

ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS

RESOLVING CHALLENGES IN SELF-ASSEMBLY WITH NANO REAL SPACE ANALYSIS

C. PATRICK ROYALL

RUI CHENG

IOATZIN RIOS DE ANDA

ROSS ANDERSON

ANGELIQUE COUTABLE

ANNELA SEDDON TOM TAYLOR **JINGWEN LI**

5

CAP

MOLECULAR FOUNDRY

STEVE WHITELAM

LENGTHSCALES IN SOFT MATTER

(QUANTITATIVE) REAL SPACE IMAGING TO DATE HAS FOCUSED ON COLLOIDS WHOSE INTERACTIONS CAN BE MANIPULATED AT WILL (SALT, POLYMERS...)

LENGTHSCALES IN SOFT MATTER

(QUANTITATIVE) REAL SPACE IMAGING TO DATE HAS FOCUSED ON COLLOIDS WHOSE INTERACTIONS CAN BE MANIPULATED AT WILL (SALT, POLYMERS...)

MANY PB

LENGTHSCALES IN SOFT MATTER

BUT STED SUPER-RESOLUTION "NANOSCOPY" MEANS THAT IT DOESN'T ALWAYS HAVE TO BE LIKE THIS

NATURE COMMUN. 14 2621 (2023); 9 3272 (2018)

CAN WE USE THE KIND OF METHODS THAT WORK FOR COLLOIDS FOR PROTEINS?

LIGHT-HARVESTING ELECTRON-TRANSFER CATALYTIC PROPERTIES

Strategy for Protein Assembly: Critical Soft Matter

Collaboration with Steve Whitelam, Molecular Foundry, Berkeley CA

How to realise CSM with proteins?

first-order approximation: "mermaid" interactions (soft matter)

Whitelam and co PRL 112 155504 (2014)

"Hunting Mermaids in Real Space", Soft Matter 14 4020 (2018)

LIKE-LIKE ATTRACTIONS STRONG

IS THERE ANY REASON TO SUPPOSE THAT THIS MIGHT WORK?

A LITTLE BIT:

SOME PROTEINS HAVE "COLLOID-LIKE" PHASE BEHAVIOUR/SELF-ASSEMBLY

MCMANUS ET AL CURR OP COLL INTERF SCI 22 73 (2016) FOFFI ET AL PNAS 111 16748 (2014)

SOFT MATTER MEETS BIOCHEMISTRY

SOFT MATTER: ADD POLYMER, IONIC STRENGTH

BIOCHEMICAL TECHNIQUES: CATIONISATION TO CONTROL SURFACE CHARGE

TARGET: BINARY NETWORK (GEL) WITH TUNABLE DOMAIN SIZE "CRITICAL SOFT MATTER"

TOWARDS USEFUL MATERIALS WITH ENZYMATIC PROPERTIES

PURPOSE OF A NETWORK: FLOW THROUGH REACTANTS AND PRODUCT

STRATEGY TO PRODUCE NETWORK WITH TUNABLE DOMAIN SIZE

INDEPENDENT CONTROL OF EGFP-EGFP, MCHERRY-MCHERRY INTERACTIONS

EGFP-EGFP CONTROL WITH Y3+

MCHERRY-MCHERRY CATIONISE (IGNORES Y3+)

TWO-STEP ASSEMBLY: EGFP NETWORK WITH Y3+

DECORATE WITH MCHERRY UPON ADDITION OF AMMONIUM SULPHATE

SOFT MATTER 17 6873 (2021)

Start with eGFP

x-ray scattering for protein-protein interactions. manipulate with Y3+, polymer

START WITH EGFP

J. CHEM. PHYS. 155 114901 (2021)

START WITH EGFP

EGFP+POLYMER (PEG)

EGFP VOLUME FRACTION

J. CHEM. PHYS. 155 114901 (2021)

SOFT MATTER 17 6873 (2021)

What about controlling the domain size?

Change eGFP/mCherry composition

an explanation would be nice...

SOFT MATTER METHODS FOR PROTEIN ASSEMBLY

COLLOIDS

QUANTITATIVE IMAGING: PREDICT ASSEMBLY UNDERSTAND POLYMORPH SELECTION

ACS NANO 17 8807 (2023) "COMPLEX PLASMAS AND COLLOIDAL DISPERSIONS...", 2012

BINARY PROTEIN NETWORKS

STED NANOSCOPY SHORTER LENGTHSCALES

EGFP+POLYMER BEHAVES LIKE HARD SPHEROCYLINDERS

J. CHEM. PHYS. 155 114901 (2021)