

Hierarchical assembly of capsids is robust

S. Fraden

The Team

Gregory Grason

Douglas Hall

Chris Sigl

Fabian Kohler Alba Monferrer

Daichi Hayakawa

Wei-Shao Wei

Anthony Trubiano

Thomas Videbæk

Seth Fraden

Mike Hagan

Ben Rogers

Tijana Ivanovic

What's On Mathematics For Humanity Funding Knowle

Knowledge Exchange Public Engagement

	MONDAY 13 NOVEMBER 2023			
09.00 - 09.50	Registration and Refreshments			
09.50 - 10.00	Welcome and Housekeeping			
10.00 - 10.30	William Gelbart, UCLA	IN CELLULO versus IN VITRO RECONSTITUTION OF RNA-SPECIFIC VIRUS-LIKE PARTICLES		Abstract
10.30 - 11.00	Dek Woolfson, University of Bristol	Rationally and computational design of functional protein barrels	因	Abstract
11.00 - 11.30	Farzad Fatehi, University of York	Geometry as a key to the virosphere – from viral infections to virus nanotechnology	ß	Abstract
11.30 - 12.00	Refreshments			
12.00 - 12.30	Roya Zandi, University of CA, Riverside	The role of flexibility of capsid proteins in the symmetry of viral shells	B	Abstract
12.30 - 13.00	Danielle Tullman-Ercek, Northwestern University	Designing with nanoscale building blocks: engineering self-assembling protein superstructures for applications in vaccines, drug delivery and biochemical production	ß	Abstract
13.00 - 14.30	Lunch			
14.30 - 15.00	David Bhella, MRC - University of Glasgow Centre for Virus Research	Capsid stability and receptor mediated priming in calicivirus entry		
15.00- 15.30	Alexander Borodavka, University of Cambridge	How do Viruses Use RNA Granules and RNA Chaperones to Assemble Their Segmented Genomes?	因	Abstract
15.30 - 16.00	Refreshments			
16.00 - 16.30	Uri Raviv , The Hebrew University of Jerusalem	Mechanism of Virus Capsid Assembly		Abstract
16.30- 17.00	Erwin Frey, Ludwig-Maximilians- Universitaet Muenchen	The time complexity of self-assembly		Abstract

Caspar-Klug Reidun Twarock Geometrical tiling

Caspar & Klug, Cold Spring Harbor Symp. Quant. Biol. (1962)

Viral Quasisymmetry

Viruses are faced with a challenge: their genomes need to encode all of their proteins, but at the same time, these genomes need to fit into the tiny space of a viral capsid. In the 1960s, Donald Caspar and Aaron Klug discovered that viruses solve this problem using quasisymmetry.

Viral capsids are built using many identical copies of one or a few capsid proteins, arranged to form a shell with icosahedral symmetry. Some viruses, such as Satellite Tobacco Necrosis Virus, build a tiny capsid with perfect symmetry. Other viruses need more room, so they build larger capsids, but still only using one type of building block. With small changes in shape, the subunits form pentamers and hexamers, and these pack into larger, quasisymmetrical capsids.

These paper models show a few examples of how quasisymmetry is used to build viruses of different sizes. The subunits are represented as circles, with ones that form pentamers in red and ones that form hexamers in shades of yellow and orange. For each virus, a model of the atomic structure is also included.

Cut out the models and tape the edges together to form the icosahedral virus.

PDB-101

Learn more at pdb101.rcsb.org

Icosahedra 20 identical triangles

T=1 All sides equivalent

Icosahedron: largest possible structure built out of identical subunits

Icosahedral capsid assembly around a flexible polymer

Elrad O.M., & Hagan M.F. *Physical biology* (2010)

- Colloidal triangles
- Control rigidity
- Control dihedral angle
- Control valency
- Control specificity

Paul W. K. Rothemund, Nature, 2006

100 nm

Origami triangles as building blocks

Origami triangles as building blocks

Octahedral capsids from origami

Base Stacking vs Hybridization

Base-Stacking Base-Pairing Hydrogen bonds van der Waals **Non-specific Specific**: AT, GC T. Gerling, K. Wagenbauer, A. Neuner, and H. Dietz 'Dynamic DNA devices and assemblies formed by shapecomplementary, non-basepairing 3D components' **Science**, vol 347 (2015), p1446-1452

Shape-Complementarity & Base-Stacking

+

Shape complementarity (lock and key) restores specificity

Origami capsids

monomer

Octahedron (8)

Icosahedron – T1 (20)

20 nm

T3 (60)

Programmable icosahedral shell system for virus trapping Sigl, ..., Hagan, Fraden and Dietz, *Nature Materials* (2021) DOI: 10.1038/s41563-021-01020-4

Geometrically programmed self-limited assembly of tubules using DNA origami colloids Hayakawa, Videbæk, Hall, Fang, Sigl, Feigl, Dietz, Fraden, Hagan, Grason, Rogers, *PNAS* (2022) <u>https://doi.org/10.1073/pnas.2207902119</u>

What's On Mathematics For Humanity Funding Knowledge Exchange Public Engagement

	MONDAY 13 NOVEMBER 2023			
09.00 - 09.50	Registration and Refreshments			
09.50 - 10.00	Welcome and Housekeeping			
10.00 - 10.30	William Gelbart, UCLA	IN CELLULO versus IN VITRO RECONSTITUTION OF RNA-SPECIFIC VIRUS-LIKE PARTICLES		Abstract
10.30 - 11.00	Dek Woolfson, University of Bristol	Rationally and computational design of functional protein barrels		Abstract
11.00 - 11.30	Farzad Fatehi, University of York	Geometry as a key to the virosphere – from viral infections to virus nanotechnology		Abstract
11.30 - 12.00	Refreshments			
12.00 - 12.30	Roya Zandi, University of CA, Riverside	The role of flexibility of capsid proteins in the symmetry of viral shells	Ø	Abstract
12.30 - 13.00	Danielle Tullman-Ercek, Northwestern University	Designing with nanoscale building blocks: engineering self-assembling protein superstructures for applications in vaccines, drug delivery and biochemical production	ß	Abstract
13.00 - 14.30	Lunch			
14.30 - 15.00	David Bhella, MRC - University of Glasgow Centre for Virus Research	Capsid stability and receptor mediated priming in calicivirus entry		
15.00- 15.30	Alexander Borodavka, University of Cambridge	How do Viruses Use RNA Granules and RNA Chaperones to Assemble Their Segmented Genomes?	ß	Abstract
15.30 - 16.00	Refreshments			
16.00 - 16.30	Uri Raviv , The Hebrew University of Jerusalem	Mechanism of Virus Capsid Assembly		Abstract
16.30- 17.00	Erwin Frey, Ludwig-Maximilians- Universitaet Muenchen	The time complexity of self-assembly		Abstract

encapsulation scaffolding

Encapsulating a scaffold as cargo in a T1 icosahedron

Elrad O.M., & Hagan M.F. *Physical biology* (2010)

Cargo

8064 bp scaffold with 10 handles

Complementary handles on scaffold and monomers

Cargo: TEM tomograms of encapsulated cargo in T1 capsids

Scaffold

Gold Nano-particles

Scaffold & Gold n.p.

Virus deactivation

DNA origami capsids capture hepatitis B virus core

Exploit viral assembly principles to deactivate virus

20nm

Ε

DNA origami capsids capture hepatitis B virus core

Halficosahedron

Icosahedron missing one pentamer

Programmable icosahedral shell system for virus trapping Sigl, ..., Hagan, Fraden and Dietz, *Nature Materials* (2021) OI: 10.1038/s41563-021-01020-4

Hendrik Dietz virofight.eu CS Nano (2022), 10.1021/acsnano.1c11328

T=3

Origami capsids

Origami capsids

What are the T=3 assembly pathways?

Symmetry is only one piece of the puzzle.

What's On Mathematics For Humanity Funding Knowledge Exchange Public Engagement

	MONDAY 13 NOVEMBER 2023		
09.00 - 09.50	Registration and Refreshments		
09.50 - 10.00	Welcome and Housekeeping		
10.00 - 10.30	William Gelbart, UCLA	IN CELLULO versus IN VITRO RECONSTITUTION OF RNA-SPECIFIC VIRUS-LIKE PARTICLES	Abstract
10.30 - 11.00	Dek Woolfson, University of Bristol	Rationally and computational design of functional protein barrels	Abstract
11.00 - 11.30	Farzad Fatehi, University of York	Geometry as a key to the virosphere – from viral infections to virus nanotechnology	Abstract
11.30 - 12.00	Refreshments		
12.00 - 12.30	Roya Zandi, University of CA, Riverside	The role of flexibility of capsid proteins in the symmetry of viral shells	Abstract
12.30 - 13.00	Danielle Tullman-Ercek, Northwestern University	Designing with nanoscale building blocks: engineering self-assembling protein superstructures for applications in vaccines, drug delivery and biochemical production	Abstract
13.00 - 14.30	Lunch		
14.30 - 15.00	David Bhella, MRC - University of Glasgow Centre for Virus Research	Capsid stability and receptor mediated priming in calicivirus entry	
15.00- 15.30	Alexander Borodavka, University of Cambridge	How do Viruses Use RNA Granules and RNA Chaperones to Assemble Their Segmented Genomes?	Abstract
15.30 - 16.00	Refreshments		
16.00 - 16.30	Uri Raviv , The Hebrew University of Jerusalem	Mechanism of Virus Capsid Assembly	🔀 Abstract
16.30- 17.00	Erwin Frey , Ludwig-Maximilians- Universitaet Muenchen	The time complexity of self-assembly	Abstract

Uri Raviv

Assembly pathways?

- alleviate errors
- follow the most efficient path
- avoid kinetic traps
- → Weak protein-protein interactions, slow nucleation, reversible association

Symmetry is only one piece of the puzzle

Question: What are the optimal kinetic pathways?

From symmetry

Symmetry is only one piece of the puzzle

T = 3

Question: What are the optimal kinetic pathways?

Wei, Trubiano, Sigl, Paquay, Dietz, Hagan, Fraden, under review (2023)

What's On Mathematics For Humanity Funding Knowledge Exchange Public Engagement

	MONDAY 13 NOVEMBER 2023		
09.00 - 09.50	Registration and Refreshments		
09.50 - 10.00	Welcome and Housekeeping		
10.00 - 10.30	William Gelbart, UCLA	IN CELLULO versus IN VITRO RECONSTITUTION OF RNA-SPECIFIC VIRUS-LIKE PARTICLES	Abstract
10.30 - 11.00	Dek Woolfson, University of Bristol	Rationally and computational design of functional protein barrels	Abstract
11.00 - 11.30	Farzad Fatehi, University of York	Geometry as a key to the virosphere – from viral infections to virus nanotechnology	Abstract
11.30 - 12.00	Refreshments		
12.00 - 12.30	Roya Zandi, University of CA, Riverside	The role of flexibility of capsid proteins in the symmetry of viral shells	Abstract
12.30 - 13.00	Danielle Tullman-Ercek, Northwestern University	Designing with nanoscale building blocks: engineering self-assembling protein superstructures for applications in vaccines, drug delivery and biochemical production	Abstract
13.00 - 14.30	Lunch		
14.30 - 15.00	David Bhella, MRC - University of Glasgow Centre for Virus Research	Capsid stability and receptor mediated priming in calicivirus entry	
15.00- 15.30	Alexander Borodavka, University of Cambridge	How do Viruses Use RNA Granules and RNA Chaperones to Assemble Their Segmented Genomes?	Abstract
15.30 - 16.00	Refreshments		
16.00 - 16.30	Uri Raviv , The Hebrew University of Jerusalem	Mechanism of Virus Capsid Assembly	🔀 Abstract
16.30- 17.00	Erwin Frey , Ludwig-Maximilians- Universitaet Muenchen	The time complexity of self-assembly	Abstract

Uri Raviv

Thermodynamic analysis of assembly products

At 20 μ M protein successful assembly can be realized within a narrow range of association free energies (7.4 – 8.5k_BT)

Symmetry is only one piece of the puzzle

T = 3

Question: What are the optimal kinetic pathways?

 Takeaway: Hierarchical pathways predicted* to improve assembly yield

 Wei, Trubiano, Sigl, Paquay, Dietz, Hagan, Fraden, under review (2023)

 predicted*: Before experiment!

What's On Mathematics For Humanity Funding Knowledge Exchange Public Engagement

	MONDAY 13 NOVEMBER 2023			
09.00 - 09.50	Registration and Refreshments			
09.50 - 10.00	Welcome and Housekeeping			
10.00 - 10.30	William Gelbart, UCLA	IN CELLULO versus IN VITRO RECONSTITUTION OF RNA-SPECIFIC VIRUS-LIKE PARTICLES		Abstract
10.30 - 11.00	Dek Woolfson, University of Bristol	Rationally and computational design of functional protein barrels	因 /	Abstract
11.00 - 11.30	Farzad Fatehi, University of York	Geometry as a key to the virosphere – from viral infections to virus nanotechnology		Abstract
11.30 - 12.00	Refreshments			
12.00 - 12.30	Roya Zandi, University of CA, Riverside	The role of flexibility of capsid proteins in the symmetry of viral shells		Abstract
12.30 - 13.00	Danielle Tullman-Ercek, Northwestern University	Designing with nanoscale building blocks: engineering self-assembling protein superstructures for applications in vaccines, drug delivery and biochemical production		Abstract
13.00 - 14.30	Lunch			
14.30 - 15.00	David Bhella, MRC - University of Glasgow Centre for Virus Research	Capsid stability and receptor mediated priming in calicivirus entry		
15.00- 15.30	Alexander Borodavka, University of Cambridge	How do Viruses Use RNA Granules and RNA Chaperones to Assemble Their Segmented Genomes?	区 /	Abstract
15.30 - 16.00	Refreshments			
16.00 - 16.30	Uri Raviv , The Hebrew University of Jerusalem	Mechanism of Virus Capsid Assembly	2	Abstract
16.30- 17.00	Erwin Frey, Ludwig-Maximilians- Universitaet Muenchen	The time complexity of self-assembly		Abstract

Erwin Frey

How can we make assembly robust?

Tuned block-block interactions

What are the optimal kinetic pathways?

From symmetry

Free energy measurement

Static light scattering - Gibbsometer & real time assembly monitor

Wei, Trubiano, Sigl, Dietz, Hagan, Fraden, under review (2023)

Monomer – dimer free energy

- (1) Bond strength increases with the number of added base pairs & the magnesium ion concentration.
- (2) Off rate constant strongly decreases with number of added base pairs.
- (3) On rate constant shows a weak dependence with number of added base pairs.
- (4) On rate 5 orders of magnitude slower than diffusion limited rate.

Gibbs free energy vs Mg²⁺ concentration

On and off rate constants vs. # base pairs (20 mM Mg²⁺)

Kinetics: Experiment

Gel Electrophoresis

Kinetics: Experiment

Equalitarian assembly (T=3)

Weak binding – no assembly

Bonds are too weak. Nuclei don't form. Majority subunits remain as monomers.

Equalitarian assembly (T=3)

Strong binding – kinetic traps

Bonds are too strong.

Subunits rapidly assemble into intermediate species. Depletion of monomers and low off-rate forms kinetic traps.

Equalitarian assembly (T=3)

Intermediate binding

early assembly stage final

60 units

Intermediate species form after a-few-hour-long lag phase. Quick consumption of free subunits.

Monomer – capsid equilibrium is consistent with a nucleation and growth mechanism.

Dimer-bias (T=3)

Hierarchical assembly pathways

30 units

Pentamer bias T=3 assembly

Funneling free energy landscape

Experiment

Dimer-bias (by $3.7 k_B T$)

Simulation: Individual trajectories

60

Hierarchical assembly is more robust than egalitarian assembly

Summary

You can do anything with DNA origami. Build subunits with programmable bond energy, direction, valency and addressability, for studying self-assembly pathways, kinetics, and yield.

- Construct building blocks with designed structures in 3D to sub-nm accuracy and bond strengths controlled to k_BT precision, quantified in situ by cryo-EM and static light scattering.
- Coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics.

Hierarchical assembly is robust and has high yield.

• Avoids kinetic traps by funneling intermediate assemblies towards the designed final target by reducing number of intermediates and excluding off-path structures.

Hierarchical assembly is more robust than egalitarian assembly in synthetic capsids https://arxiv.org/abs/2310.18790

Economical routes to size-specific assembly of self-closing structures https://arxiv.org/abs/2311.01383