Controlling capsid assembly with antivirals and liquid-liquid phase separation

Michael F. Hagan **Farri Mohajerani** Naren Sundararajan

Department of Physics and Quantitative Biology Program, Brandeis University

Jodi Hadden-Perilla (U. Delaware) Chris Schlicksup, Adam Zlotnick (Indiana University)

Understanding and controlling capsid self-assembly

1. What factors control assembly pathways and outcomes

Example: HBV capsids form T=3 and T=4 shells

2. Can we design molecules to redirect assembly to different sizes or morphologies?

Example: HBV antivirals

3. Coupling to liquid-liquid phase separation (biomolecular condensates) can change assembly rates by orders of magnitude and make it more robust

HBV capsid (core) comes in 2 sizes

Experiments on HBV assembly

Charge Detection Mass Spec (CDMS) measures capsid sizes with single-dimer resolution

Lutomski, Lyktey, Zhao, Pierson, Zlotnick, Jarrold, JACS, 139, 16932 (2017)

Experiments on HBV assembly

Todd, Barnes, Young, Zlotnick, Jarrold, Anal. Chem. 92, 11357 (2020)

Experiments can't resolve structures of intermediates along assembly pathways or overgrown intermediates

All-Atom simulations of HBV

All-atom simulation of complete (but empty) HBV capsid, ~1 μ s

Jodi Hadden et al., eLife (2018)

Not yet tractable to simulate **assembly** with all-atom simulations

We need a model that can link all-atom simulations and experimental data with assembly dynamics

Computational model

Nano (2022)

adapted from: -GM Rotskoff, PL

-Panahandeh, Li, Marichal, Rubim, Tresset, Zandi, ACS

Nano (2020)

Geissler, PNAS (2018)

-Tyukodi, Mohajerani,

Hall, Grason, Hagan, ACS Nano (2021)

capsid = elastic network with edges corresponding to protein dimers

 l_{0AR} dimers have two conformations: AB and CD Mohajerani et al. ACS $l_{0.CD}$ $G_{\text{elastic}} = \sum_{i=\text{edges}} \frac{\kappa_i}{2} \left(l_i - l_0 \right)^2 + \frac{\kappa_\theta}{2} \left(\theta_i - \theta_0 \right)^2 + \cdots$ $\kappa_1 \rightarrow$ Young's modulus (stretching) $\kappa_{\theta} \rightarrow$ bending modulus

simulate assembly with dynamical Monte Carlo

Farri Mohajerani

Estimating model parameters from all-atom simulations

Optimize model parameters so that distributions of edge lengths and angles in coarse-grained simulation matches all-atom

fit parameters: $\kappa_{l}, \kappa_{\theta}, \kappa_{\phi}, l_{0,AB}, l_{0,CD}, \theta_{0,AB}, \theta_{0,CD}, \dots$

Jodi Hadden et. al., eLife (2018)

$$\kappa_{\mathrm{l}}=4200rac{k_{\mathrm{B}}T}{\overline{l_{\mathrm{0}}}}$$
 , $\kappa_{ heta}=40~k_{\mathrm{B}}T$

Föppl-von Kármán # = 500

Estimating model parameters from all-atom simulations

Optimize model parameters so that distributions of edge lengths and angles in coarse-grained simulation matches all-atom

fit parameters: $\kappa_{l}, \kappa_{\theta}, \kappa_{\phi}, l_{0,AB}, l_{0,CD}, \theta_{0,AB}, \theta_{0,CD}, \dots$

Jodi Hadden et. al., eLife (2018)

$$\kappa_{\mathrm{l}} = 4200 \, rac{k_{\mathrm{B}}T}{\overline{l_{\mathrm{0}}}}$$
, $\kappa_{ heta} = 40 \, k_{\mathrm{B}}T$

Föppl-von Kármán # = 500

Estimating model parameters from all-atom simulations

Optimize model parameters so that distributions of edge lengths and angles in coarse-grained simulation matches all-atom

fit parameters: $\kappa_{l}, \kappa_{\theta}, \kappa_{\phi}, l_{0,AB}, l_{0,CD}, \theta_{0,AB}, \theta_{0,CD}, \dots$

Jodi Hadden et. al., eLife (2018)

$$\kappa_{\mathrm{l}}=4200rac{k_{\mathrm{B}}T}{\overline{l_{\mathrm{0}}}}$$
 , $\kappa_{ heta}=40~k_{\mathrm{B}}T$

Föppl-von Kármán # = 500

previous models have only 1 conformation, cannot fit all-atom data

need 2 subunit types ('ultra-coarse
graining'):

Elrad&MFH, Nanolett (2008); Grime, ..., Voth Nat. Comm. (2016); Dama, Jin, Voth JCTC (2017)

$$G_{\text{elastic}} = \frac{\kappa_{l}}{2} (l - l_{0})^{2} + \frac{\kappa_{\theta}}{2} (\theta_{ij} - \theta_{0})^{2} + \frac{\kappa_{\phi}}{2} (\phi_{ij} - \phi_{0})^{2}$$

Subunit association/dissociation/relaxation

Addition of one edge Removal of one edge

Addition of two edges Removal of two edges

adapted from: GM Rotskoff, PL Geissler, PNAS (2018) Panahandeh, Li, Marichal, Rubim, Tresset, Zandi, ACS Nano (2020) Tyukodi, Mohajerani, Hall, Grason, Hagan, ACS Nano (2021)

Relaxation of the shell between addition/removal moves

- Monte-Carlo moves are reversible \rightarrow a well-defined equilibrium distribution
- Monte-Carlo moves mimic real dynamics (hopefully)
- dimer-dimer binding affinities for different conformations estimated from buried surface area
- 2 control parameters (depend on [salt], pH, temperature)
- mean subunit-subunit binding affinity, $g_{
 m b}$
- Equilibrium ratio AB/CD dimer conformations, $K_{AB} = \frac{[AB]}{[CD]} = \exp[-\Delta f/k_BT]$

Subunit conformations

Estimate relative dimer/dimer binding affinities from buried surface area (PDBePISA)

- Monte-Carlo moves are reversible → a well-defined equilibrium distribution
- Monte-Carlo moves mimic real dynamics (hopefully)
- dimer-dimer binding affinities for different conformations estimated from buried surface area
- 2 unknown parameters (can't estimate from atomistic simulations or structures):
- mean subunit-subunit binding affinity, $g_{
 m b}$ (depends on [salt], temperature, pH)
- Equilibrium ratio AB/CD dimer conformations, $\frac{[AB]}{[CD]} = \exp[\frac{-\Delta f}{k_B T}]$

Example simulation trajectories

Parameters that control assembly morphologies

strong interactions lead to kinetic traps: Ceres & Zlotnick 2002, Hagan & Chandler 2006

 malformed structures assemble when binding affinity too strong compared to k_BT (1 k_BT = 0.6 kcal/mol)

consistent with CDMS, lightscattering experiments and previous simulations

 [T=4]/[T=3] ratio not sensitive to mean dimer-dimer binding affinity, g_b

 $\Delta f = 3.6k_{\rm B}T$

Parameters that control assembly morphologies

 malformed structures assemble when binding affinity too strong compared to k_BT (1 k_BT = 0.6 kcal/mol)

consistent with CDMS, lightscattering experiments, and previous simulations

• [T=4]/[T=3] ratio not sensitive to mean dimer-dimer binding affinity, g_b

 [T=4]/[T=3] ratio depends on conformational free energy landscape
 Δf =free energy difference between AB and CD dimers:

$$K_{AB/CD} = \frac{[AB]}{[CD]} = \exp\left[\frac{-\Delta f}{k_B T}\right]$$

Mohajerani et al. ACS Nano (2022)

Qualitative comparison with experiments

-Experiments: T=3/T=4 increases with [salt] but is independent of [dimer] -Computational results match if Δf decreases ($K_{AB/CD}$ increases) with increasing [salt] (consistent with Ceres and Zlotnick, Biochemistry (2002))

Error correction during HBV assembly (overgrown intermediates)

Error correction during assembly

Capsid overgrows and then sheds excess subunits (as seen in experiments)

Overgrown woodchuck HBV capsids

Pierson, Keifer, Kukreja, Wang, Zlotnick, Jarrold, J Mol Biol 428, 292–300 (2016)

Importance of conformational specificity

Mohajerani et al. ACS Nano (2022)

different interfaces have different affinities

species-specific binding important design tool for synthetic programmable assemblies

Bale et al. Science (2016) https://doi.org/10.1126/science.aaf8818; Sigl et al Nat. Mater. 2021; Videbæk et al, arXiv:2111.04717 (2021)

Pathway analysis

'commitor probability' = conditional probability that a structure will end up in a T=4 capsid

pathways can diverge to malformed pathways at large sizes with higher concentration

Prevalent intermediates

Antiviral Agents: Core protein Allosteric Modulators (CpAMs)

(a) 300 mM NaCI + 0 μM HAP

Adam Zlotnick

CpAMs bind to core proteins during assembly, resulting in aberrant structures.

Schlicksup, C. J., et al. Elife 7 (2018) Kondylis, P., et al. JACS (2018)

In Vitro Assembly with CpAMs

Kondylis, P., et al. JACS (2019)

Strong protein-protein interactions:

- Higher curvature
- mostly T=4 (like native)

Weak protein-protein interactions:

- lower curvature
- Larger, more aberrant products

Adding CpAMs to the model

TEM of capsids assembled with CpAMs

0	0	0	0	0	0	0)	\bigcirc
0	0	0	0	0	0	\bigcirc	Ĵ	

CpAMs flatten binding angles

Simulations with CpAMs

dimer-dimer affinity: $g_{\rm b} = 6.5 k_{\rm B}T$ (moderate salt)

 $k_{\rm B}T$ = 0.6 kcal/mol

 $g_{\rm b}$ =16 $k_{\rm B}T$ (high salt)

Comparison with Experiments

No CpAM $G_{\text{bind}} = 6.5 k_{\text{B}}T$

+ CpAM $G_{\rm bind} = 16.5 k_{\rm B}T$

+ CpAM G_{bind} =6.5 $k_{\text{B}}T$

+ CpAM G_{bind} =4.5 $k_{\text{B}}T$

129

Distribution of capsid sizes

Experiments

Viruses exploit liquid-liquid phase separation (LLPS)

Cells infected by rotaviruses form phase separated compartments called viroplasms (V) within which new viral particles assemble

> Viroplasms: Assembly and Functions of Rotavirus Replication Factories Guido Papa¹, Alexander Borodavka², Ulrich Desselberger³ Viruses. 2021 Jul; 13(7): 1349. doi: 10.3390/v13071349

See also: Etibor et al., Viruses 2021, 13, 366

Self-Assembly Coupled to Liquid-Liquid Phase Separation (LLPS)

 $K_{\rm C} > 1$ so subunits preferentially partition into domain

Hagan & Mohajerani, Plos Comp. Biol. (2023) https://doi.org/10.1371/journal.pcbi.1010652 see also, Weber et al. eLife 2019;8:e42315 for similar model for irreversible filament assembly

Self-Assembly Coupled to Liquid-Liquid Phase Separation (LLPS)

Naren Sundararajan

Hagan & Mohajerani, Plos Comp. Biol. (2023) https://doi.org/10.1371/journal.pcbi.1010652

Rate equation model for assembly coupled to LLPS

$$\frac{d\rho_1^{\alpha}}{dt} = -2f_1(\rho_1^{\alpha})^2 + b_2\rho_2^{\alpha}$$

$$+ \left(\sum_{n=2}^{N-1} - f_n\rho_n^{\alpha}\rho_1^{\alpha} + b_n\rho_n^{\alpha}\right) + b_N\rho_N^{\alpha} + \mathcal{D}_1^{\alpha}$$

$$\frac{d\rho_n^{\alpha}}{dt} = f_{n-1}\rho_1^{\alpha}\rho_{n-1}^{\alpha} - (f_n\rho_1^{\alpha} + b_n)\rho_n^{\alpha}$$

$$+ b_{n+1}\rho_{n+1}^{\alpha} + \mathcal{D}_n^{\alpha} \quad \text{for } n = 2...N - 1$$

$$\frac{d\rho_N^{\alpha}}{dt} = f_{N-1}\rho_1^{\alpha}\rho_{N-1}^{\alpha} - b_N\rho_N^{\alpha} + \mathcal{D}_N^{\alpha}$$

$$\mathcal{D}_{n}^{c} = \frac{1}{V_{c}} k_{DL}(n) \left(\rho_{n}^{bg} - \rho_{n}^{c} / K_{c}^{n} \right)$$
$$\mathcal{D}_{n}^{bg} = -V_{r} \mathcal{D}_{n}^{c}$$

Hagan & Mohajerani, Plos Comp. Biol. (2023)

Self-Assembly Coupled to Liquid-Liquid Phase Separation (LLPS)

magnitudes

Hagan & Mohajerani, Plos Comp. Biol. (2023) https://doi.org/10.1371/journal.pcbi.1010652

Self-Assembly Coupled to Liquid-Liquid Phase Separation (LLPS)

results from rate equation model

LLPS increases assembly rates and robustness to parameter variation

Hagan & Mohajerani, Plos Comp. Biol. (2023) https://doi.org/10.1371/journal.pcbi.1010652

Self-Assembly Coupled to Liquid-Liquid Phase Separation

LLPS can:

-dramatically accerelate assembly rates

-make assembly robust, by expanding range of concentrations and binding affinities that lead to good assembly, by avoiding kinetic traps Hagan & Mohajerani, Plos Comp. Biol. (2023) https://doi.org/10.1371/journal.pcbi.1010652 see also, Weber et al. eLife 2019;8:e42315 for similar model for irreversible filament assembly

Bulk solution acts as a buffer of free subunits

fast assembly without depleting subunits because assembly is localized to compartment

increasing concentration or interaction strength

Hagan & Mohajerani, Plos Comp. Biol. (2023)

Brownian dynamics simulation of self-assembly with LLPS

Mohajerani Sundararajan

Chris Schlicksup Adam Jodi Zlotnick Hadden-Perilla

Botond Tyukodi, Stefan Paquay, Seth Fraden, Ben Rogers, Wei-Shao Wei

NIH (R01GM108021) \$\$: DOE: Machine learning approaches to understanding and controlling 3D active matter NSF (CMMT DMR-1855914, Brandeis MRSEC) Brandeis Provosts Research Grant Computation: NSF XS Hagan Group: Layne Frechette, Fernando Caballero, Anthony Trubiano, Phu Tran, Chris Amey, Yingyou Ma, Saptorshi Ghosh, Sarvesh Uplap, Naren Sundararajan, Smriti Pradhan

Brandeis Provosts Research Grant Computation: NSF XSEDE, Brandeis HPCC

Capsid symmetry

Model capsids with 120 dimers do not have icosahedral symmetry

preliminary results: 2 dimer conformations are required for T=4 symmetry

> 2 dimer conformations in T=4 HBV capsids

Other works showing D5h is favored: Wagner & Zandi, Biophys. J. (2015); Sanaz, Li, Zandi 2018; Lorente, Hernandez-Rojas, Breton, Soft Matter (2018)

HBV capsid with 120 dimers
 T=4 Icosahedral symmetry

View from all sides

Model capsid with 120 edges D5h symmetry

Top view

Side view