, theses, and the like available online. For example:

• Lecture notes by Zhiwei Yun on Springer theory and orbital integrals (see Lecture I):

http://math.mit.edu/~zyun/ZhiweiYunPCMIv2.pdf,

• Senior thesis of Dustin Clausen on the Springer correspondence:

https://www.math.harvard.edu/media/clausen.pdf

• Survey of Julia Sauter on Springer theory (in a more general sense):

https://arxiv.org/abs/1307.0973

• A great set of notes on perverse sheaves (including representation theoretic applictions) by
Konni Rietsch:

https://arxiv.org/abs/math/0307349

Original papers

Of course, there are also the original papers in which the subject was first developed. We give a
partial list here: [Spr76], [Spr78], [KL80], [BM83], [Spa82], [HK84], [Lus84], [Gin87], [Sho88] (the
introduction to this last paper of Shoji contains a nice overview of the history of the subject).
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Lecture 1

The statement of the Springer
correspondence

The goal for this lecture

We will start by stating the Springer correspondence in type A (i.e. for the symmetric group).
Then we will review some of the necessary background from Lie theory to state the Springer
correspondence in arbitrary type.

1.1 The Springer correspondence in type A

1.1.1 Motivation

Let n be a positive integer, and consider the following two sets:

• The set IrreppSnq of isomorphism classes of irreducible (complex) representations of the
symmetric group Sn.

• The set Nilpn of conjugacy classes of nˆ n nilpotent matrices.

It is not too difficult to see that both these sets have cardinality equal to the set Partpnq of
partitions of n. For example, we know that in general, the set of irreducible representations of a
finite group is in bijection with the set of conjugacy classes, and the conjugacy class of an element
in the symmetric group is determined by its cycle type - a partition of n. On the other hand,
conjugacy classes of nilpotent matrices are classified by their Jordan type - also a partition of n.

It is natural to ask if we can make this bijection explicit. That is, given a nilpotent conjugacy
class can one construct a representation of the symmetric group?

In these lectures, we will discuss a geometric approach to this problem, first identified by Tonny
Springer in the ’70s [Spr76]. In this theory, the representation of the symmetric group will live in
the cohomology of a certain algebraic variety (known as a Springer fibre) associated to a nilpotent
matrix.1

1Recall that a square matrix A is said to be nilpotent if AN “ 0 for N ąą 0.
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1.1.2 Springer fibres

To define the Springer fibre, let us recall that a (full) flag in the vector space Cn is defined to be a
sequence of linear subspaces

0 “ V0 Ď V1 Ď . . . Ď Vn´1 Ď Vn “ Cn

with dimpViq “ i. The set of all flags in Cn is denoted F`pnq. This naturally sits inside a product of
Grassmannians as a closed subspace, cut out by polynomial equations. In fact, it has the structure
of a smooth projective algebraic variety (and thus a compact Kähler manifold).

Example 1.1.1. When n “ 2, we observe that a flag is nothing more than a line in C2. Thus F`p2q
is just the projective line P1.

The Springer fibre F`pnqA associated to a nˆ n matrix A is the subspace of F`pnq consisting
of flags V‚ such that ApViq Ď Vi for all i “ 0, . . . n. We will see that the most interesting Springer
fibres are those where A is nilpotent.

Example 1.1.2. If A “ 0, the Springer fiber F`pnq0 is the entire flag variety F`pnq.

Example 1.1.3. Suppose A is the Jordan normal form n ˆ n matrix with a single Jordan block.
Then F`pnqA consists of a single point, namely the coordinate flag

xe1y Ď xe1, e2y Ď xe1, e2, e3y Ď . . . Ď xe1, e2, . . . , eny

Springer fibers are typically singular and have multiple irreducible components, however, they
are known to always be equidimensional - that is, every irreducible component has the same
dimension dpAq.2

Example 1.1.4. Here is a slightly more involved example. Consider the case n “ 3,

A “

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚

Any flag preserved by A lies in one of two following families:

xe1y Ď xe1, λe1 ` µe2y Ď xe1, e2, e3y, λ, µ P C
xλe1 ` µe2y Ď xe1, e2y Ď xe1, e2, e3y, λ, µ P C

Each of these families corresponds to a copy of P1 in the flag variety, and the two P1’s intersect at
a single point (corresponding to the flag xe1y Ď xe1, e2y Ď xe1, e2, e3y), see Figure 1.1.4.

1.1.3 The Springer Correspondence

Consider the top non-zero cohomology3 H2dpAqpF`pnqAq. This is a Q-vector space whose dimen-
sion is equal to the number of irreducible components in the Springer fiber.

2If λ “ pλ1 ď . . . λrq is the partition corresponding to the lengths of the Jordan blocks of A, consider the dual partition
µ “ pµ1 ď . . . ď µsq. Then the dimension of the Springer fiber is

ř

i “ 1sµipµi ´ 1q [Spa82] II.5.5.
3Cohomology here means singular cohomology with rational coefficients (of the underlying topological space in the

classical topology).
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Figure 1.1: A Springer fibre in F`p3q

Theorem 1.1.5. Let n be a positive integer.

1. For every nilpotent n ˆ n matrix A, the vector space H2dpAqpF`pnqAq carries a natural Sn
action, affording an irreducible representation of Sn.

2. Each irreducible representation of Sn is isomorphic to H2dpAqpF`pnqAq for some nilpotent
nˆ n-matrix A. Moreover, the matrix A is uniquely determined up to conjugation.

In particular, the theorem establishes a bijection between isomorphism classes of irreducible
representations and conjugacy classes of nilpotent matrices as desired.

Remark 1.1.6. It is important to note that the action of Sn on the cohomology is not in general
induced from an algebraic action on the Springer fiber itself. This is partly what makes the subject
so interesting!

Example 1.1.7. In Example 1.1.4 we have that H2pF`p3qAq carries the unique two dimensional
irreducible representation of S3. Try to convince yourself that this action cannot arise from auto-
morphisms of F`p3qA.

The Springer representations have been constructed and interpreted in various contexts using
convolution algebras, perverse sheaves, D-modules, vanishing cycles. As such, Springer theory
provides a fantastic gateway to many of the key concepts and tools in contemporary geometric
representation theory. The ideas we will see in these lectures appear all over the subject: in the
theory of quiver varieties, cohomological Hall algebras, representations of finite groups of Lie type,
Kazhdan-Lusztig theory, and Coulomb branches to name a few such areas.

1.2 The Lie theoretic set-up

In fact, Springer theory takes place in the wider context of semi-simple Lie algebras (or algebraic
groups) and their associated Weyl groups. The Springer correspondence in general exhibits an
explicit bijection between the set of irreducible representations of the Weyl group and (a certain
refinement of) the set of nilpotent orbits in the Lie algebra. The above example with symmetric
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group representations and nilpotent matrices is a becomes a special case of this, when the Lie
algebra is sln and the Weyl group Sn.

In what follows we will give a brief outline of this set-up.

1.2.1 Semisimple Lie algebras

A Lie algebra is simple if it has no proper Lie ideals, and semisimple if it is a direct product of
simple Lie algebras. It is quite remarkable that such a short and abstract definition leads to such a
deep and intricate theory, as we will now describe.

The classical approach

There are a number of ways of approaching the subject of semisimple Lie algebras. In the classical
approach, we consider symmetries of vector spaces, possibly equipped with bilinear forms. This
leads to the following list of examples:

• The special linear group SLn consists of n ˆ n matrices with determinant 1. Its Lie algebra
sln consists of matrices with trace 0. This is simple for n ě 2.

• The orthogonal group On consists of nˆ n orthogonal matrices - those preserving the stan-
dard inner product on Cn. Its Lie algebra son consists of n ˆ n skew-symmetric matrices.
This is simple for n ě 5.4

• The symplectic group Sp2n consists of 2n ˆ 2n symplectic matrices - those preserving the
standard symplectic form on C2n

Ω “

ˆ

0 In
´In 0

˙

Its Lie algebra sp2n consists of 2nˆ 2n-matrices A such that ΩA`AΩ “ 0. This is simple for
all n ě 1.

The root-theoretic approach

In this route, we start by choosing a Cartan subalgebra h of g (a maximal abelian subalgebra). The
dimension of h is an important invariant, known as the rank, r of g. The restriction of the adjoint
action of h on g gives a decomposition in to 1-dimensional root spaces gα (together with the fixed
space h itself):

g “ h‘
à

αPΦ

gα

The set Φ “ Φpg, hq Ď h˚ is called the set of roots of g. The real span of the roots E carries
an inner product coming from the Killing form of g. It turns out that all the information about the
semisimple Lie algebra g can be encoded in terms of the Euclidean space E together with the set
of roots Φ (this data is called the root system associated to g).

If one further specifies a choice of positive roots Φ` Ď Φ then we obtain a triangular decompo-
sition:

g “ n´ ‘ h‘ n

4Moreover, so4 – sl2 ˆ sl2 and so3 – sl2.
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where n (respectively, n´)is spanned by the root spaces of positive (respectively, negative) roots.
Given the choice of positive roots, one may define the set ∆ Ď Φ` of simple roots which form a
basis of h˚.

Figure 1.2: The root system of sl3 (type A2). The positive roots are tα, β, α ` βu, and the simple
roots are tα, βu.
Image credit: https://commons.wikimedia.org/wiki/File:Root_system_A2_with_labels.png

Example 1.2.1. In the case g “ sln, we can take h to be the diagonal matrices. The set of roots
αpi,jq is indexed by pairs pi, jq P t1, . . . , nu2, i ‰ j. The root space gαi,j consists of matrices whose
only possible non-zero entry is in the pi, jq-position. A standard choice for the set of positive roots
is to take αpi,jq with i ă j. The simple roots are αpi,i`1q for i “ 1, . . . n ´ 1. With this choice, n
(respectively n´) becomes the set of strictly upper (respectively, strictly lower) triangular matrices.

Borel subalgebras and the canonical Cartan

In the above presentation, we needed to pick a Cartan subalgebra h Ď g to get started. Further
choosing a subset of positive roots, we obtained a triangular decomposition n´ ‘ h ‘ n. The
subspace b :“ h ‘ n is an example of a Borel subalgebra: a maximal solvable Lie subalgebra. In
fact, any Borel subalgebra is G-conjugate to this one. There is another approach to this subject,
where instead of choosing a Cartan and a set of positive roots, we rather consider all possible
Borel subalgebras at once.

More precisely, given a Borel subalgebra b Ď g, we consider its nilpotent radical, the ideal
npbq “ rb, bs and the corresponding quotient Hpbq “ b{npbq. Thus we get a short exact sequence

0 Ñ npbq Ñ bÑ Hpbq Ñ 0 (1.1)

This sequence is non-canonically split: choosing a splitting makes Hpbq in to a Cartan subalgebra
of g with a choice of positive roots determined by b.

On the other hand, it turns out that Hpbq is actually independent of the choice of b in the
strongest sense. Namely, suppose b1 is another Borel subalgebra. Then we can choose g P G
such that Adpgqpbq “ b1 (as all Borels are conjugate) defines an isomorphism:

Adpgq : Hpbq – Hpb1q

Crucially, this isomorphism is independent of the choice of g (this follows from the fact that B acts
trivially on Hpbq).
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We refer to H (“ Hpbq for any Borel b) as the canonical Cartan. Moreover, choosing any
splitting of H “ Hpbq into b defines a root system in H (together with a distinguished choice of
positive roots); this root system is independent of choices. Thus we can talk about the Cartan and
roots of g without having to make any choices.

The Flag variety

Let F` “ F`pgq denote the set of Borel subalgebras b Ď g. As any two Borels are G-conjugate, F`
is naturally a homogeneous variety for G. The normalizer in G of a given Borel subalgebra b is a
so-called Borel subgroup B Ď G with LiepBq “ b. Thus for any such choice of a basepoint in F`
we get an isomorphism:

F` – G{B

In fact, F` carries the structure of a projective complex algebraic variety (in particular, a compact
Kähler complex manifold) of (complex) dimension m “ dim n.

1.2.2 The Weyl group

Now suppose g is a semisimple Lie algebra. Let us also fix a linear algebraic group G with g “
LiepGq. Thus G acts on g by via the adjoint representation (for matrix groups, this is simply the
conjugation action).

The Weyl group is a certain finite group associated to g. It plays a central role in our story.
There are also a number of different ways to approach its definition.

As a reflection group

Recall that the root system on the canonical torus H associated to g determines a Euclidean vector
space E together with a distinguished set of root hyperplanes. One definition of the Weyl group W
is as the group generated by the reflections in the root hyperplane. The reflections corresponding
to simple roots give a set of generators for W, giving W the structure of a Coxeter group. This
leads to a presentation of W as follows:

A

sα, α P ∆ | psαsβq
mpα,βq “ 1

E

where mpα, βq is a certain number in the set t1, 2, 3, 4, 5u which records the angle = formed by α
and β according to the following table:5

mpα, βq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if α “ β

2 if α K β

3 if =pα, βq “ 120˝

4 if =pα, βq “ 135˝

5 if =pα, βq “ 150˝

5It is a remarkable feature of root systems that these are the only possible angles that can occur. This is related to the
crystallographic restriction theorem.
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In particular, with these choices, every element w P W has a well-defined notion of length `pwq
corresponding to the minimal number of terms appearing in any expression of w as a product of
simple reflections (such an expression is called a reduced word). There is also a partial order ď
on W characterized by the property that v ď w if and only if there is a reduced word expression for
v that sits inside one for w.

Example 1.2.2. The Weyl group of sln with respect to the Cartan of diagonal matrices is naturally
identified with the symmetric group Sn, acting on h by permuting the entries. The root-reflections
sαpi,jq correspond to the transpositions pi jq. Given the standard choice of positive roots we get
the following presentation of Sn:

B

s1, . . . , sn´1 |
sisi`1si “ si`1sisi`1, i “ 1, . . . n´ 2

sisj “ sjsi, i, j “ 1, . . . n´ 1, |i´ j| ě 2

F

where si “ sαi,i`1
corresponds to the transposition pi i` 1q.

Example 1.2.3. The Weyl group of so2n`1 and sp2n may both be identified with the hyperoctahedral
group pZ{2Zqn ¸ Sn, realized as the symmetries of an n-dimensional hypercube. The Weyl group
of so2n is isomorphic to a certain index two subgroup of the hyperoctahedral group, realized as the
symmetries of a demihypercube.

Figure 1.3: Root systems of type B3, C3, D3 Image credit: https://commons.wikimedia.org/wiki/File:Root_vectors_b3_c3-d3.png

Via the normalizer of a Cartan

Suppose now we fix a Cartan subalgebra h Ď g, and let H Ď G denote the centralizer of h -
this is a maximal torus of G with LiepHq “ h. Then W pg, hq is be defined as group of connected
components NGphq{H. As H acts trivially on h, the action of NGphq naturally descends to an action
of W pg, hq on h. If we further choose a Borel b containing h (thus giving an identification H – h) we
obtain an isomorphism W pg, hq –W.

The Bruhat decomposition

A fundamental result in this subject is that the orbits of the diagonal G-action on F` ˆ F` are in
bijection with the canonical Weyl group W. To understand why this is, note that if we pick two Borels
b1, b2, one can choose a Cartan subalgebra in their intersection. Then b1 and b2 correspond to
two choices of positive root and are thus related by an element of W pg, hq. Given a pair of flags
b1, b2, we say that they are in relative position w PW if they lie in the G-orbit corresponding to w.
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There are a number of equivalent expressions of this idea, known as the Bruhat decomposition.
For example if we fix a Borel subalgebra b with normalizer B, then we can identify G-orbits in
F` ˆ F` with B orbits in F` – G{B (or equivalently B-double cosets in G). If we further fix a
Cartan h with corresponding maximal torus H, then we obtain a locally closed decomposition:

G “
ğ

wPW pg,hq

B 9wB

or equivalently
G{B “

ğ

wPW pg,hq

B 9wB{B

where 9w denotes any lift of w to NGpHq. The subsets B 9wB{B are called Bruhat cells - they are
affine spaces of dimension `pwq. These Bruhat cells define a basis for the homology of F`.

Example 1.2.4. Given a pair of flags U‚, V‚ in Cn, the numbers:

nij “
dimUi X Vj

Ui´1 X Vj ` Ui X Vj´1

define a permutation matrix and thus corresponds to an element w of Sn. We say that U‚, V‚ are
in relative position w.

1.2.3 The characteristic polynomial map

An element x P g is called semisimple if it is contained in some Cartan subalgebra h. It follows
that the set c of semisimple conjugacy classes in g are in bijection with W -orbits c “ h{W for any
given Cartan h (or better, in bijection with the canonical H{W). It turns out that c carries the natural
structure of an affine space: it is isomorphic to Cr where r “ dim h is the rank of g. There is a
natural G-invariant map:

χ : gÑ c

which is defined by taking an element x P g to the unique semisimple conjugacy class in the
closure of G ¨ x. This is called the characteristic polynomial map.6

Example 1.2.5. The characteristic polynomial map for sln takes a matrix A to the collection of
non-zero coefficients of its characteristic polynomial paptq (thought of as an element of the affine
space Cn´1). Thus the fibers of χ consist of matrices with a fixed characteristic polynomial (or
equivalently, a fixed (multi)set of eigenvalues, counted with multiplicity). In each such fiber, the G-
orbits are paramaterized by the possible minimal polynomials; if the minimal polynomial has distinct
roots, the element is regular (i.e. has maximal size Jordan blocks); if the minimal polynomial is
equal to the characteristic polynomial, the element is semisimple (i.e. diagonalizable).

6In the language of algebraic geometry, c is given by the GIT quotient g{{G “ SpecpCrgsGq and χ is the quotient map.
In other words, the coordinate ring of c is precisely the ring of G-invariant polynomial functions on g (or alternatively, the
ring of W-invariant functions on H). The fact that c is an affine space corresponds to the statement that CrgsG “ CrHsW
is a polynomial ring, i.e. is isomorphic to Cra1, . . . , ans for some elements a1, . . . , an (the analogues of the elementary
symmetric functions). The degrees (minus 1) of the generators ai are called the exponents of g.
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Each fibre of χ is a finite union of G-orbits in g, and each contains a unique closed orbit (con-
sisting of semisimple elements) and a unique open orbit (consisting of so-called regular elements).
In particular, the central fibre

N “ χ´1p0q

is called the nilpotent cone of g and its elements are called nilpotent.

Remark 1.2.6. The multiplicative group Cˆ naturally acts on g (as it does on any vector space).
There is a corresponding action on c (with certain weights) making χ equivariant and with fixed
point 0 P c. It follows that N is a cone: it carries an action of Cˆ with a unique fixed point 0 P g.

At the other extreme, the generic fibres of χ consist of a single G-orbit which is both regular and
semisimple. Such elements are naturally called regular semisimple. The open subset of regular
semisimple elements in g is denoted grs. If h is a Cartan subalgebra, the intersection grs X h
is denoted hreg; it coincides with the subset of h where W acts freely, or equivalently with the
complement of the root hyperplanes in h.

Example 1.2.7. Regular semisimple elements of sln are precisely those with distinct eigenvalues.
The nilpotent elements are nilpotent matrices in the usual sense (which are characterized by the
property that all their eigenvalues are zero, or equivalently, their characteristic polynomial is equal
to tn).

Example 1.2.8. For

A “

ˆ

a b
c ´a

˙

P g “ sl2

we can be more explicit. The map χ may be identified with

sl2 Ñ C
A ÞÑ ´detpAq “ a2 ´ bc

There are two possibilities: if d “ ´detpAq ‰ 0, then the eigenvalues are distinct and A is regular
semisimple. In this case χ´1pdq is a smooth quadric consisting of a single G-orbit. On the other
hand χ´1p0q is a singular conic which is a union of two orbits: the zero orbit t0u and the regular
nilpotent orbit.

Figure 1.4: A cartoon of the characteristic polynomial map for sl2
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1.2.4 The Killing-Cartan-Dynkin Classification and exceptional types

Using the axiomatics of root systems, the simple Lie algebras were classified by Killing and Cartan
at the end of the 19th century, and later refined by Dynkin.7 The classification consists of four
infinite families which correspond to the classical Lie algebras as follows:

• sln`1 is type An;

• so2n`1 is type Bn;

• sp2n is type Cn;

• so2n is type Dn.

It turns out there are precisely five more “exceptional” Lie algebras which are denoted byE6, E7, E8, F4, G2

(the index always refers to the rank).8

We can encode the isomorphism type of g in a certain graph called the Dynkin diagram. The
nodes of the Dynkin diagram correspond to the simple roots, and the number of edges between
two nodes is determined by their angle (it is equal to mpα, βq´2 from the above table). In the case
of multiple edges (types B,C,F,G) the two roots have different length, in which case one also draws
an arrow going from the long root to the short root.

Figure 1.5: The finite Dynkin diagramsImage credit: https://en.wikipedia.org/wiki/File:Finite_Dynkin_diagrams.svg

Example 1.2.9. The Weyl group of type G2 is a dihedral group of order 12, acting naturally on the
2-dimensional Cartan H as symmetries of a hexagon.

Example 1.2.10. The Weyl group of type E8 has order 696729600. It has the unique finite simple
group of order 174182400 as a composition factor.

1.3 The Springer correspondence in general type

1.3.1 The Grothendieck-Springer simultaneous resolution

Define the Grothendieck-Springer space as follows:

rg “ tpx, bq P gˆ F` | x P bu Ď gˆ F`
7According to Wikipedia, “the classification is widely considered one of the most elegant results in mathematics” - I

would be inclined to agree!
8With a bit of work, one can fit the exceptional groups in to the classical paradigm using the octonions - see e.g. [Bae01].
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There are natural maps:
rg

π

��

s

��

rχ

��
g F` h

The map s remembers the flag b and forgets the element x. This realizes rg as a kind of
tautological vector bundle over F` (the fiber over the point corresponding a Borel subalgebra b is
b itself). 9

On the other hand, we can forget the flag and remember x to define the map π. The fibers
F`x :“ π´1pxq are called Springer fibers. Explicitly, we have:

F`x “ tb P F` | x P bu Ď F`

In other words F`x is the collection of Borel subalgebras which contain x. More on this later.
Finally, the map rχ is defined as follows. Given a Borel b Ď g, recall that b{rb, bs is identified with

the canonical Cartan H. The map rχ is defined by taking px, bq P rg to x mod rb, bs P H. 10

The notation rχ is chosen because of the following diagram

rg
rχ
//

π

��

H

��
g

χ
// c

(1.2)

We think of rχ as a lift of the characteristic polynomial map χ from c “ H{W to H. Note that rg carries
an action of G making the maps π and s equivariant, and rχ invariant.

We have the following key property:

Proposition 1.3.1. The map rχ is a smooth morphism. In particular, the fibres rχ´1ptq are all
smooth.

The reason this fact is cool is that the original map χ is not smooth - one of the fibers is the nilpo-
tent cone which is generally singular. The diagram(1.2) above is referred to as the Grothendieck-
Springer simultaneous resolution, because it simultaneously resolves the singularities of (the fibres
of) χ.

9If we fix a preferred Borel subgroup B Ď G with corresponding subalgebra b Ď g, then we can write:

rg “ GˆB b

This realizes rg as the associated adjoint vector bundle to the B-torsor GÑ G{B – F`.
10Fixing a preferred Borel B again, and writing n “ rb, bs for the nilpotent radical, we see that there is a short exact

sequence of associated vector bundles:
GˆB nÑ GˆB bÑ GˆB H

Note thatB acts trivially on H, so the right most term is canonically trivial (this is one way to think about the well-definedness
of the canonical Cartan):

GˆB H – G{B ˆ H

The resulting morphism rgÑ G{B ˆ H is precisely ps, rχq.
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Regular semisimple Springer fibers

If x is regular semisimple, it is not too hard to show that it is contained in exactly |W|-many Borel
subgroups (namely, those Borels containing h “ Cgpxq). In fact, the collection of such Borels is
naturally a torsor for W.

We have the following relative version of this fact:

Proposition 1.3.2. There is a free and properly discontinuous action of W on the locus rgrs such
that the map

πrs : rgrs Ñ grs

is identified with the quotient. In other words πrs is a W-Galois covering.

1.3.2 The Springer resolution

We have seen that the Springer fibres of regular semisimple elements are boring: just discrete
sets. At the other end of the spectrum we have the nilpotent cone.

Consider the space
rN :“ rχ´1p0q Ď rg

Note that for an element px, bq we have Ćpx, bq “ 0 if and only if x P N , or equivalently x P n :“ rb, bs.
In particular, rN is a vector bundle over F` whose fibre over b is npbq.

Restricting π to rN we get a map
ρ : rN Ñ N

called the Springer resolution. The following proposition establishes the basic properties of the
Springer resolution:

Proposition 1.3.3. The map ρ is a resolution of singularities. That is:

1. The variety rN is smooth (i.e. non-singular),

2. The map ρ is proper (i.e. has compact fibers),

3. There is a dense open subset U Ď N such that ρ|ρ´1pUq is an isomorphism.

The first two statements are clear from what has already been established. For the third, one
must show that a regular nilpotent element is always contained in a unique Borel subalgebra.

Remark 1.3.4. The Springer resolution has a nice symplectic geometric interpretation. Namely
there is a natural identification

rN – T˚F`

as G-spaces, giving rN the structure of a Hamiltonian G-spaces. The map ρ is identified with the
moment map

T˚F`Ñ g˚ – g

Example 1.3.5. If g “ sl2, then rN is the total space of the line bundle Op´2q over F`p2q “ P1.
The map

ρ : rN Ñ N

just crushes the zero section P1 Ď rN to a point.

15



Figure 1.6: A cartoon of the Springer resolution for sl2

The following result establishes the key algebro-geometric properties of nilpotent Springer fi-
bres.

Theorem 1.3.6. The Springer fibres F`x for x P N are connected and equidimensional (i.e. all the
irreducible components have the same dimension). The dimension dpxq is given by the following
formula:

dpxq “
1

2
dimpCGpxq ´ rq “ dimF`´ 1

2
dimG ¨ x

where CGpxq denotes the stabilizer and G ¨ x denotes the orbit for the adjoint G-action.

1.3.3 Component groups

There is one more ingredient required to precisely state the Springer correspondence for arbitrary
g. For each x P g let AGpxq “ CGpxq{CGpxq

˝ denote the component group of the centralizer of x
in G. It is a finite group.11

One shows that the natural action of CGpxq on F`x descends to an action of AGpxq on H˚pF`xq
(preserving the grading). If σ denotes an irreducible representation of AGpxq and V is any other
representation, we denote by

Vσ :“ HomAGpeqpσ, V q

the corresponding multiplicity space.12

1.3.4 The statement of the Springer correspondence for semisimple Lie al-
gebras

We may now finally state the following:
11The group AGpxq really depends on the choice of group G, not just the Lie algebra g. In practice, for the purposes of

the Springer correspondence, we can take G “ Gad, the adjoint group, for which the group AGpxq is smallest.
12Recall that any finite dimensional representation of a finite group is a direct sum of irreducible representations. The

multiplicity space precisely measures the multiplicity of the given irreducible σ in this decomposition.
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Theorem 1.3.7. Let x P N be a nilpotent element.

1. There is an action of W on H˚pF`xq, preserving the grading, and commuting with the action
of AGpxq.

2. For each irreducible representation σ of AGpxq, the multiplicity space

H2dpF`xqσ

is (either zero, or) is an irreducible representation of W. Moreover, up to isomorphism, every
irreducible representation appears in this way for a unique pair px, σq up to G-conjugation.

Remark 1.3.8. Not every irreducible representation of AGpxq appears in this correspondence. If
we allow for G to be the simply connected form then the correspondence is already not one-to-one
for sl2. There is a beautiful generalization of the Springer correspondence due to Lusztig [Lus84]
(called... the generalized Springer correspondence) which accounts for these missing elements in
terms of representations of certain other Weyl groups associated to other root systems.

Remark 1.3.9. Assuming that all the representations of AGpxq are defined over Q (which is the
case if we take G to be the adjoint form) then we get that all the representations of W are also
defined over Q. This was not known for all Weyl groups prior to Springer’s work.

Example 1.3.10 (The zero orbit). If x “ 0 P g then the Springer fiber F`0 is the entire flag variety
F`. In this case, the action of W on H˚pF`q can be described more explicitly as follows. Let H be
a maximal torus in G and B a Borel subgroup containing H. Then there is a map

p : G{H Ñ G{B – F`

On the one hand G{H is naturally acted on by W – W pg, hq “ NGpHq{H. On the other hand the
map p is a fibration with contractible fibers so induces an isomorphism H˚pG{Hq – H˚pG{Bq.13

It is relatively easy to see that H˚pG{Bq has a basis indexed by w P W, where the degree is
given by the length `pwq. In fact, there is a graded ring isomorphism to the coinvariant algebra

H˚pG{Bq – Crhs{CrHsW`

One verifies that H˚pG{Bq is isomorphic to the regular representation of W. The top degree part
H2mpG{Bq carries the sign character of W.

Example 1.3.11 (The regular orbit). At the other extreme if x P N is regular, then F`x – pt. In this
case H0pF`xq carries the trivial representation.

Example 1.3.12 (The subregular orbit). One can show that there is a unique G-orbit in N of
dimension 2m´2. This is called the subregular orbit. For x P N subregular, the Springer fiber F`x
is 1-dimensional, i.e. a (complex) curve. It turns out that it is always a union of P1’s intersecting
according to a certain graph. In the simply laced case (that is g is one of the types A, D, or
E in the Cartan-Killing-Dynkin classification) this graph is precisely the Dynkin diagram of g. In

13Another way to see this is to identify G{B with Gcpt{Hcpt where Gcpt is a maximal compact subgroup of G and
Hcpt “ H XGcpt a maximal torus. Then we have W “ NGcpt pHcptq{Hcpt acts directly on F` – Gcpt{Hcpt; the catch is
that this action is not holomorphic - it does not respect the complex structure! For example, in the case sl2, this action is
the antipodal action on P1 – S2.
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the non-simply laced case, one can associate another semisimple Lie algebra g1 which is simply
laced, such that the Dynkin diagram of g is obtained from that of g1 by “folding”. Then the graph
associated F`x is precisely the Dynkin diagram of g1. Moreover, the diagram automorphism giving
rise to the folding is precisely implemented by the action of AGpxq. In general, one can show that
the Springer representationH2pF`xqAGpxq associated to subregular x and the trivial representation
of AGpxq is the isomorphic to the reflection representation h.
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Lecture 2

Springer theory via convolution

The goal for this lecture

Last time, we claimed that there is a natural action of of the Weyl group on the cohomology of
Springer fibers even though the Weyl group does not act on the Springer fibers themselves. So
where does this action come from?

In this lecture we will discuss one approach to this problem using convolution in Borel-Moore
homology. We will divide the problem in to two steps:

1. To construct an algebra A which naturally acts on the cohomology of Springer fibers.

2. Find an algebra isomorphism QrW s – A.

The first part of the lecture will be spent discussing the general properties of Borel-Moore
homology.

2.1 Generalities on Borel-Moore homology

2.1.1 The definition

Borel-Moore homology is a certain homology theory for topological spaces. For simplicity, in this
section the word space shall refer to a suitably nice topological space, say homeomorphic to the
complement of a sub CW-complex in a CW complex. Most of the spaces we will consider will
be complex algebraic varieties, which all satisfy this condition. If X is a space, H˚pXq (respec-
tively H˚pXq) will always denote the singular cohomology (respectively homology) with rational
coefficients.

Informally, one can think of a Borel-Moore k-chain on a space X as a possibly non-compact
version of an ordinary k-chain. If X is compact then a Borel-Moore chain is just an ordinary chain
(and thus Borel-Moore homology agrees with ordinary homology). Borel-Moore homology arises
naturally in the study of Poincaré duality in the following form:

Theorem 2.1.1 (Poincaré duality for Borel-Moore homology). If X is a smooth oriented manifold
of dimension d (not necessarily compact), there is an isomorphism

HBM
k pXq – Hd´kpXq
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Equivalently, there is a perfect pairing (called the intersection pairing)

HBM
k pXq bHd´kpXq Ñ Q

There are a few different approaches towards giving a precise definition of Borel-Moore homol-
ogy. We list some of these below:

1. A singular Borel-Moore chain may be defined as a locally finite sums of singular simplices
(i.e. possibly infinite sums which are finite when intersected with any compact subset).

2. If X ãÑM is an embedding in to a closed oriented n-manifold, then

HBM
k pXq “ Hn´kpM,M ´Xq

3. We have
HBM
k pXq “ HkpX`, t8uq,

where X` “ X Y t8u is the one-point compactification.

4. HBM
˚ pXq is the sheaf (hyper)cohomology of the Verdier dualizing complex ωX .1

Example 2.1.2. Using any of the above as a definition, we may compute

HBM
k pRnq “

#

Q if k “ n;

0 otherwise.

In particular, Borel-Moore homology (like its dual notion, compactly supported cohomology) is not
a homotopy invariant (though it is of course a homeomorphism invariant).

Example 2.1.3. Let us consider the space

X “ S1 ˆ R

We have
˚ HBM

˚ pXq H˚pXq
0 0 Q
1 Q Q
2 Q 0

One can represent the generators of these groups as (locally finite) cycles. Namely, the generator
for HBM

2 is the entire space X and the generator for HBM
1 is the vertical line t˚u ˆ R. Note that

this 1-cycle is transverse to the generator for H1pXq. This reflects the perfection of the intersection
pairing in the Poincaré duality theorem. See Figure 2.1.3.

Example 2.1.4. Now let Y “ S1 ˆ R{S1 ˆ t0u be a cone. Then we have:

˚ HBM
˚ pY q H˚pY q

0 0 Q
1 Q 0
2 Q2 0

This time there are two generators in HBM
2 represented by the two components of the cone. Note

that HBM
˚ pY q is quite large even though Y is contractible! See Figure 2.1.4.

1More on this next time.
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Figure 2.1: The cylinder: The green cycle represents the generator for HBM
2 , the red for HBM

1 and
the blue for H1.

Figure 2.2: The cone: The green and blue cycles represent the two generators of HBM
2 and the

red of HBM
1 .

2.1.2 Functoriality

Recall that for a map f : X Ñ Y of topological spaces, we get an induced pushforward map on
homology and an induced pullback map on cohomology. In more categorical terms, homology
is covariantly functorial and cohomology is contravariantly functorial. For Borel-Moore homology
(as for compactly supported cohomology) the functoriality is slightly more complicated: sometimes
there is a pullback, sometimes there is a pushforward according to the nature of the map f .

Here a the key examples of this functoriality. Most of these can be proved using either definition
2 or 3 below - see Chriss-Ginzburg [CG97], Chapter 2.6. Alternatively, one can use definition 4
together with the six operations formalism to be discussed in the third lecture.

Proposition 2.1.5. Suppose f : X Ñ Y is a map of spaces.

1. If f : X Ñ Y is a proper map (i.e. the preimage of a compact set is compact), there is a
pushforward map:

f˚ : HBM pXq Ñ HBM pY q
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2. If f : X Ñ Y is an open embedding there is a restriction map

f ! : HBM pY q Ñ HBM pXq

3. If f : X Ñ Y is an oriented fibration of relative complex dimension d (that is, a locally
trivial fibration, whose fibers are oriented d-manifolds, and the transition maps preserve the
orientation), there is a pullback map:

f ! : HBM
k pY q Ñ HBM

k´d pXq

4. If f : X Ñ Y is an oriented embedding of a manifolds of codimension d (i.e. the normal
bundle is oriented), then there is a pullback map:

f ! : HBM
k pY q Ñ HBM

k`d pXq

Remark 2.1.6. We will need something a little bit stronger than the last point. Suppose we have a
cartesian2 diagram of spaces:

rX

rg

��

rf
// rY

g

��

X
f
// Y

Suppose also that f is an oriented embedding of a submanifolds of codimension d, so that f !

makes sense. Then there is a pullback map for the base change:

rf ! : HBM
k prY q Ñ HBM

k`d p
rXq

2.1.3 Properties and Structures in Borel-Moore homology

This kind of functoriality may seem strange at first, but it manifests quite naturally in certain situa-
tions.

Long exact sequence of an open-closed decomposition

For example, suppose i : Z ãÑ X is the inclusion of a closed subset and j : U “ X ´ Z ãÑ X is
the inclusion of its open complement. Then i is proper and j is an open embedding. Thus we get
maps:

HBM
˚ pZq

i˚
ÝÑ HBM

˚ pXq
j!

ÝÑ HBM
˚ pUq

In fact, one can further show that these maps come from a short exact sequence of complexes at
the chain level. Thus there is an associated long exact sequence at the level of homology:

. . . HBM
k`1 pUq

B
ÝÑ HBM

k pZq
i˚
ÝÑ HBM

k pXq
j!

ÝÑ HBM
k pUq

B
ÝÑ HBM

k`1 pZq Ñ . . .

2This means that rX is isomorphic to the fiber product X ˆY rY such that the maps rf and rg become identified with the
projections.
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Remark 2.1.7. Suppose we can partition X as a union

X “
ğ

α

Xα

of locally closed subsetsXα. Suppose also thatHBM
˚ pXq is concentrated in entirely even degrees.

Then repeatedly applying the above decomposition and noting that all the boundary maps must
vanish, we obtain:

HBM
˚ pXq “

à

α

HBM
˚ pXαq

In particular, this works when Xα is an affine paving, i.e. each Xα is isomorphic to an affine space
Ck. This is the case for flag varieties - the affine paving is given by Schubert cells. Less obviously
this is also true for Springer fibers - see [CLP88].

Fundamental classes

Suppose U is an oriented d-manifold. Then item 3 of Proposition 2.1.5 gives us a map

p! : Q “ HBM
0 pptq Ñ HBM

d pUq

The element rU s :“ p!pQq P HBM
d pUq is called the fundamental class of U .

Now suppose that U Ď X is embedded as an open dense subset such that the complement
X ´ U has (real) codimension 2 in X (for example U could be the smooth locus of an irreducible
complex algebraic variety). Then be the long exact sequence associated to the open closed de-
composition, the restriction map

HBM
d pXq Ñ HBM

d pUq

is an isomorphism. It follows that there is a unique element rXs P HBM
d pXq which maps to U . We

will also refer to this as the fundamental class of X.

Example 2.1.8. Suppose Z is an algebraic variety of pure complex dimension n, that is, all the irre-
ducible components Z1, . . . Zk of Z have dimension n. Then the fundamental classes rZ1s, . . . , rZks
form a basis for HBM

2n pZq.

Specialization

Given a suitably family of spaces Xt, it is possible to specialize Borel-Moore classes from the
generic fiber to the special fiber. More precisely, let us fix a manifold S with basepoint s0. Suppose
we have a map of spaces f : X Ñ S such that is a locally trivial fibration over S˚ “ S ´ ss0. Thus
we have a diagram:

X0

��

� � // X

f

��

X˚? _oo

��

ts0u
� � // S S˚?

_oo

Then there is a natural map:

SpsÑ0 : HBM
k pX˚q Ñ HBM

k´d pX0q
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Let us explain how this works in the case S “ r0,8q, s0 “ 0 (in fact the general map is
constructed by reducing to this case). We assume X˚ – X1 ˆ p0,8q is trivialized. In this setting
the specialization map is just the boundary map in the long exact sequence associated to the
open-closed decomposition X “ X˚ YX0:

HBM
k pX˚q Ñ HBM

k´1 pX
0q

Remark 2.1.9. If we assume thatX˚ – X1ˆp0,8q is trivialized then we can interpret specialization
as map

HBM
k´1 pX1q

HBM
ÝÝÝÑk pX1 ˆ p0,8qq – HBM

k pX˚q Ñ HBM pX0q

Thus we are “specializing” a cycle in a generic fibre X1 to the special fibre X0.

2.2 Convolution algebras

The set-up

Suppose X is a smooth manifold of dimension d with a proper map f : X Ñ Y . We define
Z “ X ˆY X. Then we have a diagram:

Z ˆ Z Z ˆX Z
soo r // Z

pX ˆY Xq ˆ pX ˆY Xq X ˆY X ˆY X
pp12,p23q

oo
p13

// X ˆY X

Here s is the base change of the diagonal embedding X Ñ X ˆ X (of codimension d) and and
r is proper. Thus the functoriality of Borel-Moore homology defines for us a linear map called
convolution:

˚ “ r˚s
! : HBM

˚ pZq bHBM
˚ pZq – HBM

˚ pZ ˆ Zq Ñ HBM
˚`dpZq

We denote by HBM
˚ pXqr´ds the graded vector space where we shift the grading so that HBM

d pZq
lies in degree 0.

The following result can be proved by hand in an elementary fashion, but it also falls out once
enough functoriality machinery has been developed (the object Z itself is a monoid object in a
suitable category of correspondences, which is a source category for the Borel-Moore homology
functor).

Proposition 2.2.1. The convolution product ˚ gives HBM pZqr´ds the structure of a graded asso-
ciative algebra.

2.2.1 Semismall morphisms

Let us assume for the moment that f : X Ñ Y is a morphism of algebraic varieties. In general,
Z “ X ˆY X may be singular and reducible (in the algebro-geometric sense), with components
of various dimensions d “ dimRpXq ď n ď 2d “ dimRpX ˆ Xq. In particular the graded algebra
HBM
˚ pXqr´ds may have graded components of positive and negative degrees.
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If it happens that the dimension of Z is equal to the dimension of X (the minimal possible), we
say that the map f : X Ñ Y is semismall. In that case, we see that HBM

˚ pZqr´ds is supported
in positive degrees. Moreover, the degree zero component HBM

d pZq has a basis given by the
fundamental classes of irreducible components of Z. This will be the case in the example of
interest to us.

2.2.2 Examples of convolution

Example 2.2.2 (The double of a closed oriented manifold). Consider the case when Y “ pt and
thus X is a compact d-manifold. In this case Z “ X ˆX and we have

HBM
˚ pZqr´ds – H˚pXq bH˚pXqr´ds – H˚pXq bH

˚pXq – EndpH˚pXqq

Here the first isomorphism is by the Künneth theorem and the fact that Borel-Moore homology
agrees with ordinary homology for compact spaces. The second isomorphism is by Poincaré dual-
ity. One can check that the convolution structure on HBM

˚ pXˆXqr´ds corresponds to composition
of endomorphisms.

The following example will be useful for our study of the Springer correspondence.

Example 2.2.3 (Galois covers). Suppose a finite group W acts freely and properly discontinuously
on X and let f : X Ñ Y “ X{W be the quotient map. Then there is an identification

Z “ X ˆX{W X –W ˆX

In this case the convolution algebra gets identified with the smash product:3

HBM
˚ pZqr´ds – H˚pXq7QrW s

2.2.3 The convolution action on the fiber homology

Recall that f : X Ñ Y is a proper map of spaces with X an oriented d-manifold. Now let us fix a
point y P Y and consider the fiber Xy “ f´1pyq, a compact space. Consider the diagram

Z ˆXy Z ˆX Xy
s1oo r1 // Xy

pX ˆY Xq ˆ pX ˆY tyuq X ˆY X ˆY tyu
pp12,p23q

oo
p13 // X ˆY tyu

Again we have that r1 is proper and s1 is a base-change of the diagonal embedding of X. As
above, we obtain a map:

HBM
˚ pZqr´ds bH˚pXyq Ñ H˚pXyq

Again, this can be upgraded to the following statement.

Proposition 2.2.4. The map defined above equipsH˚pXyqwith the structure of a gradedH˚pZqr´ds-
module.

3The smash product is the algebra whose underlying vector space is H˚pXq bQrW s and the multiplication follows the
rule as for semidirect products, that when you commute an element of w past a class in H˚pXq you act by w on that class.
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2.3 The Steinberg variety

2.3.1 Big vs small

Recall from last time the diagram:
rN �
�

//

ρ

��

rg

π

��
N �
�

// g

The maps π, ρ are proper, rg is smooth of (complex) dimension d “ dim g “ 2m`r and rN is smooth
of (complex) dimension 2m “ dimN .

We define the big Steinberg variety

Stpgq :“ rgˆg rg “ tpx, b1, b2q P gˆ F`ˆ F` | x P b1 X b2u

and the small (or nilpotent) Steinberg variety

StpN q :“ rN ˆN rN “ tpx, b1, b2q P N ˆ F`ˆ F` | x P b1 X b2u

According to the results of 2.2 we have:

Proposition 2.3.1. Convolution equips HBM
˚ pStqr´2ds and HBM

˚ pStpN qqr´4ms with a graded
algebra structure. Moreover both algebras act canonically on the homology of Springer fibres
H˚pF`xq for x P g.

Let
Apgq “ HBM

2d pStpgqq

and
ApN q “ HBM

4m pStpN qq.
These are algebras with respect to convolution. Each one naturally acts on the homology of
Springer fibers. We will see that both of these algebras are in fact isomorphic to QrWs, giving the
desired action on the homology of Springer fibers.4

2.3.2 The components of the Steinberg variety

Recall that we have a G-equivariant map:

s “ ps1, s2q : Stpgq Ñ F`ˆ F`

which takes a triple px, b1, b2q to the pair of flags pb1, b2q. Thus Stpgq is partitioned according to the
relative position of b1 and b2. Accordingly, for each w PW we define

Stwpgq “ s´1ppF`ˆ F`qwq “ tpx, b1, b2q | b1 and b2 are in relative position wu

and similarly, define StwpN q.
Stratum by stratum, the Steinberg varieties are relatively easy to understand:

4The way we will present things in this lecture, the isomorphisms are compatible and thus the actions of W defined using
either Apgq or ApN q are the same. However, we will see in the next lecture that there is another choice for the second
isomorphism which causes the two actions to differ by the sign representation of W.
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Proposition 2.3.2. The projection morphisms

swpgq : Stwpgq Ñ pF`ˆ F`qw

and
swpN q : StwpN q Ñ pF`ˆ F`qw

naturally carry the structure of a vector bundle. The fibre of swpgq (respectively, swpN q over a pair
pb1, b2q is b1 X b2 (respectively npb1q X npb2q).

In particular, Stwpgq (respectively StwpN q) is a smooth connected variety of dimension d “
dimpgq (respectively, of dimension dimpN q “ 2m) for each w.

Remark 2.3.3. Recall that there is an isomorphism rN – T˚F`. Thus StpN q “ rN ˆN rN sits inside
T˚pF` ˆ F`q. As such the strata StwpN q are identified with the conormal bundles to the orbits
pF`ˆ F`qw.

It follows from the proposition that Stpgq (respectively, StpN q) itself is equidimensional of dimen-
sion d (respectively 2m) and the irreducible components are given by the stratum closures. In the
terminology introduced in 2.2, the Springer resolution is semismall.

In particular, the algebras Apgq and ApN q have bases given by fundamental classes of their
components. We denote these bases by

Λw P Apgq

and
Tw P ApN q

as w ranges over the Weyl group W.

2.3.3 Convolution on the big Steinberg

Theorem 2.3.4. The fundamental classes Λw define an isomorphism of algebras QrWs – Apgq.
In other words, we have

Λv ˚ Λw “ Λvw

for all v, w PW.

Theorem 2.3.4 is proved by looking at the open subset

Stpgrsq :“ rgrs ˆgrs rg
rs.

Recall from Proposition 1.3.2 that the morphism

πrs : rgrs Ñ grs

is a W-Galois cover. Following Example 2.2.3 we see that there is a natural algebra isomorphism:

QrWs – Apgrsq :“ HBM
2d pStpgrsqq

On the other hand, one can show that the open restriction mapApgrsq Ñ Apgq is an isomorphism of
algebras, respecting the fundamental classes of the components, which completes the argument.
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2.3.4 Convolution on the nilpotent Steinberg

While Theorem 2.3.4 gives an action of W on the homology of Springer fibers, in order to say
something about the nilpotent Springer fibres, we need to understand how this action restricts
over the nilpotent cone.

One might first hope then that the linear isomorphism

QrWs Ñ ApN q
w ÞÑ Tw

given by the basis Tw induces an algebra isomorphism. Unfortunately (or perhaps fortunately, as
this fact underlies a lot of interesting mathematics!) this map is not an algebra isomorphism. That
is

Tv ˚ Tw ‰ Tvw

in general.
To obtain a basis that is compatible with convolution, one must specialize the basis Λw from

the regular semisimple locus to the nilpotent Steinberg. This procedure is explained in detail in
Chriss-Ginzburg [CG97], Chapter 3.4; we sketch some of the main ideas below.

We let Λ0
w denote the elements of ApN q obtained by specializing Λw from the big Steinberg.

General properties of convolution in Borel-Moore homology can be applied to show that these
elements respect the group multiplication in the desired manner. It remains to show that they form
a basis. For this, we must compare the the known basis given by the Tw.

Lemma 2.3.5. For each w, v PW, let nvw be defined by

Λw “
ÿ

vPW
nvwTv

Then

1. nvw “ 0 if v ě w.

2. nww “ 1 for all w PW.

Remark 2.3.6. Though it is not obvious from the definitions, the numbers nvw are in fact all non-
negative integers.

The first claim in the lemma is easy to check: the specialization construction of Λ0
w takes place

entirely in the closure Stwpgq. The second claim is less clear, and requires a more careful analysis
(see [CG97], Lemma 3.4.14).

The lemma implies that the matrix pnvwq is upper triangular with 1’s along the diagonal. In
particular it is invertible. It follows that Λw is a basis as required.

This leads to a proof of the following:

Theorem 2.3.7. There is an algebra isomorphism:

QrWs – ApN q

Once we have this, it is possible to directly prove the Springer correspondence, Theorem 1.3.6
using a similar kind of geometric analysis - see [CG97], Section 3.5. Alternatively, we will present
another point of view next time using perverse sheaves.
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Lecture 3

Springer theory via perverse
sheaves

The goal for this lecture

We would like to combine the homology of Springer fibers together with their W-action in to a
single package. This package will be called the Springer sheaf Spr and it will live inside a certain
category of perverse sheaves on N .

This lecture may require you to take a bit more on faith. If you haven’t had much exposure to
things like sheaves and the derived category, I recommend you take these things as a black box
to begin with (you can enjoy opening up the box and tinkering at a later point).

3.1 The constructible derived category

3.1.1 The constructible derived category

In the previous lecture, our main tool was the Borel-Moore homology of a space

HBM
˚ pXq.

In this lecture our principal player is a certain category

DpXq

called the constructible derived category of sheaves.
We will not have time to discuss the precise definition of this category.1 Rather we will attempt

to understand this by considering some natural classes of objects and some natural functors out
of it.

1For those that want to know, one can define DpXq as the subcategory of the bounded derived category of sheaves of
Q-vector spaces on X whose cohomology sheaves are constructible. Here a sheaf is said to be constructible if there is a
stratification X “

Ů

αXα such that each cohomology sheaf restricted to Xα is a locally constant sheaf of finite rank.
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3.1.2 The case X “ pt

One can identify the category Dpptq with the category of finite dimensional graded vector spaces.2

We think of Dpptq as the home for the (co)homology of a space X. So we have objects H˚pXq P
Dpptq and H˚c pXq for each X. We can also consider the homology H˚pXq and Borel-Moore
homology HBM

˚ pXq as objects of Dpptq by taking the negative grading (so, e.g. HipXq is in degree
´i).

3.1.3 Measurements: sections, stalks, costalks

Now, given a general space X, there are a bunch of canonical functors to Dpptq. These come in
two flavors.

Sections

We have the functors of (derived) global sections and compactly supported (derived) global sec-
tions:

RΓX , RΓX,c : DpXq Ñ Dpptq

More generally, if U is an open subset of X there is a canonical restriction functor

p´q|U : DpXq Ñ DpUq

and we can compose with the sections on U to get functors:

RΓU , RΓU,c : DpXq Ñ Dpptq

Stalks

On the other hand, for any point x P X, we have two functors called the stalk and costalk respec-
tively:

i˚x, i
!
x : DpXq Ñ Dpptq

Given any object F P DpXq we can attempt to understand it by analyzing its global sections, stalks
and costalks.

3.1.4 Objects

Constant and dualizing sheaves

Given a space X we have two basic objects:

• the constant sheaf QX

• the dualizing complex ωX
2This is slightly cheating: really Dpptq is the bounded derived category of complexes of vector spaces with finite dimen-

sional cohomology. The identification with graded vector spaces is given by taking a complex to its cohomology.
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Both are preserved under restriction to an open subset U Ď X. One can think that QX is repre-
senting local cochains on X and ωX representing local Borel-Moore chains. More precisely, we
have:3

RΓU pQXq – H˚pUq

RΓU pωXq – HBM
˚ pUq

RΓU,cpQXq – H˚c pUq

RΓU,cpωXq – H˚pUq

The constant sheaf (respectively dualizing complex) has the property that its stalks i˚xpQXq
(respectively costalks i!xpωXq) are isomorphic to the 1-dimensional vector space Q P Dpptq.

Local systems

A local system L on X (also known as a locally constant sheaf) is an object of DpXq which is a
twisted form of the constant sheaf. The sections RΓU and RΓU,c measure the cohomology and
compactly supported cohomology with local coefficients in L.

For each x P X, the stalk i˚xpLq is a single vector space Lx in degree 0, and it carries an action
of the fundamental group π1pX,xq. In fact, the category of local systems on a connected space X
is equivalent to the category of representations of the fundamental group.

The objects of geometric origin

Now, given a map of spaces:
f : X Ñ Y

we have certain objects f!pQXq and f˚pωXq of DpY q. These objects are designed to measure the
various (co)homology theories on the fibers Xy of f . More precisely, for each y P Y we have:

i˚yf!pQXq – H˚c pXyq

i!yf˚pωXq – HBM
˚ pXyq

Example 3.1.1. Consider the case where X is a cylinder S1 ˆ R f : X Ñ Y obtained by pinching
the subspace S1 ˆ t0u to a point y0 P Y , making a cone. Then F :“ f!pQXq can be thought of in
the following way. Over the open subset Y ´ ty0u we get a copy of the constant sheaf QY . But
over the special point y0, the stalk of F is equivalent H˚pS1q.

3.1.5 The formalism of the six operations

A neat way to think package this stuff is via the so-called six operations. In general, if f : X Ñ Y
is a map of spaces, we have the following four functors:4

f˚, f! : DpXq Ô DpY q : f !, f˚

We gather the fundamental properties of these functors here:
3Indeed, this can be taken as a definition of the right hand side.
4One should add to these the functors of internal Hom and tensor product to make six.
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Proposition 3.1.2. Suppose f : X Ñ Y is a map of spaces.

1. The functor f˚ is left adjoint to f˚ and f ! is right adjoint to f!.

2. If f is proper, then we have a natural isomorphism f˚ – f!.

3. Suppose we have a Cartesian diagram:

rX

rg

��

rf
// rY

g

��

X
f
// Y

Then there are natural isomorphisms

g!f˚ – rf˚rg
!

g˚f! – rf!rg
˚

Remark 3.1.3. These functors subsume all the objects and functors already defined. For example,
if p : X Ñ pt is the unique map, we have

QX “ p˚pQq, ωX “ p!pQq

and
RΓX “ p˚, RΓX,c “ p!

If j : U ãÑ X is the inclusion of an open subset, we have j˚ “ j! “ p´q|U .

Grading shift

For each integer n we get an autoequivalence of DpXq,

F ÞÑ Frns

called shifting degree by n. All the functors we will consider will intertwine the operations of shifting
degree.

In the case of X “ pt, the functor rns has the effect of shifting the grading degree so that if
V “

À

Vk is a graded vector space, the degree k part of V rns is Vk`n.

3.1.6 Verdier and Poincaré duality

The six operation formalism offers a nice way of packaging the idea of Poincaré duality. Namely
we have the following:

Theorem 3.1.4 (Poincaré duality). Suppose X is a smooth oriented d-manifold. Then there is a
canonical isomorphism ωX – QX rds.
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The more traditional forms of Poincaré duality can essentially be recovered from this fact, to-
gether with the properties of the six operations.

One advantage of this setting is that we can formulate a relative version of the above statement:

Theorem 3.1.5 (Relative Poincaré duality). Suppose f : X Ñ Y is a smooth oriented fibration of
relative dimension d. Then there is a canonical isomorphism

f ! – f˚rds

The reader may have noticed a certain symmetry in this subject, between constant and dual-
izing, or ! and ˚. This symmetry is realized by a contravariant duality functor called the Verdier
duality functor

DX : DpXq Ñ DpXqop

such that D2 – Id. The basic property of this functor is that it exchanges the constant sheaf QX
with the dualizing sheaf ωX . More generally, given a map f : X Ñ Y we have

DY f˚ – f!DX
DXf˚ – f !DY

The functor Dpt is just the usual duality for graded vector spaces.

3.2 Perverse sheaves and intersection homology

3.2.1 Motivation

Now suppose X is a smooth algebraic variety of (pure, complex) dimension d (thus it is a smooth
2d-manifold). Then we have seen that there is a Poincaré duality isomorphism

ωX » QX r2ds

To put it more symmetrically, we have:5

ωX r´ds » QX rds

Yet another way to express this fact is to say that for a smooth d-dimensional variety X the object
Qxrds is canonically Verdier self-dual.

More generally, if L is a local system on a smooth variety X of dimension d, then we have

DpLrdsq – L_rds

where L_ is the dual local system (corresponding to the dual representation of the fundamental
group).

If X is singular, then this of course fails in general. However, one can still ask the following:

Question 3.2.1. Is there an object ICX P DpXq such that

5Note that this is only possible on an even real dimensional manifold (e.g. a complex manifold).
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1. ICX is Verdier self-dual, i.e. DpICXq » ICX ;

2. If U Ď X is a smooth, open, dense subvariety of X (e.g. the entire smooth locus), then
ICX |U » QU rds?

Moreover, can one make this construction suitably canonical and functorial?

It turns out the answer is: yes, there is a such an object. It is called the intersection complex.6

We will present a characterization below.7

3.2.2 Characterization of Intersection Cohomology

Suppose U Ď X is an open subvariety of X which is smooth of pure dimension d. Suppose we fix
a local system L on U .

Theorem 3.2.2. There is an object ICXpLq together with an isomorphism:

ICXpLq|U – Lrds

and such that

1.
dimtx P X ´ U | Hkpi˚xICXq ‰ 0u ă ´k

2.
dimtx P X ´ U | Hkpi!xICXq ‰ 0u ă k

Moreover, the object ICXpLq is uniquely characterized by these properties (up to unique isomor-
phism in DpXq).

The object ICXpLq defined by the above theorem satisfies the desired Verdier duality property.

Theorem 3.2.3. Given X,U,L as above, we have

DpICXpLqq – ICXpL_q

We define8

IH˚pX;Lq “ RΓX,cICXpLqrds
and

IHBM
˚ pX;Lq “ RΓXICXpLqrds

Corollary 3.2.4 (Poincaré duality for intersection homology). There is a perfect pairing:

IHBM
k pX;Lq b IH2d´kpX;L_q Ñ Q

In particular, if X is proper and we take L to be trivial we get a perfect pairing:

IHkpXq b IH2d´kpXq Ñ Q
6More precisely, we are using the so-called middle perversity, and shifting the grading so that all our complexes are

perverse sheaves.
7Historically, the complex RΓpICXq, called the intersection complex, was defined by Goresky an MacPherson [GM80]

using the concept of perversity and allowable cycles, where the manner in which the cycles intersect with the singularities
is restricted in a particular fashion.

8We shift the grading back to lie in the traditional (rather than perverse) degrees.
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Example 3.2.5 (The cone revisited). Let Y “ S1 ˆ R{S1 ˆ t0u, the cone. We have:

˚ HBM
˚ pY q H˚pY q IHBM

˚ pY q IH˚pY q
0 0 Q 0 Q2

1 Q 0 0 0
2 Q2 0 Q2 0

The chain generating HBM
1 is no longer “allowable” in intersection homology. Thus we are left with

either the two fundamental classes in IHBM
2 or the classes of two points in IH2 - see Figure 3.2.5.

Figure 3.1: IHBM
˚ and IH˚ for the cone

3.2.3 Definition of Perverse sheaf

If one relaxes slightly the dimension bounds in the definition of the IC complex, one obtains the
definition of a perverse sheaf:

Definition 3.2.6. An object F in DpXq is called a perverse sheaf if:

1. dimtx P X | Hkpi˚xFq ‰ 0u ď ´k

2. dimtx P X | Hkpi!xFq ‰ 0u ď k

We denote by PervpXq the full subcategory of DpXq whose objects are perverse sheaves.
Examples of perverse sheaves on X include the objects ICZpLq for any closed subvariety Z of

X and local system L on an open dense subset of Z.

Theorem 3.2.7. The category PervpXq is abelian and every object has finite length. The simple
objects are given by ICZpLq, where Z is a closed subvariety, and L is an irreducible local system
defined on a dense open subset of Z.

3.2.4 Small and semismall maps

Recall from last time that we said a morphism f : X Ñ Y of algebraic varieties was said to be
semismall if the dimension of X ˆY X was equal to the dimension of X. This can be reformulated
as follows:
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Definition 3.2.8. Let X be a smooth variety of dimension d. A morphism f : X Ñ Y of algebraic
varieties is said to be small if

dimty P Y | dim f´1pyq ě ku ă d´ k

and semismall if
dimty P Y | dim f´1pyq ě ku ď d´ k

Notice the similarities between the definition of small (respectively semismall) and IC com-
plexes (respectively perverse sheaves). This observation leads to the following key result.

Proposition 3.2.9. Suppose f : X Ñ Y is a proper morphism of algebraic varieties and that X is
smooth of dimension d.

1. If f is small, then
f˚QX rds – ICY pLq

where L “ pf |U q˚QU rds, and U Ď X is an open dense subset such that f |U is a covering
map.

2. If f is semismall then there is an isomorphism:

f˚QX rds –
n
à

α“1

ICYαpLαq

where Yα Ď Y are closed subvarieties together with irreducible local systems Lα on the
smooth locus Y smα for each α “ 1, . . . , n.

3.3 The Springer sheaf

Let us return again to the Lie theoretic setting of Section 1.2.

3.3.1 Big vs small

We define the big Springer sheaf
Sg :“ π˚Qrgrds

and the small or nilpotent Springer sheaf

SN :“ ρ˚Q
ĂN r2ms

The stalks of Sg and of SN at nilpotent elements x P N both record the homology of Springer
fibers. In particular, by restriction, any endomorphism of Sg or SN defines an endomorphism of
the homology of Springer fibres.

The basic properties of the six operations allow us to relate the endomorphism algebras of
these objects to the convolution algebras considered in the previous lecture.
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Proposition 3.3.1. There is an isomorphisms of graded algebras:

HBM
˚ pStpgqqr´2ds – RHomDpgqpSg,Sgq

HBM
˚ pStpN qqr´4ms – RHomDpN qpSN ,SN q

In particular we get isomorphisms of algebras:

Apgq – HomDpgqpSg,Sgq

ApN q – HomDpN qpSN ,SN q

Thus we can rephrase Theorem 2.3.4 and Theorem 2.3.7 as statements about the endomor-
phism algebra of Springer sheaves.

3.3.2 The (semi)-smallness of the Springer maps

The dimension formula for Springer fibers directly implies the following crucial result:

Proposition 3.3.2. 1. The morphism
π : rgÑ g

is small and its restriction πrs to the regular semisimple locus is a W-Galois covering.

2. The morphism
ρ : rN Ñ N

is semismall and birational (i.e. an isomorphism over an open set).

In particular, it follows that both Sg and SN are perverse sheaves.

3.3.3 The structure of the big Springer sheaf

Let
K “ πrs˚ Q

rgrs – Sg|grs .

As πrs is a W-Galois cover, it follows that K is a local system on grs of rank |W|, and the en-
domorphisms of K are precisely the group algebra QrWs. More or less equivalently, we have a
decomposition

K –
à

LPIrreppWq
LbKL

where KL is an irreducible local system on grs (of rank dimL). The smallness of the map π
then implies that endomorphisms extend uniquely from the regular semisimple locus, giving the
following sheaf-theoretic version of Theorem 2.3.4:

Theorem 3.3.3. We have a canonical isomorphism

EndPervpgqpSgq – QrWs

and the perverse sheaf Sg decomposes as a direct sum:

Sg –
à

LPIrreppWq
Lb ICgpKLq
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3.3.4 The structure of the small Springer sheaf

The semismallness of the map ρ implies that there is some decomposition

SN “
à

i

Mi b ICZipEiq

as a direct sum of IC sheaves ICZipEiq, where the Zi are closed subsets of N , Mi are multiplicity
vector spaces, and Ei local systems on some open dense subset of Zi. Moreover (by absorbing
repeating factors in to Mi), we may assume that ICZipEiq are pairwise non-isomorphic.

As ρ is G-equivariant, the closed subset Z “ O must be the closure of some G-orbit O and E
must be a G-equivariant local system on O. Note that G-equivariant local systems on an orbit G ¨x
are precisely given by representations σ of AGpxq. Thus each of the factors ICZipEiq above are all
of the form ICG¨xpσq for some pair px, σq.

3.3.5 Reinterpreting the Springer correspondence

Now suppose, for a moment, we assume Theorem 2.3.7, i.e. that there is an isomorphism

QrWs – EndPervpN qpSN q (3.1)

This then gives a precise enumeration of the the decomposition of SN in to simple objects: namely,
there are pairwise non-isomorphic simple summands for each irreducible representation L, and the
multiplicity space of each such summand is again given by L. In other words, there is an injective
map of sets

L ÞÑ pOL, σLq

from IrreppWq to the set of pairs pO, σq of a nilpotent orbit O “ G ¨ x and an irreducible represen-
tation σ of AGpxq. This is the Springer correspondence, reinterpreted in the language of perverse
sheaves!

From here, it is not too hard to show (using the dimension formula) the traditional statement
of the Springer correspondence, that L matches up with the σL-multiplicity space of H2dpxqpF`xq
where G ¨ x “ OL (see e.g. Section 4.1 in Clausen’s notes).

3.3.6 Two parameterizations of the Springer correspondence

Let iN : N ãÑ g denote the inclusion. We have an isomorphism:

SN – i!N rrsSg

Thus the functor i!N rrs induces an algebra homomorphism:

EndPervpgqpSgq Ñ EndPervpN qpSN q (3.2)

It is possible to prove directly that this is an isomorphism; it is equivalent to proving that the simple
objects ICpg,KLq appearing in Theorem 3.3.3 restrict to pairwise non-isomorphic simple objects
in PervpN q via i!N rrs (namely, the objects ICOLpσLq appearing above). This leads to the same
isomorphism Apgq – ApN q as in Theorem 2.3.7, and thus the same Springer correspondence as
in the previous lecture.
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However, there is also another approach. The Fourier transform (or Fourier-Deligne transform)
is a certain involutive endofunctor9

F : Pervmon
pgq Ñ Pervmon

pgq

It turns out that we have FpSgq – pSN q (where the latter is considered a perverse sheaf on g via
pushforward under the closed embedding). This leads to another isomorphism as in (3.2) and thus
another identification QrWs – EndPervpN qpSN q and finally to another Springer correspondence! It
is possible to show that the two parameterizations of the Springer correspondence differ by the
sign character of W.

9The superscript mon denotes that we only consider the full subcategory of objects which are equivariant for the action
of the scaling torus Cˆ.
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