
Robust
Quantum
Control

Sophie
Shermer
Swansea
University

Overview

Classical RC

Quantum RC?

µ Analysis

Log-sensitivity

RIM

Conclusions

Robust Quantum Control
What is robust control and why does it matter?

Sophie Shermer
Swansea University

May 25, 2023

ICMS Edinburgh

1 / 29



Robust
Quantum
Control

Sophie
Shermer
Swansea
University

Overview

Classical RC

Quantum RC?

µ Analysis

Log-sensitivity

RIM

Conclusions

Meet the team

E Jonckheere, USC Sean O’Neil, USC Carrie Weidner,
Bristol

Frank Langbein,
Cardiff

Irtaza Khalid, Cardiff
2 / 29



Robust
Quantum
Control

Sophie
Shermer
Swansea
University

Overview

Classical RC

Quantum RC?

µ Analysis

Log-sensitivity

RIM

Conclusions

Overview of Talk

What is robust control? Why does it matter?

Review of classical robust control techniques

Why we need different tools for quantum systems?

Quantifying robustness for quantum systems

1 Structured singular value or µ-analysis

2 Log-sensitivity

3 Robustness infidelity measure

Conclusions and future work
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What is robust control?

Robust control — designing control systems able to
function properly in the presence of uncertainties and
variations in the system or environment.

Uncertainties can arise from a variety of sources —
measurement noise, parameter variations, and
disturbances.

Prerequisite for technology — taking experiments from
lab to real world applications
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Classical robust control

Goal — ensure control system remains stable and provides
satisfactory performance in the presence of uncertainties

Design controllers less sensitive to changes in the system
or environment, that can adapt to unexpected disturbances

Popular approaches
H∞ control: minimize the worst-case performance of
the system over a range of unstructured uncertainties.

µ-synthesis: optimize controller to achieve a desired
level of performance while simultaneously guaranteeing
robust stability in the face of structured uncertainties.
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Classical Control for LTI Systems

LTI-system
ẋ = Ax + Bu
y = Cx + Du

Laplace Trans.
sx̂ = Ax̂ + Bû
ŷ = Cx̂ + Dû

Transfer function

Tŷ ,û = C(sI−A)−1B+D
Laplace trans. x̂ , ŷ , û

x(t) state vector, u(t) control, y(t) observables

Noisy, closed loop system[
ẑ
v̂

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
ŵ
û

]
State feedback: û = K (s)v̂

Transfer function: noisy, closed-loop

Tẑ,ŵ (P,K , s) = P11(s)+P12(s)K (s)[I−P22(s)K (s)]−1P21(s)
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H∞ Control

Aims: Minimize worst-case sensitivity of the system to
unstructured uncertainties & disturbances, ensuring stability

Optimization problem: find controller K that minimizes
||Tẑ,ŵ (P,K , s)||∞ = supω σ̄(Tẑ,ŵ (P,K , iω)) subject to
stability constraints

Pros: can handle a wide range (too wide?) of unstructured
uncertainties, unmodeled dynamics, external disturbances

Cons:
Not always easy to tune the cost functions to achieve
simultaneous performance and stability requirements
Computationally very sensitive near optimal solution
Framework to formalize stability of linear systems
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µ Synthesis

Noisy, K -closed-loop system[
v
z

]
=

[
G11(K ) G12(K )
G21(K ) G22(K )

] [
η
w

] w disturbance, z error,
η = ∆v , ∆ ∈ ∆
structured perturbation

Structured singular value (µ)

[µ∆(G)]−1 = min
∆∈∆,∆f

{∥∆∥ : det(I − diag(∆,∆f )G) = 0}

used to bound performance degradation under bounded,
structured uncertainties

∥Tz←w∥ ≤ µ∆(G) for ∥∆∥ < 1/µ∆(G)

µ value measures system’s worst-case stability margin over
a range of structured uncertainties and frequencies
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µ-Synthesis

Design: find stabilizing controller K minimizing µ∆(G(K ))

Pros:
can handle linear and probably non-LTI systems
structured uncertainties such as parametric
uncertainties, unmodeled dynamics, time delays
provides more detailed information about what
controllers can achieve than H-infinity control

Cons: Design computationally intensive, may require
specialized tools and expertise to design and analyze the
resulting controllers.
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Measuring robust performance

H∞-norm of transfer function

Structured singular value µ

Gain and phase margins: determine how much a system’s
gain or phase can be increased before it becomes unstable

Sensitivity and log-sensitivity to structured perturbations

Statistical techniques often based on MC simulations.
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Why Stability is Classically Desirable

Stability is a fundamental property of control systems,
desirable as it ensures safe and predictable operation.

Instability can lead to unpredictable behavior, oscillations,
and even system failure.

Unstable aircraft may experience uncontrollable roll & yaw
(Dutch roll) and pitch (phugoid, short periodic) oscillations,
loss of control and potentially catastrophic consequences.

Unstable chemical process: runaway reactions or
explosions, serious harm to people and the environment.
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Criteria for Stability of LTI systems

Pole-zero criterion. LTI system stable if and only if all the
poles of its transfer function lie in the open left half-plane of
the complex plane, i.e., real parts of all poles negative.

Hurwitz criterion. LTI system stable iff all coefficients of
characteristic polynomial and 1st column of Routh array are
positive.

Nyquist stability. LTI system closed-loop stable iff Nyquist
plot does not encircle (−1,0) in complex plane.

Bode stability. LTI system is stable iff its phase margin is
positive — amount by which phase of transfer function falls
short of −180◦ at the frequency where magnitude is unity.
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Why can’t we apply this to quantum systems?

Non-LTI systems: Quantum control systems generally
have non-linear (bilinear) input-output relationship —
controls time-dependent

Time-domain problems: Worst case performance over
range of frequencies not useful under decoherence.

Marginal stability: Closed quantum systems subject to
coherent control marginally stable, stability is undesirable,
kills quantum advantage!

Nonlinear performance measures e.g., entanglement

Goal: Theory of robust performance without stabilization for
marginally stable, non-LTI systems
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Quantum Control Systems

Quantum dynamics modeled in different ways. Schrödinger
or Liouville equation formulation common but real rep. easy

d
dt x(t) = (AS + AE + AC)x(t)

x(t) ∈ RN — quantum state
xn = Tr(ρσn), {σn} basis for u(N)

AS — system dynamics (independent of control)
AE — effect of environment on dynamics

AC — controller AC(t) =
∑

m fm(t)Am

Most quantum systems are not LTI
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Quantum LTI Systems

Bilinear systems can be transformed to linear systems
with full state feedback though not generally time-invariant

Time-invariance if fm, AC =
∑

m fmAm TI.

LTI-system
ẋ = Ax + Bu
y = Cx

State feedback

Control
u(t) = ACx(t)

Transfer function

Tŷ ,û = C(sI − A)−1B
Laplace trans. x̂ , ŷ , û

Poles of transfer function — eigenvalues of
A = AS + AC + AE

Hamiltonian system: AS antisymmetric

Coherent control: AC anti-symmetric

Environment dynamics AE not antisymmetric
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Curse of Stability for Quantum Systems

Closed system AE = 0

Eigenvalues of A

imaginary axis

Marginal stability

Open system AE ̸= 0

Eigenvalues of A have

negative real parts

Stability

Curse of Stability
Environment acts as stabilizing controller for coherent
quantum dynamics

Stabilized states and dynamics mostly classical

Stability margins related to rates of entanglement loss

Loss of Quantum Advantage
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Robust Performance without Stabilization?

Is robust performance without stability possible?

What qualifies as robust performance for QS?
Must consider marginal stability, non-LTI systems

How can we measure robust performance?
Measures that require stability not useful.

Quantification of robust performance involves assessing the
system’s ability to cope with a wide range of uncertainties
and disturbances — challenging

Performance metrics may need to include non-linear
performance measures (e.g., entanglement measures,
concurrence)
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µ Analysis for Reservoir Engineering

Reservoir engineering: Class of QC problems that can be
formulated as LTI systems and meet stability criteria

Two qubits in lossy cavity designed to generate
entanglement [PRA 94 (3), 032313]
d
dt ρ(t) = −ı[Hα,∆, ρ(t)] +

∑
k γ

2
kL

(
σ
(k)
−

)
ρ(t)

Hα,∆ =
∑2

n=1

(
α∗nσ

(n)
+ + αnσ

(n)
− +∆nσ

(n)
+ σ

(n)
−

)

Robustness wrt Structured Perturbations

S1,S2 — Effective qubit-cavity coupling
S3,S4 — Detuning of individual qubits from cavity
S5 — Collective decay, S6,S7 — Single qubit decay
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µ Analysis for Reservoir Engineering
IEEE TAC 67 (11), 6012-6024

Error gain ||Tz,w (iω, δSk )|| for δ = 0.1 (left) and 1 (right)

Error gain vs δ (left) and maximum gain frequency vs δ (right)
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Robustness of Reservoir Engineering
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Transfer functions for Error Dynamics arxiv:2305.03918v1

Model ru vs Perturbed rp

d
dt ru = Aru + Bd

yu = Curu
d
dt rp = (A+ δS)rp + Bd

yp = Cprp

Error Dynamics z = ru − rp

d
dt z = (A+ δS)z + δSwu

e = Cpz + (Cp − Cu)wu
d
dt z = Az + δSwp

e = Cuz + (Cp − Cu)wp

Calculate norm of transfer function for error dynamics
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Log-Sensitivity: Basics

Definition: dimensionless differential sensitivity measure
that quantifies the effect of parameter uncertainty or
disturbances (perturbations) on a performance metric.

LTI system: with uncertainty structured as S

d
dt x̃(t) = (AS + AE + AC + (δ − δ0)S)x̃(t)

with magnitude δ ∈ R and nominal value δ0

Performance metric: function of state ỹ(x̃(t), δ) — fidelity
error for gate operation or state transfer

s(δ0, t) =
∂ỹ
∂δ

δ

ỹ

∣∣∣∣
δ=δ0

=
∂ ln ỹ
∂ ln δ

∣∣∣∣
δ=δ0
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Log-Sensitivity: The Good and the Bad

Advantages
Analytically tractable expression when the performance
measure is linear in the state

Applicable to time-domain control problems

Potential for extension to non-linear performance
measures and time-varying systems (non-trivial)

Limitations/Challenges
Only provides local measure of sensitivity/robustness

No bounds on maximum allowable perturbations for
given performance bounds unlike µSSV

Utility currently limited to analysis — any potential for
use in synthesis as of yet unrealized

23 / 29



Robust
Quantum
Control

Sophie
Shermer
Swansea
University

Overview

Classical RC

Quantum RC?

µ Analysis

Log-sensitivity

RIM

Conclusions

Log-Sensitivity: Recent Results [arXiv:2210.15783]

Trade-off between robustness and performance for a fixed controller; as
performance measure approaches target value, log-sensitivity increases:

For systems with an asymptotic steady-state results indicate
polynomial divergence in s(δ0, t).

In cases where the target is achieved in finite time, results indicate
divergence of s(δ0, t) in finite time.

Two-qubits in a cavity
Performance: steady state overlap

Excitation transfer in spin chains
Performance: transfer fidelity
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Log-Sensitivity: Recent Results

Trade-off is not a fundamental limitation on the
robustness and fidelity of controllers across the
optimization landscape
Controllers that provide the same performance may
vary widely in terms of robustness

Left: Log-sensitivity
versus fidelity error
for excitation transfer
in a 5-ring

arXiv.2303.0951
arXiv:2303.05649
arXiv:2303.00142
IJRNC 28, 2383-2403
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RIM — Robustness measure based on
Wasserstein distance [PRA 107 (3), 032606]

Stochastic robustness measure based on pth
Wasserstein distance between observed and ideal
probability distribution

RIMp = Ef∼P(F) [(1 − f )p]
1
p

if fidelity distribution P(F) approximated by samples {Fn}

Average Infidelity: RIM1 = 1 − Ef∼P(F)[f ]

Differential sensitivity of error expection agrees with the
derivative of the RIM1 at δ = δ0:

EP(S)

[
∂ẽ(T ;Sµ, δ)

∂δ
|δ=δ0

]
=

∂RIM1(δ)

∂δ

∣∣∣∣
δ=δ0
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RIM - Results [arXiv.2303.0951]

RIM1 has the ability to confirm more global robustness
properties indicated by the differential sensitivity at δ = 0.

Chart shows (RIM1(δ)− e(T )) as a function of δ versus
∂ẽ(T ;Sµ,δ)

∂δ for excitation transfer in a 5-ring 1 → 2 transfer.

Suggests agreement of
local robustness captured
by differential sensitivity at
δ = 0 and RIM1 for larger δ
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Summary and Outlook

Robust system & control design prerequisite for
technology

Classical robust control offers tools but insufficient

H∞ control and µ-analysis may be applicable for
reservoir engineering and open system control

Differential (log) sensitivity useful

Statistical robustness measures such as RIMp based
on distributions useful

Framework for robust system & control design for
quantum systems needed, taking into account

lack of time-invariance
marginal stability
non-linear performance measures
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It all starts with a question…Quantum Technologies is a new journal 
that brings together scientists, engineers, and leaders in industry to 
answer important questions to advance the field.  

Questions like: 

• How do we quantify the utility of quantum algorithms? 
• What are the full capabilities of relativistic quantum cryptography? 
• How will challenges in micro- and nanofabrication impact the development of quantum 

technologies?
• What is robust control in quantum technology? 
• Can the microfabrication of atomic and optical components open new capabilities in 

quantum technologies? 
• How can quantum technologies be used for testing fundamental physics? 

Instead of submitting one fully formed research paper, researchers submit incremental 
pieces of results and analysis that contribute towards answering the question. Finally, an 
impact paper will summarise what has been published in response to the question. 

No publication fees will be charged on submissions received before 1 October 2023, 
so if you have research that could help us answer important questions in this area, we 
welcome you to submit your research.
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