Some Remarks on the Love hypothesis in Nonlinear Elasticity

Andrea Nobili1, Giuseppe Saccomandi2,3
1Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
E-mail: andrea.nobili@unimore.it
2Dipartimento di Ingegneria e Sezione INFN di Perugia, Università degli Studi di Perugia, 06125 Perugia, Italy
E-mail: giuseppe.saccomandi@unipg.it
3School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland

Keywords: Love hypotheses, rod dynamics, incompressible materials, neo-Hookean strain-energy density

We consider the Love hypothesis, originally introduced to encompass for dispersion of longitudinal waves in linear elastic rod \cite{Love}. Despite belonging to the linear framework, this hypothesis is sometimes extended to the nonlinear regime \cite{Wright,Dai}, where it clearly fails in the case of incompressible materials \cite{Amendola}. Accordingly, we re-examine the origin of the assumption and develop a refined version, which is asymptotically consistent and takes into account inertial effects. Indeed, the refined version of the Love hypothesis originates from a multiscale analysis, in the linear regime, of the well-known Mindlin-Herrmann two-modal setup \cite{Mindlin}, that may be easily generalized to the nonlinear framework. We then proceed to show how this refined assumption impact on the constraint of incompressibility, which proves instrumental in developing a nonlinear generalization.

Acknowledgements

This research acknowledges funding from the National Group of Mathematical Physics (GNFM). AN gratefully acknowledge support from the PRIN Math4Industry, and from the H2020 MSCA project EffectFact.

References

\cite{Amendola} A Amendola and G Saccomandi. A simple remark about the love hypothesis in rod dynamics. Applications in Engineering Science, 8:100076, 2021.

\cite{Mindlin} Michael Shatalov, Julian Marais, Igor Fedotov, Michel Djouosseu Tenkam, and M Schmidt. Longitudinal vibration of isotropic solid rods: from classical to modern theories. Advances in computer science and engineering, 1877:408–9, 2011.