Non-equilibrium Physics of Self-Assembly: from Viruses to Nano-containers ICMS Nov 2023

Virus-like particles, packaging signals and assembly pathways

Rich Bingham

Mathematical Virology Group Departments of Mathematics & Biology University of York

Virus assembly instructions

A virus is a piece of bad news wrapped in protein. - Peter Medawar

Genomic material (RNA)

GGCAGGAAGCUUUACUGACUAACAUGGCAAAACAAUAGGGUGAAAAUCCGCAACAAUGCGUGCAGUGAAGCGCAUGAUAAAUACACACUUGGAGCAUAAAAGGU

In Silico (coarse-grained) viral assembly

Single Cell Infection

2000 Viral RNAs 600,000 Cellular RNAs 24000 Capsid subunits Infection cycle : 1000s Gillespie algorithm

Dykeman et al. PNAS 111 5361-5366 (2014)

Assembly Pathways

Assembly pathways are one-to-one with Hamiltonian paths

A board game designed by W.R. Hamilton based on the concept of Hamiltonian circuit (cycle)

RNA Viruses play the Icosian game

What makes an efficient PS-assembling virus?

Efficient assembling vRNAs use a smaller subset of assembly pathways.

What makes an efficient PS-assembling virus?

Efficient assembling vRNAs use assembly pathways that are less likely to get trapped

Assembly efficiency as a measure of fitness

Genotype-Phenotype-Fitness Maps

Fitness landscapes

Infection model

Infection model (via Nowak & May)

$T \xrightarrow{\lambda} 2 T$	(Target cell birth)
$T \xrightarrow{d_T} 0$	(Target cell death)
$T + V_j \xrightarrow{\beta} I_j$	(Infection of target cell by phenotype j)
$I_j + Z \xrightarrow{p} Z$	(Infected cell removal by immune system)
$I_j \xrightarrow{a} \sum_l k_l V_l$	(Infected cell death/lysis)
$V_j + Z \xrightarrow{u} Z$	(Removal of virion by immune system)
$I+Z \xrightarrow{c} I+2Z$	(Immune cell birth)
$Z \xrightarrow{b} 0$	(Immune cell death.)

10⁶ Target cells
10⁷ Virions
10⁴ Infected cells
Infection cycle :100d
Gillespie algorithm

Treating chronic infections (HCV)

Treating chronic infections (HCV)

Finding Packaging Signals

Selex analysis

Systematic Evolution of Ligands by EXponential enrichment

AACAATTTAAACACCTTATCCCACTTA AACAATTCGCACACCTTTTGCCTTTAC A A C A A T T T A A G C A T C T C A T C C C T T T G A A A C A A T T T A A A C A C C T C G T C C C A C T T A A C C A <mark>G T T T A A A C A T C T T A T A C C A C T C A</mark> A T C A A T T T A A A C A C C T C A T A C C A C T T A

> **Conservation &** Secondary Structure analysis

Cryo-EM validation

Packaging signals characterised in: HBV (*Nat Microbiol* **2** 10) HCV(*Sci Rep* **6** 1) HPeV (Nat Comms 8 5) EV-E (*PLoS Path* **16** *12*) among others...

Virus-like particles (VLPs)

XRF analysis & RNA Secondary structure sampling & prediction PS4 BB1 Assembly "cassette"

Tetter *et al.* Science **372**, *220* (2021)

Designing virus assembly instructions

In preparation.

Thanks

Reidun Twarock, Sam Clark, Farzad Fatehi, Eric Dykeman (York) Peter Stockley & group (Leeds) Don Hilvert & group (Zurich)

Engineering and Physical Sciences Research Council

