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Lengthscales in Soft Matter

smaller 
atoms

~0.1 nm
molecules

~1 nm
proteins
~10 nm

colloids
~30-3000 nm

polymers
~10-100 nm

cells
~10 μm

viruses
~100 nm

“complex plasmas and colloidal dispersions:  
particle-resolved studies of classical liquids and solids”, 2012

(Quantitative) real space imaging to date has focused on colloids 
whose interactions can be manipulated at will (salt, polymers…)
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understand why fcc nuclei 
are favored over hcp 
(free energy difference is negligible)

fcc  
nucleus few  pb

many pb

pb 
density

pentagonal  
bipyramid 

pb

same 
snapshot

siamese 
dodecahedron 

sd

sd 
density

sd form a link between fcc crystal  
and pb rich fluid

(Quantitative) real space imaging to date has focused on colloids 
whose interactions can be manipulated at will (salt, polymers…)



Lengthscales in Soft Matter

can we use the kind of methods that  
work for colloids for proteins?

 
Soft Matter Physics 

Self-assembly 
Interactions~structure 
super-resolution imaging

 
 

Biochemistry 
enzymology 

design of 
de novo 

proteins with  
light-harvesting 

electron-transfer 
catalytic properties 

Space!

but STED super-resolution “nanoscopy” means that it doesn’t 
always have to be like this

Nature Commun. 14 2621 (2023); 9 3272 (2018)
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Strategy for Protein Assembly: Critical Soft Matter

Whitelam and co PRL 112 155504 (2014)  

concept:  
competition between (equilibrium) demixing  
and “locking in” structure during self-assembly 
red and blue are identical but tune like-like and  
red-blue attractions

Collaboration with Steve Whitelam,  
Molecular Foundry, Berkeley CA
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How to realise CSM with proteins?

cross attractions  
strong 

like-like  
attractions  
strong 

first-order approximation:  
“mermaid” interactions (soft matter)

“Hunting Mermaids in Real Space”, Soft Matter 14 4020 (2018)
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cross attractions strong 



like-like attractions strong 



is there any reason to suppose that this might work?

a little bit:  
 
some proteins have “colloid-like” phase behaviour/self-assembly

mcmanus et al Curr Op Coll Interf Sci 22 73 (2016) 
foffi et al pnas 111 16748 (2014)



soft matter meets biochemistry

Soft matter: add polymer, ionic strength 
 
Biochemical techniques: cationisation to control surface 
charge

target: binary network (gel)  
with tunable domain size  
“critical soft matter”

towards useful materials with 
enzymatic properties 
 
purpose of a network: flow 
through reactants and product



strategy to produce network with tunable domain size

eGFP

Independent control of eGFP-eGFP, 
mCherry-mCherry interactions

mCherry

+

eGFP-eGFP control with Y3+ 
 
mCherry-mCherry cationise (ignores Y3+) 
 
two-step assembly: eGFP network with Y3+ 
 
decorate with mCherry upon addition of 
ammonium sulphate

Soft Matter 17 6873 (2021)
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S(q) Fourier transform of g(r):  
determine interactions as for colloids
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x-ray scattering for protein-protein interactions. manipulate with Y3+, polymer 
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eGFP+polymer (peg) 
 

 J. Chem. Phys. 155 114901 (2021)
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eGFP+polymer (peg) 
 

10-3 10-2
0

1x101

2x101

3x101

4x101

5x101

 

 

 

 

100 101

0

2x10-1

4x10-1

6x10-1

eGFP 

po
l

c p
ol

 (g
 c

m
-3

)

ceGFP (mg mL-1)

φ

z

 J. Chem. Phys. 155 114901 (2021)

eGFP volume fraction

p
o

l
y
m

e
r

 f
u

g
a
c
it

y
  

~
 c

h
e
m

ic
a
l
 p

o
te

n
ti

a
l

gel

xtal

F

 savenko & dijkstra  
J. Chem. Phys. 124, 234902 (2006) 

hard spherocylinder 
+polymer 

start with egfp



Soft Matter 17 6873 (2021)



What about controlling the domain size?
Change eGFP/mCherry composition 
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Soft Matter 17 6873 (2021)

an explanation would be nice…



 J. Chem. Phys. 155 114901 (2021)

eGFP+polymer 
behaves like  

hard spherocylinders

colloids
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quantitative imaging: predict 
assembly 
understand polymorph selection  

acs nano 17 8807 (2023) 
“complex plasmas and colloidal 

dispersions…”, 2012

STED nanoscopy 
shorter lengthscales

binary protein networks

control of  
domain size

Soft Matter 17 6873 (2021)

eGFP mCherry

+

soft matter methods for protein assembly


