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Project progress

Work package 1: Understand MSF accessibility tool

Work package 2: Develop offline optimisation algorithm

Work package 3: Integrate algorithm into MSF accessibility tool
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Project progress

Work package 1: Understand MSF accessibility tool

o MSF model returns accessibility time for a given point in
space

@ Can easily be mapped to a reduction in accessibility hours
for a new candidate location

o Input is therefore a set of geotiff objects, one for each
candidate location

Work package 2: Develop offline optimisation algorithm

@ We need fast solutions

o Evolutionary search algorithm

@ Multiple objectives

Work package 3: Integrate algorithm into MSF accessibility tool

o Still to come
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Problem characteristics

Problem definition

Build between npin and nmax facilities such that
@ Maximise the reduction in access hours for all dwellings
@ Maximise the number of covered communities

@ Minimise the number of facilities

KD Searle LOCATING HUMANITARIAN FACILITIES



Objective function 1

—25.11

—25.2

—25.3 A

—25.4

—25.5 A

—25.6 1 - o
(C).OpenStreetMap contributors, Tiles style by Hi : :
45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8

ian OpenStreetMap Team hosted by OpenStreetMap France
T y T




Objective function 1

—25.11

—25.2

—25.3 A

—25.4

—25.5 A

—25.6 1 - o

(C) OpenStreetMap contributors, Tiles style by Ht ian OpenStreetMap Team hosted by, OpenStreetMap France

v i ? : T ] T T
45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8




Objective function 1

—25.11

—25.2

—25.3 A

—25.4

—25.5 A

—25.6 1 - o

(C) OpenStreetMap contributors, Tiles style by Ht ian OpenStreetMap Team hosted by, OpenStreetMap France

v i ? : T ] T T
45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8




Objective function 1

—25.11

—25.2

—25.3 A

—25.4

—25.5 A

—25.6

(C) OpenStreetMap contributors, Tiles style by Ht ian OpenStreetMap Team hosted by, OpenStreetMap France
v ? : T ] T

obj = 14857
<5643 + 9617
= 15260

45.1

45.2

45.3 45.4 45.5 45.6 45.7

45.8




Objective function 2

—-25.141
-25.2 4
—25.3 1
—25.4 1
—25.5 1
—25.6 1 - o
(C).OpenStreetMap contributors, Tiles style by Hi arian OpenStreetiap Team hosted by OpenStreetMap france .
45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8

9/28



Objective function 2

—-25.141
-25.2 4
—25.3 1
—25.4 1
—25.5 1
—25.6 1 - o
(C).OpenStreetMap contributors, Tiles style by Hi arian OpenStreetiap Team hosted by OpenStreetMap france .
45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8

9/28



Pre-requisites: Multi-objective optimisation

A general optimisation model

min z = f(x)

st. ze€8

T

@ x =|ry,...,o,]" are our decision variables or decision

vector
e S is our feasible region
o f:S—R
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Pre-requisites: Multi-objective optimisation

A global solution
A vector * € S such that z* = f(a*) < f(x) Ve € S

/(@)
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Pre-requisites: Multi-objective optimisation

A general multi-objective optimisation problem

min  f(x)
st. zeS8
e x =[z1,...,2,]7 are our decision variables or decision

vector
o f(x) =[fi(x),..., fr(x)] is the vector of objectives
o S is our feasible region or decision space
o f:S§—0
o O is our objective space
°

For simplicity let y = [y1,...,ys]7, where y; = fi(x)
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Pre-requisites: Multi-objective optimisation

fi

\j

f2

Decision space Objective space
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Pre-requisites: Multi-objective optimisation

Conflicting objectives
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Pre-requisites: Multi-objective optimisation

Conflicting objectives

o In single objective optimisation we would have a single
solution (or infinitely many but all with the same objective
function value)
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Pre-requisites: Multi-objective optimisation

Conflicting objectives

o In single objective optimisation we would have a single
solution (or infinitely many but all with the same objective
function value)

o Conflicting nature of objectives functions

@ The improvement in one objective function results in the
degradation in another

KD Searle LOCATING HUMANITARIAN FACILITIES



Pre-requisites: Multi-objective optimisation
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Pre-requisites: Multi-objective optimisation

How do we say if one feasible solution is better than another?

KD Searle LOCATING HUMANITARIAN FACILITIES



Pre-requisites: Multi-objective optimisation

How do we say if one feasible solution is better than another?

Definition 1 (Dominance)

An objective vector y() = f(x(1) to a multi-objective
optimisation problem is said to dominate another objective
vector y? = f(x?) if and only if
@ y is no worse than y? in all objective functions, and
@ y is at least strictly better than y®) in at least one
objective function

then we say that y() < y(?
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Pre-requisites: Multi-objective optimisation
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Pre-requisites: Multi-objective optimisation
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Pre-requisites: Multi-objective optimisation

Definition 2 (Pareto optimality)

A solution x* € S is Pareto optimal if it’s corresponding
objective vector y* = f(x*) not dominated by any other
solution vector y = f(x) Vx € S.
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Pre-requisites: Multi-objective optimisation

fi

f
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Multi-objective optimisation

f1

\J

f2

Decision space Objective space
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Pre-requisites: NSGA 11

o Genetic Algorithms (GAs) are search heuristics inspired by
the process of natural selection

@ Used to solve multi objective optimization problems

o Key concepts include: chromosome, population, non
dominated rank, crowding distance, selection, crossover,
and hypervolume

.
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Pre-requisites: NSGA 11

Chromosomes

@ A chromosome is a solution to the problem

o Represented as a fixed-length vector of values

501106 (1|34
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Pre-requisites: NSGA 11

Population

@ A population is a set of chromosomes

o Each element is a solution to the problem

10061134

1214 115|9 | 1

= ]| O || Ot
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Pre-requisites: NSGA 11

Non-dominated rank

@ Determines “which” Pareto front a chromosome is in

@ Used to measure solution quality

f2

fi
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Pre-requisites: NSGA 11

Crowding distance

@ Determine how close solutions are to a given chromosome

@ Only consider chromosomes with equal non-dominated rank

f2 i

f
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Pre-requisites: NSGA 11

Selection

@ Choose two individuals to reproduce

@ Usually based on non-dominated rank or crowding distance

511016 1]3
61124 (15| 9
412 (18(16(11
319 (17(15]19

-
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Pre-requisites: NSGA 11

Crossover

@ Crossover combines two parents to produce new offspring

e Common types: single-point, multi-point, uniform crossover

EEEEEE . BEEE
511016 |1 (3|4 5 (10| 8 |16(11| 7
>

Two point

!5|10|6|1|3|4\:>

a2 s]s]uf7] EIEICIENENEY

|5]10]8|16]3]4]

]4|2|8|16|11|7\ la]2]6]1]11]7]

EWEIEE . B[

i>

l4]2]s8]16]11] 7] |4 ]10] 6 ]16]11] 4]

KD Searle LOCATING HUMANITARIAN FACILITIES



Pre-requisites: NSGA 11

© Initialise population P
@ Create new temporary population Q;
© Perform non dominated sorting

@ Update based on non-dominated rank on crowding distance

@ Update population Py 1; return to 2

Non-dominated Crowding distance
ti ti
sorting sorting Pris
Fi — == m === === -
Pt .7:2 ************ "l

Q l—rej ect/
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Pre-requisites: NSGA 11

Algorithim performance: Hypervolume

@ The are in objective dominated by the Pareto Front

o Computed with respect to a reference point
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Algorithim performance: Hypervolume

@ The are in objective dominated by the Pareto Front
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Solution approach

Genetic algorithm

@ Solved at multiple resolutions
@ Variable length chromosomes
o s1 = [100, 250, 650] s, = [580, 360, 1, 200]

o Additional local search operators
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Solution approach

@ Fetch candidates at lowest resolution
@ Create population at current resolution
© NSGA II

© Local search

@ Increase resolution; return to 2

KD Searle LOCATING HUMANITARIAN FACILITIES



Solution approach

Creating the population

o If the population is the empty set randomly generate arrays

o If we already have a population carry forward the first k&
fronts, randomly generate the rest

@ A 1-1 interchange

@ For every solution on the front
e Switch out a near by facility
e if the new solution is non-dominated add it to the
population
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Solution approach: Example
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Computational results

full no local search one resolution
time hv time hv time hv
pop | gen | mean | std | mean | std | mean | std | mean | std | mean | std | mean | std
5 453 | 70 184 | 31 279 16 175 9 - - - -
25 10 605 | 95 210 9 521 16 192 7 - - - -
15 771 | 58 206 | 15 793 39 199 5 - - - -
5 706 | 93 217 6 526 8 189 7 488 | 87 192 | 14
50 10 886 | 88 217 6| 1055 15 203 3 881 | 130 209 2
15 | 1271 | 259 224 4| 1577 40 209 3 913 | 88 206 | 10
5 839 | 42 211 9 802 22 198 | 10 655 | 61 206 | 12
100 10 | 1934 | 520 222 4| 1588 38 211 4| 1158 | 81 213 | 10
15| 2583 | 811 223 3| 2871 | 1076 212 51 1688 | 93 223 4
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What’s next?

@ Include some parallelisation
@ Some more local search operators
e Split and merge

e Update the mutation operator

o Integrate the algorithm into the accessibility tool
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