
Gradient Flows for Sampling: Mean-Field Models,  
Gaussian Approximations and Affine Invariance 

 
Andrew Stuart, Caltech 

Sampling a probability distribution with an unknown normalization constant is a fundamental 

problem in computational science and engineering. This task may be cast as an optimization 

problem over all probability measures, by choice of a suitable energy function. Then an initial 

distribution can be evolved to the desired minimizer (the target distribution) via a gradient flow with 

respect to a chosen metric. The choice of the energy and the metric lead to different approaches 

and it is of interest to understand their role. We provide theoretical insights into these choices. 

Having chosen an energy and a metric, development of an actionable algorithm requires 

approximation of the gradient flow. Mean-field models, whose law is governed by the gradient flow 

in the space of probability measures, may be identified; particle approximations of these mean-field 

models form the basis of algorithms. The gradient flow approach is also the basis of algorithms for 

variational inference, in which the optimization is performed over a parameterized family of 

probability distributions such as Gaussians or Gaussian mixtures; the underlying gradient flow is 

restricted to the parameterized family. Numerical results are presented to illustrate the resulting 

methodologies. 
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