Genome Selection by RNA Viruses.

Inbal Mizrahi \& Joseph Rudnick (UCLA)

- Minimization of the Virion Free Energy (Roya Zandi).
- Nucleation and Growth (Rees Garmann).
- Statistical physics of viral RNA selection via nucleation and growth?
- Enormous number of competing RNA configurations. Simplified but soluble model.

Zlotnick Model for Capsid Assembly

- Dodecahedral capsid: 12 pentamers
 Model of the Self-Assembly of Polyhedral Protein Complexes. J. Mol. Biol., 241(1):59-67, 1994.

- Minimize assembly energy ΔE at every assembly step.
- $\Delta \mathrm{E}=-\epsilon_{1} \times \mathrm{n}_{1}\left(\mathrm{n}_{1}: \#\right.$ of shared pentamer-pentamer edges)
- About 10^{5} degenerate minimum energy assembly pathways.

- State-Space: 12 states.

Assembly Free Energy

$\mu_{0}=$ chemical potential of pentamers free in solution.
$\mathrm{N}=$ Number of Pentamers

Nucleation-and-Growth

Zandi et al. Biophys J 19 (2006) 1939

$$
\Delta F=\Delta \mathrm{E}(N)-\mu_{0} N
$$

- Activation Energy Barrier:

Perimeter of Hemispherical Shell x Bond energy/Unit length:

$$
\Delta E \sim \sqrt{N_{\max }} \times \epsilon \sim \sqrt{60} \times 3 k_{B} T \sim 23.2 k_{B} T \quad(\mathrm{~T}=1)
$$

- Equilibration Time: $T_{e q} \sim T_{\text {micro }} \exp \frac{\Delta E}{k_{B} T} \sim\left(10^{-9} \times \exp 23\right) \mathrm{sec} \sim 10 \mathrm{sec}$.
- $\mathrm{T}=3: \mathrm{N}_{\max }=180 . \Delta E \sim 40.2 k_{B} T \quad \mathrm{~T}_{\text {eq }} \sim 10$ years \quad (M. Cates)
- Kinetics?

Master Equation

- Connectivity Matrix $A_{n, m}$

$$
\begin{aligned}
& A_{1,2}=1 \\
& A_{1,3}=0
\end{aligned}
$$

State-Space Graph
$P_{n}(t):$ Probability that state n is occupied at time t

- Master Equation.

Matrix of Transition Rates $\mathrm{W}_{\mathrm{m}, \mathrm{n}}$

$$
\frac{d P_{n}(t)}{d t}=\sum_{m} A_{m, n} W_{m, n} P_{m}(t)-P_{n}(t) \sum_{m} A_{n, m} W_{n, m}
$$

- Detailed Balance: $\frac{W_{m, n}}{W_{n, m}}=\exp -\Delta E_{m, n} / k_{B} T$
- $\Delta E_{m, n}=E_{n}-E_{m}$
E_{n} : State-space energy levels
- Diffusion-Limited Assembly Kinetics / Smoluchowski Limit.
$W_{n, m}$ is known once the energy spectrum and the state-space are known.
- Zlotnick Model:
A. Y. Morozov, R. F. Bruinsma, and J. Rudnick. Assembly of viruses and the pseudo-law of mass action. J. Chem. Phys., 131(15):155101, 2009.
- RNA

Tree graph of Packaging Signals

- RNA packaging signals: links of the Spanning Tree Graphs of the dodecahedron.
- Spanning Tree of a polyhedron: nodes cover all vertices just once.
- \# of nodes = \# vertices of the dodecahedron $=20$.
- \# of links = 19. Dodecahedron has 30 edges so 11 edges are not covered.
- About 10^{5} distinct spanning trees.

Lift degeneracy of the Zlotnic Model?

- $9 \leq$ Maximum Ladder Distance $($ MLD $) \leq 19$
A. Yoffe et al.

Assembly Free Energy

Four different kinds of pentamer edges:

1) \# of shared pentamer-pentamer edges without a link: n_{1}
2) \# of shared pentamer-pentamer edges with a link: n_{2}.
3) \# of single pentamer edges without a link: n_{3}
4) \# of single pentamer edges with a link: n_{4}

Energy $=-\varepsilon_{1}$
Energy $=-\varepsilon_{2}$
Energy $=-\varepsilon_{3}$
Energy $=-\varepsilon_{4}$

$$
\Delta F=\sum_{i=1}^{4} \varepsilon_{i} n_{i}-N \mu_{0}
$$

MLD = 19
"Hamiltonian Path" (Jure Dobnikar)

- Degeneracy of the assembly energy profile is lifted!
- Wrapping Number. $\mathrm{N}_{\mathrm{p}} \equiv$ Number of faces of the dodecahedron bordered by 4 tree links.

- Assembly energy profiles are nearly completely classified by the N_{p} and MLD numbers.

N_{p} MLD
$7 \times 11=77$ Degeneracy classes.

Class-war: packaging competition between different spanning tree classes.

State-Space for $\mathrm{N}_{\mathrm{p}}=8, \mathrm{MLD}=9$

State Index i of degenerate states.

Example: for $\mathrm{N}=1$ there are 8 states since $N_{p}=8$

MLD = 19
$N_{p}=2$

- Particle Assembly: Random walks through state space linking $N=0$ to $N=12$
- Master Equation method.
$P_{12}(t)=$ Probability that a complete dodecahedral particle has formed at time t.

- Larger N_{p} and smaller MLD trees have higher growth rates.
$P_{12}^{(1,2)}(\mathrm{t})$
$\Delta F(n)$

- Reduced Selectivity.
- Some MLD=9, $\mathrm{N}_{\mathrm{p}}=8$ particles disassemble due to thermal fluctuations!

- Thermal equilibrium
- Little selectivity left.

Conclusions

- Selective nucleation? Yes, but only on time scales small compared to the thermal equilibration time $\mathrm{T}_{\text {eq }}$.
- Selective nucleation depends on packaging signal RNA topology (MLD) and geometry (Wrapping Number). Increases with moderate supersaturation!

- If assembled particles are placed in a solution with few capsid proteins, they will be metastable. (Wilson Poon)

- Thermal equilibrium: Steady-state assembly/disassembly of assembled viral particles. Loss of RNA selectivity.

Defects: model disregards the role of RNA entropy and the role of the nonspecific RNA.

Master Equation

$P_{i, n}(t) \equiv$ Occupation probability of node i, n on the assembly state space graph.

- Twelve Coupled Master Equations $\mathrm{n}=1, \ldots ., 12$

Graph Connectivity Matrix
$\frac{d P_{i, n}(t)}{d t}=\sum_{j}\left\{A_{n-1}^{j, i} W_{n-1, n} P_{j, n-1}(t)+A_{n}^{i, j} W_{n+1, n} P_{j, n+1}(t)\right\}$
$-P_{i, n}(t) \sum_{j}\left\{A_{n-1}^{j, i} W_{n, n-1}+A_{n}^{i, j} W_{n, n+1}\right\}$.
Transition rates. Obey Detailed Balance.
"Dynamical Monte-Carlo"

