

A MULTI-OBJECTIVE OPTIMISATION ALGORITHM FOR LOCATING HUMANITARIAN FACILITIES

Kit Searle*^a

^aSchool of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, United Kingdom

19 May 2025

- MSF operates in rural areas
- Significant challenges in accessibility
- Individuals often have to travel hours or days to reach essential infrastructure
- Where to build more facilities to maximise impact?

- MSF operates in rural areas
- Significant challenges in accessibility
- Individuals often have to travel hours or days to reach essential infrastructure
- Where to build more facilities to maximise impact?

- MSF operates in rural areas
- Significant challenges in accessibility
- Individuals often have to travel hours or days to reach essential infrastructure
- Where to build more facilities to maximise impact?

- Project progress
- Problem characteristics
- Solution approach
- Computational results
- Next steps

Work package 1: Understand MSF accessibility tool

Work package 2: Develop offline optimisation algorithm

Work package 3: Integrate algorithm into MSF accessibility tool

Work package 1: Understand MSF accessibility tool

- MSF model returns accessibility time for a given point in space
- Can easily be mapped to a reduction in accessibility hours for a new candidate location
- Input is therefore a set of geotiff objects, one for each candidate location

Work package 2: Develop offline optimisation algorithm

Work package 3: Integrate algorithm into MSF accessibility tool

Work package 1: Understand MSF accessibility tool

- MSF model returns accessibility time for a given point in space
- Can easily be mapped to a reduction in accessibility hours for a new candidate location
- Input is therefore a set of geotiff objects, one for each candidate location

Work package 2: Develop offline optimisation algorithm

- We need fast solutions
- Evolutionary search algorithm
- Multiple objectives

Work package 3: Integrate algorithm into MSF accessibility tool

Work package 1: Understand MSF accessibility tool

- MSF model returns accessibility time for a given point in space
- Can easily be mapped to a reduction in accessibility hours for a new candidate location
- Input is therefore a set of geotiff objects, one for each candidate location

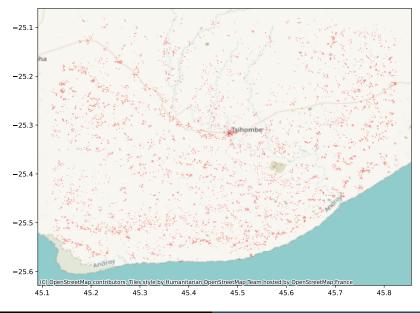
Work package 2: Develop offline optimisation algorithm

- We need fast solutions
- Evolutionary search algorithm
- Multiple objectives

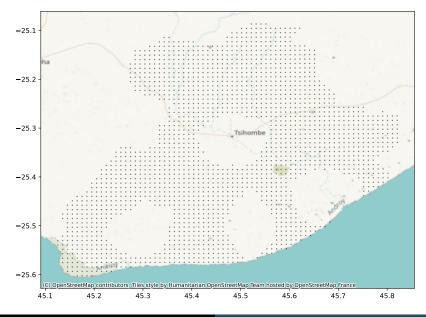
Work package 3: Integrate algorithm into MSF accessibility tool

• Still to come

Problem characteristics



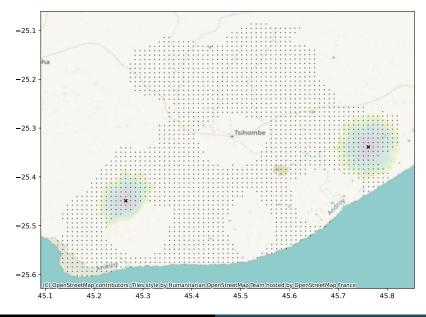
Problem characteristics

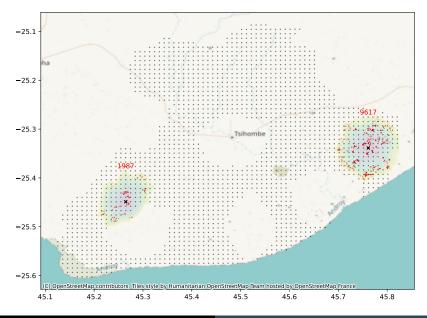


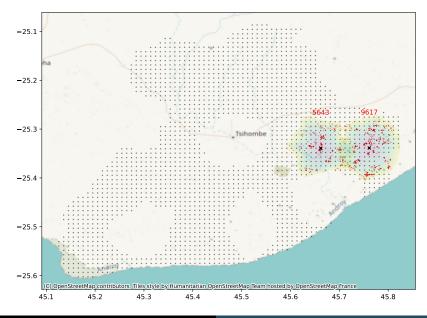
Problem definition

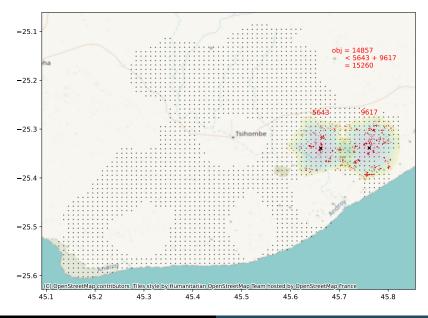
Build between n_{\min} and n_{\max} facilities such that

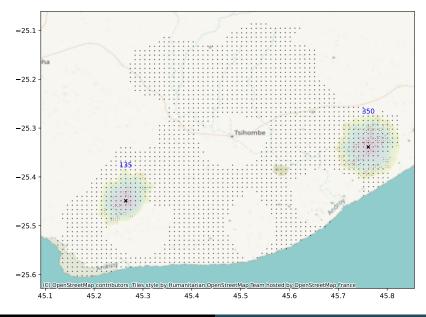
- Maximise the reduction in access hours for all dwellings
- Maximise the number of covered communities
- Minimise the number of facilities

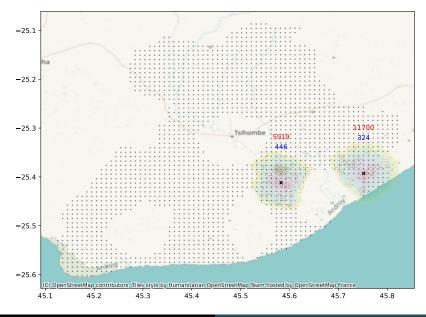












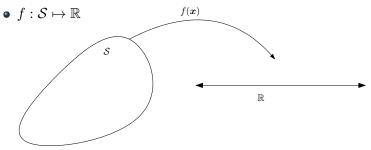
A general optimisation model	
min	$z = f(oldsymbol{x})$
s.t.	$oldsymbol{x}\in\mathcal{S}$

- $\boldsymbol{x} = [x_1, \dots, x_n]^T$ are our decision variables or decision vector
- $\bullet \ \mathcal{S}$ is our feasible region
- $f: \mathcal{S} \mapsto \mathbb{R}$

A general optimisation model	
------------------------------	--

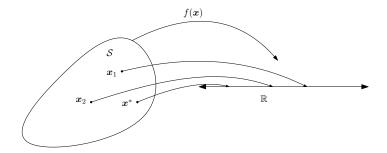
$$\begin{array}{ll} \min & z = f(\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{S} \end{array}$$

- $\boldsymbol{x} = [x_1, \dots, x_n]^T$ are our decision variables or decision vector
- $\bullet~\mathcal{S}$ is our feasible region



A global solution

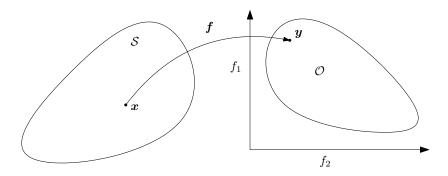
A vector
$$\boldsymbol{x}^* \in \mathcal{S}$$
 such that $z^* = f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}) \ \forall \boldsymbol{x} \in \mathcal{S}$



A general multi-objective optimisation problem	ti-objective optimisation proble	eral multi-objective optimisation pr	nisation probl	oblen
--	----------------------------------	--------------------------------------	----------------	-------

$$\begin{array}{ll} \min \quad \boldsymbol{f}(\boldsymbol{x}) \\ \text{s.t.} \quad \boldsymbol{x} \in \mathcal{S} \end{array}$$

- $\boldsymbol{x} = [x_1, \dots, x_n]^T$ are our decision variables or decision vector
- $\boldsymbol{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), \dots, f_k(\boldsymbol{x})]$ is the vector of objectives
- $\bullet~\mathcal{S}$ is our feasible region or decision space
- $\boldsymbol{f}: \mathcal{S} \mapsto \mathcal{O}$
- \mathcal{O} is our objective space
- For simplicity let $\boldsymbol{y} = [y_1, \dots, y_k]^T$, where $y_i = f_i(\boldsymbol{x})$



Decision space

Objective space

Conflicting objectives

Conflicting objectives

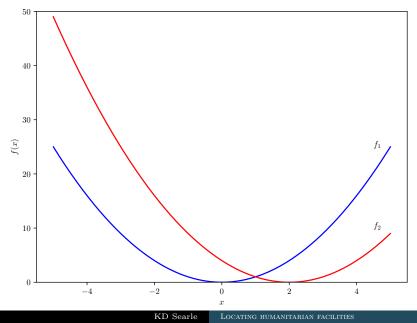
• In single objective optimisation we would have a single solution (or infinitely many but all with the same objective function value)

Conflicting objectives

- In single objective optimisation we would have a single solution (or infinitely many but all with the same objective function value)
- Conflicting nature of objectives functions

Conflicting objectives

- In single objective optimisation we would have a single solution (or infinitely many but all with the same objective function value)
- Conflicting nature of objectives functions
- The improvement in one objective function results in the degradation in another



How do we say if one feasible solution is better than another?

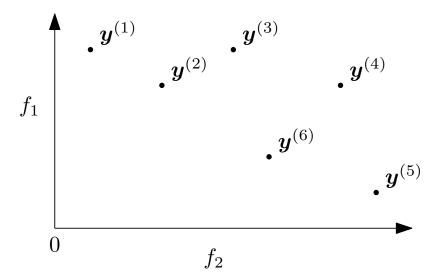
How do we say if one feasible solution is better than another?

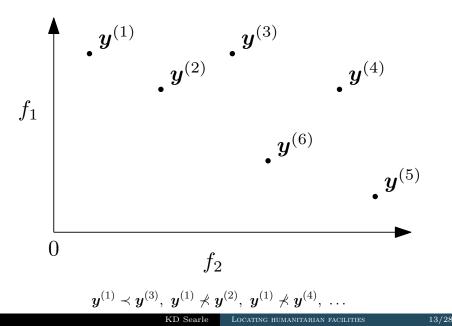
Definition 1 (Dominance)

An objective vector $\boldsymbol{y}^{(1)} = \boldsymbol{f}(\boldsymbol{x}^{(1)})$ to a multi-objective optimisation problem is said to dominate another objective vector $\boldsymbol{y}^{(2)} = \boldsymbol{f}(\boldsymbol{x}^{(2)})$ if and only if

- y⁽¹⁾ is no worse than y⁽²⁾ in all objective functions, and
 y⁽¹⁾ is at least strictly better than y⁽²⁾ in at least one
 - objective function

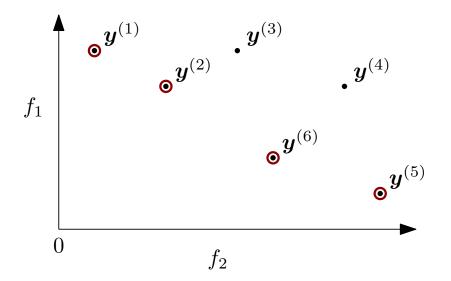
then we say that $\boldsymbol{y}^{(1)} \prec \boldsymbol{y}^{(2)}$



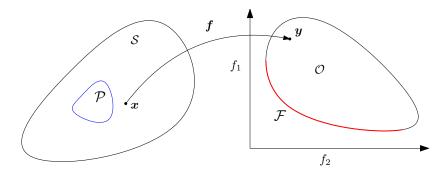


Definition 2 (Pareto optimality)

A solution $x^* \in S$ is Pareto optimal if it's corresponding objective vector $y^* = f(x^*)$ not dominated by any other solution vector $y = f(x) \ \forall x \in S$. Pre-requisites: Multi-objective optimisation



Multi-objective optimisation



Decision space

Objective space

Overview

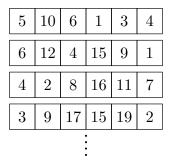
- Genetic Algorithms (GAs) are search heuristics inspired by the process of natural selection
- Used to solve multi objective optimization problems
- Key concepts include: chromosome, population, non dominated rank, crowding distance, selection, crossover, and hypervolume

Chromosomes

- A chromosome is a solution to the problem
- Represented as a fixed-length vector of values

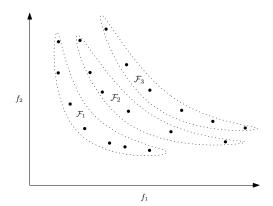
Population

- A population is a set of chromosomes
- Each element is a solution to the problem



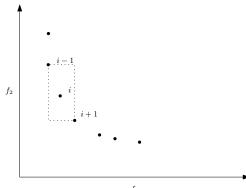
Non-dominated rank

- Determines "which" Pareto front a chromosome is in
- Used to measure solution quality



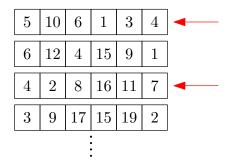
Crowding distance

- Determine how close solutions are to a given chromosome
- Only consider chromosomes with equal non-dominated rank



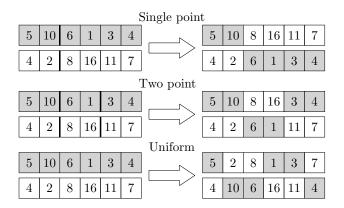
Selection

- Choose two individuals to reproduce
- Usually based on non-dominated rank or crowding distance



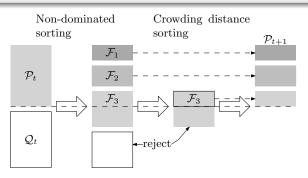
Crossover

- Crossover combines two parents to produce new offspring
- Common types: single-point, multi-point, uniform crossover



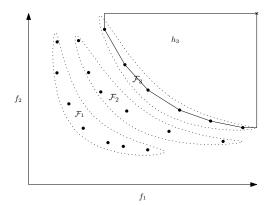
Outline

- Initialise population \mathcal{P}_t
- **2** Create new temporary population Q_t
- In Perform non dominated sorting
- **()** Update based on non-dominated rank on crowding distance
- Update population \mathcal{P}_{t+1} ; return to 2



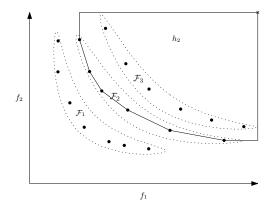
Algorithim performance: Hypervolume

- The are in objective dominated by the Pareto Front
- Computed with respect to a reference point



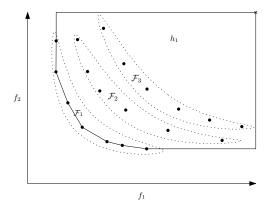
Algorithim performance: Hypervolume

- The are in objective dominated by the Pareto Front
- Computed with respect to a reference point



Algorithim performance: Hypervolume

- The are in objective dominated by the Pareto Front
- Computed with respect to a reference point



Genetic algorithm

- Solved at multiple resolutions
- Variable length chromosomes
 - $s_1 = [100, 250, 650] \ s_2 = [580, 360, 1, 200]$
- Additional local search operators

Outline

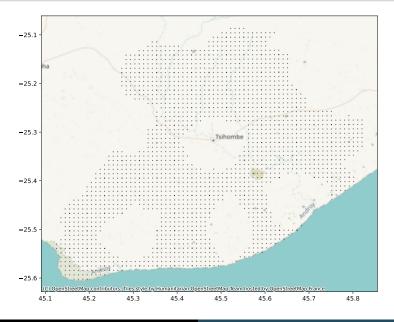
- In Fetch candidates at lowest resolution
- **2** Create population at current resolution
- SGA II
- Local search
- 0 Increase resolution; return to 2

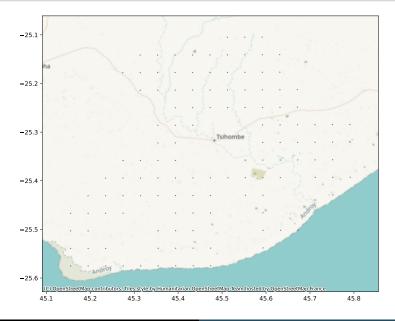
Creating the population

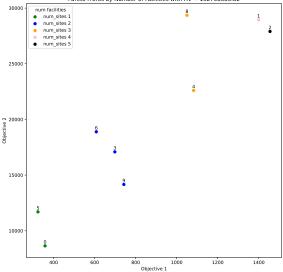
- If the population is the empty set randomly generate arrays
- If we already have a population carry forward the first k fronts, randomly generate the rest

Local search

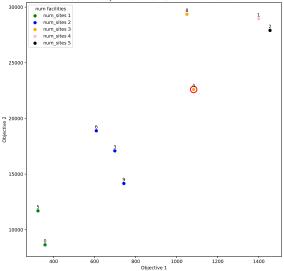
- A 1-1 interchange
- For every solution on the front
 - Switch out a near by facility
 - if the new solution is non-dominated add it to the population



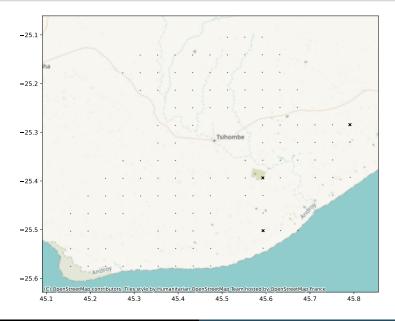


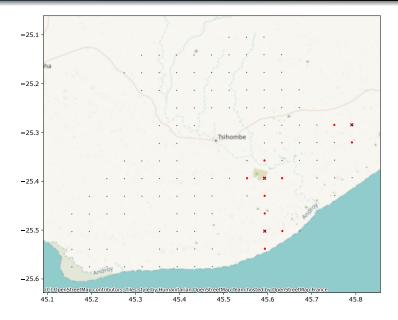


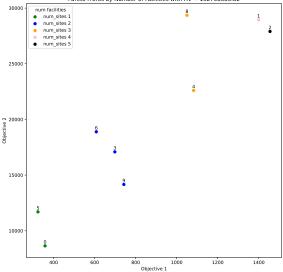
Pareto Fronts by Number of Facilities with HV = 132708686.82



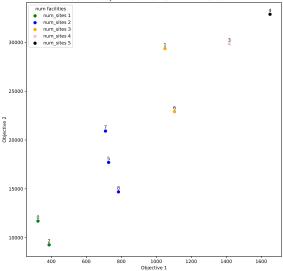
Pareto Fronts by Number of Facilities with HV = 132708686.82



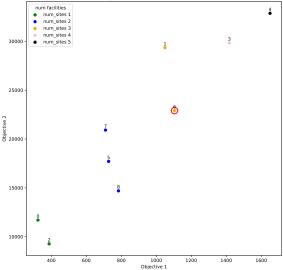




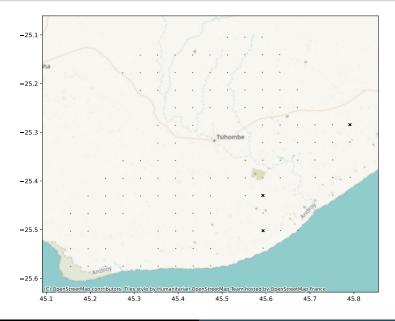
Pareto Fronts by Number of Facilities with HV = 132708686.82

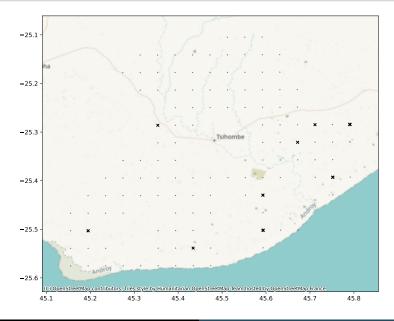


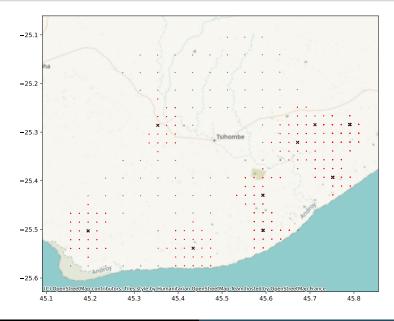
Pareto Fronts by Number of Facilities with HV = 148975374.20



Pareto Fronts by Number of Facilities with HV = 148975374.20

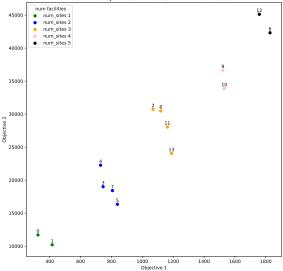




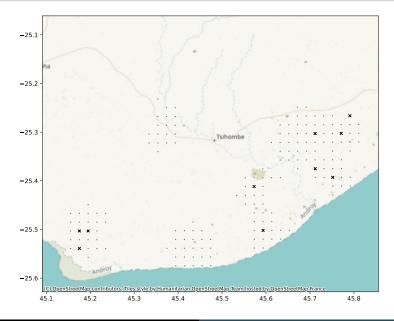


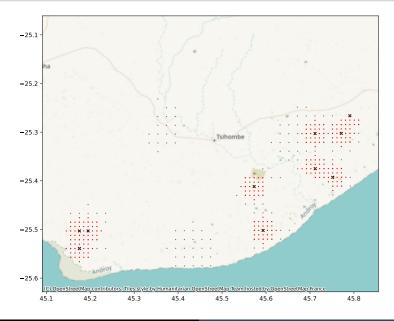


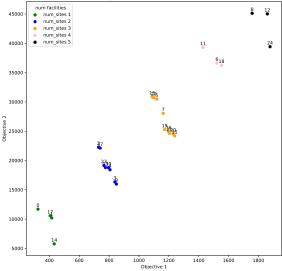
Pareto Fronts by Number of Facilities with HV = 183304636.38



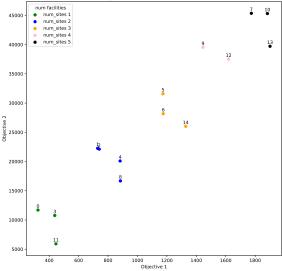
Pareto Fronts by Number of Facilities with HV = 197446033.27



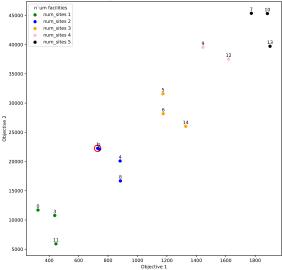




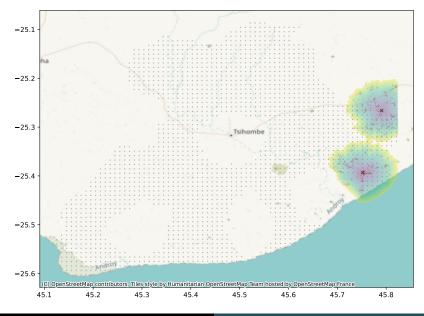
Pareto Fronts by Number of Facilities with HV = 206167505.55

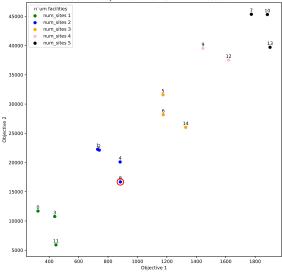


Pareto Fronts by Number of Facilities with HV = 215303848.67

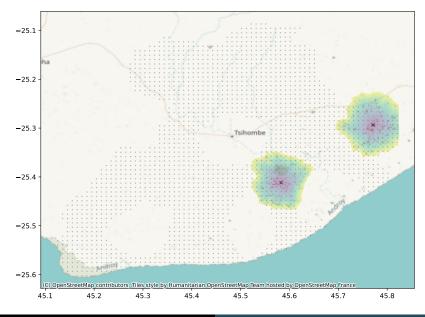


Pareto Fronts by Number of Facilities with HV = 215303848.67





Pareto Fronts by Number of Facilities with HV = 215303848.67



Computational results

		full				no local search				one resolution			
		time		hv		time		hv		time		hv	
pop	gen	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
25	5	453	70	184	31	279	16	175	9	-	-	-	-
	10	605	95	210	9	521	16	192	7	-	-	-	-
	15	771	58	206	15	793	39	199	5	-	-	-	-
50	5	706	93	217	6	526	8	189	7	488	87	192	14
	10	886	88	217	6	1055	15	203	3	881	130	209	2
	15	1 271	259	224	4	1577	40	209	3	913	88	206	10
100	5	839	42	211	9	802	22	198	10	655	61	206	12
	10	1 9 3 4	520	222	4	1588	38	211	4	1158	81	213	10
	15	2583	811	223	3	2871	1 0 7 6	212	5	1 688	93	223	4

- Include some parallelisation
- Some more local search operators
 - Split and merge
- Update the mutation operator
- Integrate the algorithm into the accessibility tool