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Dynamics in closed quantum systems

For a closed system with associated Hilbert space H the time
evolution is governed by Schrodinger’s equation

i0pp(t) = Hip(t)
¥(0) = 2o,

with H Hamiltonian of the system.
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Dynamics in closed quantum systems

For a closed system with associated Hilbert space H the time
evolution is governed by Schrodinger’s equation

(1) = Hi (1)
¥(0) = tho,
with H Hamiltonian of the system.
Solution given by unitary group (e*itH)

i.e. I/J(t) = e_itHw().

teR’

e—itH

Yo ~3(t)

t > 0 total time
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Quantum Zeno effect in closed systems
Simplest Setup: Frequently perform projective measurement

{|vo)ol, T — [1ho)tbo|} in time intervals t/n:

—th/n
= Ei
n measurements

t > 0 total time



Introduction  Spectral condition on M Zeno limits under spectral condition  Beyond the spectral condition =~ Strong damping
000000000 OCOOOOO0O 000 (o]e] 000

Quantum Zeno effect in closed systems
Simplest Setup: Frequently perform projective measurement

{|vo)ol, T — [1ho)tbo|} in time intervals t/n:

—th/'n
DD
b n measurements i

t > 0 total time
Quantum Zeno effect:
Prob(Measure ¢y n times)

= H(|¢0><¢0|€_itH/n)n¢oH2 = |(sho, e /Mape) | —— 1.

n—oo

System is frozen in its initial state.



Introduction
00®000000

More generally:
® Mixed intial state pg € T(H), i.e. po > 0 and Tr(pg) = 1.

® General binary projective measurement {P,1 — P}, P € B(H)
projection.
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More generally:
® Mixed intial state pg € 7(H), i.e. po > 0 and Tr(pg) = 1.

® General binary projective measurement {P,1 — P}, P € B(H)
projection.

Quantum Zeno setup:

—th/n
-
n measurements i

t > 0 total time
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e—ttH/n

L0 \\' 3\' . w4

——
t/n

W
n measurements
t > 0 total time

What is the effective dynamics of this process?
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—th/n

pOA[\\ ]_[3\

’i’L

W
n measurements
t > 0 total time

What is the effective dynamics of this process? Formally:

(PefitH/n> " o—itPHP p (1)

n—o0
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—th/n
=t
measuvrements g

t > 0 total time

What is the effective dynamics of this process? Formally:

(PefitH/n> " o—itPHP p (1)

n—oo
Note (1) implies freezing of measurement probabilities (QZE):
Prob(Measure P n times) = 'I&"((Pe_“H/”)"po(eitH/"P)”>
Ty (efitPHPPpOPeitPHP) — Te(Ppo)

n—oo

= Prob(Measure P at t = 0).
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Quantum Zeno setup in open quantum systems

What about open quantum systems, generalised
measurements/applications of general quantum operations?

Composite Hilbert space H ® HEg.



Introduction
00000e000

Consider open quantum system with time evolution governed by
Lindblad equation

{({%P(t) = L(p(t))
p(0) = po,

with £ Lindbladian of the dynamics.
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Consider open quantum system with time evolution governed by
Lindblad equation

{({%P(t) = L(p(t))
p(0) = po,

with £ Lindbladian of the dynamics.

Solution given by semigroup (etﬁ)po of CPTP maps,
ie. p(t) = e“(po).

etﬁ

Po >p(t)

t > 0 total time
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Consider open quantum system with time evolution governed by
Lindblad equation

{({%P(t) = L(p(t))
p(0) = po,

with £ Lindbladian of the dynamics.

Solution given by semigroup (etﬁ)po of CPTP maps,
ie. p(t) = e“(po).

etﬁ

Po >p(t)

t > 0 total time

ett strongly continuous, i.e. t — e**(p) continuous for all p.
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Consider open quantum system with time evolution governed by
Lindblad equation

Op(t) = L(p(t))
p(O) = Po;
with £ Lindbladian of the dynamics.

Solution given by semigroup (etﬁ)po of CPTP maps,
ie. p(t) = e“(po).

etﬁ

Po >p(t)

t > 0 total time

ett strongly continuous, i.e. t — e**(p) continuous for all p.
If £ bounded operator then even t — e~ continuous in operator
norm.
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Consider M quantum operation, i.e. completely positive and trace
non-increasing linear map.
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non-increasing linear map.

For example generalised measurements: {1}, collection of
quantum operations such that Zj M; is trace-preserving.
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Consider M quantum operation, i.e. completely positive and trace
non-increasing linear map.

For example generalised measurements: {1}, collection of
quantum operations such that Zj M; is trace-preserving.

Quantum Zeno setup in open systems: Frequently interleave
dynamics by applying quantum operation M

w— G (o)-(0-()

o
n applications
t > 0 total time
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etﬁ/n

po—[M]:[M}---{M]—[M]

t/n

[

n appﬁcrations

t > 0 total time
What is the effective dynamics of this process (Me'“/™)" for
n — 0o?
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etﬁ/n
p—MHM} A MH M)
U

[

»
n applications
t > 0 total time

What is the effective dynamics of this process (Me'“/™)" for
n — oo?
® For M = P projection and £ bounded Matolcsi and Shvidkoy
proved in 2003
lim (Petc/™)n = otPLP p,

n—oo
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etﬁ/n

w—ar (k-

t/n

-

n applications
t > 0 total time
What is the effective dynamics of this process (Me'“/™)" for
n — oo?
® For M = P projection and £ bounded Matolcsi and Shvidkoy
proved in 2003
lim (Petﬁ/n)n _ etPLPP.
n—oo
® Mobus and Wolf extended in 2019 to quantum operations M
satisfying a certain spectral condition.
lim (Metﬁ/n)n _ €tP£PP,
n—oo
with P being projector on invariant subspace of M, i.e.
ker(1 — M).
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Here:

® Quantitative version of Mobus' and Wolf's result under
generalised spectral condition.
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generalised spectral condition.

® Proof of necessity and sufficiency of spectral condition for
tL/n\™
convergence of (Me ) in operator norm.
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® Proof of necessity and sufficiency of spectral condition for
tL/n\™
convergence of (Me ) in operator norm.

® Extension of the result to unbounded generators L.
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Here:

® Quantitative version of Mobus’ and Wolf’s result under
generalised spectral condition.

® Proof of necessity and sufficiency of spectral condition for
tL/n\™
convergence of (Me ) in operator norm.
® Extension of the result to unbounded generators L.
® Proof of convergence (Metﬁ/”)n in strong operator topology

while omitting the spectral condition. Applies for many
models in quantum optics.
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Here:

® Quantitative version of Mobus’ and Wolf’s result under
generalised spectral condition.

® Proof of necessity and sufficiency of spectral condition for
tL/n\™
convergence of (Me ) in operator norm.

® Extension of the result to unbounded generators L.

® Proof of convergence (Metﬁ/”)n in strong operator topology
while omitting the spectral condition. Applies for many
models in quantum optics.

® Using similar techniques we also derive strong damping.
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In the following we consider a general Banach space X and M
contraction, i.e. |[M| <1, and (e'¥),., contraction semigroup on
X.

t>0
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In the following we consider a general Banach space X and M
contraction, i.e. |[M| <1, and (e'¥),., contraction semigroup on
X.

Consider first the case £ = 0 for which (Met‘:/”)n simplifies to
M™,

t>0
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t>0

Under what conditions does M"™ converge in which topology?
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In the following we consider a general Banach space X and M
contraction, i.e. |[M| <1, and (e'¥),., contraction semigroup on
X.

Consider first the case £ = 0 for which (Met‘:/”)n simplifies to
M™,

t>0

Under what conditions does M"™ converge in which topology?

If M™ —— P then P projector on invariant subspace
n—oo

ker (1 — M) on X.
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Uniform convergence: Spectral condition on M
Spec(M) = {X € C| AL — M not invertible} .
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Uniform convergence: Spectral condition on M
Spec(M) = {A € C| A1 — M not invertible} .

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. ...

o
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I' closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).

~ closed curve, counterclockwise oriented, with fixed distance to
origin 5,0<8<6<1.
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I' closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).

~ closed curve, counterclockwise oriented, with fixed distance to
origin 6, 0 < § < 6 < 1.

Spectral projectors:

P=_— - M)z
27 Jr
1 -1
1-P=— -M) d
2mi ( ) :
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I' closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).
~ closed curve, counterclockwise oriented, with fixed distance to
origin 6, 0 < § < 6 < 1.
Spectral projectors:

1

P=—¢ (z—M)"dz
27 Jr
1 ~1
1-P=_— ¢ (x—M) dz
2mi J,

Write
M=MP+ M(1 - P)
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I' closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).
~ closed curve, counterclockwise oriented, with fixed distance to
origin 6, 0 < § < 6 < 1.
Spectral projectors:

1

P=—¢ (z—M)"dz
27 Jr
1 -1
1-P=_— ¢ (x—M) dz
27 ~y
Write
M=MP+ M(1 - P)
and notice

M™ = (MP)" + (M(1 — P))" .



Spectral condition on M
00@00000

I' closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).

~ closed curve, counterclockwise oriented, with fixed distance to
origin 6, 0 < § < 6 < 1.

Spectral projectors:

1
P=—¢ (z—M)"dz
27 Jr
1 -1
1-P=_— ¢ (x—M) dz
2mi J,
Write
M=MP+M(1-P)
and notice
M"=(MP)" + (M(1—P))".
Here
1 -
H(M(]l—P))”]:’,%z"(z—M) Vdz|| <o
2mi J,
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We have M P = P 4+ N with

N:(M-]l)P—i]f(z—n(z—M)—ldz.
Iy

2
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We have M P = P + N with

N:(M—]I)P:y%(z—l)(z—M)ldz.
r

21

Easy to see: N quasi-nilpotent, i.e. Spec(N) = {0} or equivalently
limyg o0 || N*(|/* = 0.



Spectral condition on M
00080000

We have M P = P + N with

N:(M—]I)P:17{(2—1)(2—M)1dz.
r

21

Easy to see: N quasi-nilpotent, i.e. Spec(N) = {0} or equivalently
limyg o0 || N*(|/* = 0.

Hence, assuming additionally N = 0 gives
lim M" =P
n—oo

in operator norm.
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Uniform convergence: Spectral condition on M
Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 < < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

AN
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For o € T(H) state and p € [0, 1] consider M to be the
generalised depolarising channel, i.e.

M(p) = (1 —p)p + pTr(p)o.
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Example

For o € T(H) state and p € [0, 1] consider M to be the
generalised depolarising channel, i.e.

M(p) = (L —p)p+ pTr(p)o.

One can prove that M satisfies spectral condition with
Spec(M) = {1 —p,1}.
Projector on invariant subspace given by
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In finite dimensions N nilpotent, i.e. N =0 for some m € N.
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In finite dimensions N nilpotent, i.e. N =0 for some m € N.

This gives N = 0 for all contractions M
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This gives N = 0 for all contractions M as otherwise

== £ (-

k=0 0

blows up for n — oc.
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In finite dimensions N nilpotent, i.e. N =0 for some m € N.

This gives N = 0 for all contractions M as otherwise
(PM)" = (P+ N)" = zn: (”) N = mzl (”) Nk
k=0 k k=0 K
blows up for n — oc.
In infinite dimensions this is not the case! There exists

contraction having a spectral gap but non-vanishing quasi-nilpotent
operator corresponding to spectral point on unit circle.



Spectral condition on M
00000000

In finite dimensions N nilpotent, i.e. N =0 for some m € N.

This gives N = 0 for all contractions M as otherwise

== £ (-

k=0 0

blows up for n — oc.

In infinite dimensions this is not the case! There exists
contraction having a spectral gap but non-vanishing quasi-nilpotent
operator corresponding to spectral point on unit circle.

Open question: Can one also find quantum operation or channel
with spectral gap but non-trivial quasi-nilpotent operator?



Introduction  Spectral condition on M Zeno limits under spectral condition ~ Beyond the spectral condition  Strong damping
000000000 0O000000e 000 000

Spectral condition is necessary for uniform convergence

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).
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Spectral condition is necessary for uniform convergence

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of

A]\’ ['n )

Let M be a contraction.
The following are equivalent:

1. (M™), oy converges in operator norm.
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Spectral condition is necessary for uniform convergence

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of

A]\’ ['n )

Let M be a contraction.
The following are equivalent:

1. (M™), oy converges in operator norm.

2. ||M™— P| < C¥" for some 0 <5 <6 <1, C>0andP
being projector onto invariant subspace ker (1 — M) .
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Spectral condition is necessary for uniform convergence

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of

A]\’ ['n )

Let M be a contraction.
The following are equivalent:

1. (M™), oy converges in operator norm.

2. ||M™— P| < C¥" for some 0 <5 <6 <1, C>0andP
being projector onto invariant subspace ker (1 — M) .

3. M satisfies the spectral condition.



Introduction  Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition  Strong damping
000000000 00000000 ©00 000

Quantum Zeno dynamics for bounded generators
Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).
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Quantum Zeno dynamics for bounded generators

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.

2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Let £ bounded and M be a contraction satisfying the spectral
condition. Then

H<M€tc/n) tp[,pPH <C (H\EfH 5n+1>7

for some 0 < § <& <1 and C >0 independent of L and n. Here
P projector on invariant subspace of M.
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Quantum Zeno dynamics for bounded generators

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Let £ bounded and M be a contraction satisfying the spectral
condition. Then

| (sreterm)" - eteerp|| < o (H\EfH 5n+1>7

for some 0 < § <& <1 and C >0 independent of L and n. Here
P projector on invariant subspace of M.

Similar result also for M having finitely many isolated spectral
points on the unit circle.
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Quantum Zeno dynamics for bounded generators

Spectral condition:
1. Spec(M) C Bs(0) U {1}, with 0 <6 < 1.
2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Let £ bounded and M be a contraction satisfying the spectral
condition. Then

| (sreterm)" - eteerp|| < o (H\EfH 5n+1>7

for some 0 < § <& <1 and C >0 independent of L and n. Here
P projector on invariant subspace of M.

Similar result also for M having finitely many isolated spectral
points on the unit circle.



Introduction  Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition =~ Strong damping
000000000 00000000 oeo (o]e] 000

Quantum Zeno dynamics for bounded generators

Proof method: Holomorphic functional calculus to cut out part of
MetE/m with spectrum strictly in unit circle, then use Chernoff's

v/n-Lemma.
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Quantum Zeno dynamics for bounded generators

Proof method: Holomorphic functional calculus to cut out part of

MetE/m with spectrum strictly in unit circle, then use Chernoff's
v/n-Lemma.

Mobus and Rouzé (2021) improved to tight convergence rate
O(1/n).
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Quantum Zeno limit for unbounded generators

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ)

>0
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ) e

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ) e

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.

Then we have

[ Bt & ==

n—0o0

forallz € X.
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ) e

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.

Then we have

[ Bt & ==

n—0o0

forallz € X.

Idea of Proof: Consider Yosida approximants of generator £ given
by £ = kL(k— L)™', ke N.
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ) e

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.

Then we have

[ Bt & ==

n—0o0

forallz € X.

Idea of Proof: Consider Yosida approximants of generator £ given
by £, = kL(k— L)™', k€ N. || Lg|| < k and Ly — Lz for all
—00

x € D(L).
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) C X generator of strongly continuous
contraction semigroup (etﬁ) e

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.

Then we have

H((Mew/">n — etPﬁPP) a:’ —0

n—0o0

forall x € X.

Idea of Proof: Consider Yosida approximants of generator £ given

by £, = kL(k— L)™', k€ N. || Lg|| < k and Ly — Lz for all
—00

x € D(L).
Use quantitiative result for bounded generators L5 and coupled
limit k,n — oo.
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Beyond the spectral condition:

Example

Consider for A € [0,1) (bosonic quantum-limited) attenuator
channel ®4* which is defined on coherent states

o) = elelP/237 a%in) as

23" (Ja)el) = [AaXAal.
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channel ®4* which is defined on coherent states
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Let now M = ®4™. For all € T(H) one can show

lim M"z = Tr(x)|0)0| =: P.

n—0o0
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Beyond the spectral condition:

Example

Consider for A € [0,1) (bosonic quantum-limited) attenuator
channel ®4* which is defined on coherent states

o) = elelP/237 a%in) as
5" (|ofal) = A Aal.
Let now M = ®4™. For all € T(H) one can show
le M"z = Tr(z)|0X0| =: Px.

But
|M™ — P = sup)z), =1 |M"z — Pxl|y
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Beyond the spectral condition:

Example

Consider for A € [0,1) (bosonic quantum-limited) attenuator
channel ®4* which is defined on coherent states

o) = elelP/237 a%in) as
5" (|ofal) = A Aal.
Let now M = ®4™. For all € T(H) one can show

le M"z = Tr(z)|0X0| =: Px.
But
|M™ — P = supygy,— [ M"z — Pa|;
2 sup|ayq| [|M" (JaXer]) = P(jeXel) ]l =
SUP|aya| A" @) A"al — |[0XO[[|s =2  for all n € N.
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Beyond the spectral condition:

Example

Consider for A € [0,1) (bosonic quantum-limited) attenuator
channel ®4* which is defined on coherent states

o) = elelP/237 a%in) as
5" (|ofal) = A Aal.
Let now M = ®4™. For all € T(H) one can show

lim M"z = Tr(x)|0)X0| =: Px.
n—o0
But
|M™ = P|| = supypy, - [ M2 — P}y
> sup|ayal [M" (JaXel) — P(la)al)llr =
SUP|ay(a| A" @) A"al — [0XO[[|1 =2  for all n € N. Hence,
"),en does not converge in operator norm and does therefore
not satisfy the spectral condition.
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Quantum Zeno dynamics without spectral condition

Theorem

Let L be bounded and M be a contraction which satisfies for all
re X

lim M"zx = Puz,

n—oo

for some P € B(X).



Quantum Zeno dynamics without spectral condition

Theorem

Let L be bounded and M be a contraction which satisfies for all
re X

lim M"zx = Puz,

n—oo

for some P € B(X).Then

lim (Metﬁ/")nx — etPLP Py

n—o0
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|dea of the proof
Let £,, := (e'£/™ — 1) n, which satisfies

lim £, =tL, etein =1 + Ly /n.

n—o0
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|dea of the proof
Let £,, := (e'£/™ — 1) n, which satisfies

ILm L, =1L, eein =1 + Ly /n.
Then for x € X

(Metﬁ/”>nx = <M+M£n>nx

n
n
1 ) ) ) )
TS LR I TR YN
k=1 iGAgisc(n)

with discrete simplex

Ak (n) = (il,...,ik)eNk‘ Si<n
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Lemma

Consider (Ly,)nen and M contraction such that lim,, o £, = tL
and s-lim,,_yoo M™ = M. Then for all x € X and k € N we have
i — > MrH=Eiai g ML, - ML, MOy
n—oo nk
iGA’jisc(n)
(tPLP)*
— =
k!
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Lemma

Consider (Ly,)nen and M contraction such that lim,, o £, = tL
and s-lim,,_yoo M™ = M. Then for all x € X and k € N we have
i — > MrH=Eiai g ML, - ML, MOy
n—oo nk
iGA’jisc(n)
(tPLP)*
— =
k!

£ n
(Meﬁ/")na: = <M+Mn> x
n
=M z+) — > MR L, ML, - MP L, M
k=1 ieAgisc(n)



Consider (Ly,)nen and M contraction such that lim,, o £, = tL
and s-lim,,_yoo M™ = M. Then for all x € X and k € N we have

. 1
lim —

n—oo n
iGA’jisc(n)

(tPLP)*
B

(Meﬁ/")na:: <M+M£nn>na:

n
1 . .
=Mz Yy D M-S, Vg,
k=1 ieAgisc(n)

— Pz +
n—o0

k
i (tPLP) v — PLP Py

k!
k=1

3 Mg Vkg . ML, MR

e MRL,MM
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Strong damping

Consider dynamics governed by generator
Liotal = 'WC +L

where KC being, possibly unbounded, generator of strongly
continuous contraction semigroup, £ € B(X) and v > 0.
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Strong damping

Consider dynamics governed by generator
Liotal = 'Y’C + L

where KC being, possibly unbounded, generator of strongly
continuous contraction semigroup, £ € B(X) and v > 0. Note

Liotal generates a strongly continuous semigroup (etml@rﬁ))po
which satisfies -

Hetw<:+c>H < etlell,

We consider strong interaction limit, i.e. 7 — oo.
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Theorem

Let IC with domain D(K) C X be the generator of a strongly
continuous contraction semigroup which satisfies

lim "’z = Pz (2)

Y—00
for all x € X and some P € B(X). Furthermore, let L € B(X).
Then for all t > 0
t(YK+L)

lim e

z = ePEP Py, (3)
~y—00
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|dea of the proof

Here, we only consider v =n € N. Let £, = (et(’”ﬁ/n) — et’C) n.
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|dea of the proof
Here, we only consider v =n € N. Let £,, = (e!F+£/m) — ¢l .
Note

1
KAL) _ K :/ d (est(lC-‘rE/n)e(l—s)th) s
0 dS

1
t/ SHCHL/n) p o (1=8)IK g
nJo
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|dea of the proof

Here, we only consider v = n € N. Let £,, = (e!*H£/m) — ¢tk .
Note
1
KAL) _ K :/ d (est(lC-‘rE/n)e(l—s)th) s
0 ds
1
_ t/ SHCHL/n) p o (1=8)IK g
nJo

Noting by the above that lim,, et KHL/n) — oK \ve see

1
lim £, = t/ S Le(1=9)K g,
0

n—oo
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Hence, e!K+£/n) — ¢tK 4 £ /n and therefore for 2 € X and
M = et® we have
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Hence, e!K+£/m) — ¢tK 4 £ /n and therefore for 2 € X and
M = e* we have

ol(nKAL) ) (et(mﬂ/n))” 2= (M+Ly/n)"x

n
MY S ML, M L AR L, M
k=1 ieAgisc(n)
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Hence, e!K+£/m) — ¢tK 4 £ /n and therefore for 2 € X and
M = e* we have

etnK+L) g — (et(’CJrc/"))n x=(M+Ly/n)"x
"1 . . . .
=M"a+y Y MUERL ML, MR LM
k=1 iGAffisc(n)
k
s (tP fol esmﬁe(l_s)t’CdSP)

— Pz + T
n—s00 — k!
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Hence, e!K+£/m) — ¢tK 4 £ /n and therefore for 2 € X and
M = e* we have

ol(nKAL) ) (et(mﬂ/n))” 2= (M+Ly/n)"x
R0 DS DV BV LSV LR VR
k=1 ieAgisc(n)
k
0 (tP fol esmﬁe(l_s)t’CdSP)

— Pz +
n—o00 — k!

x = etPEP py.
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Where to go further?

e Can one find quantum operations/channels having a spectral
gap but non-trivial quasi-nilpotent part?
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Where to go further?

e Can one find quantum operations/channels having a spectral
gap but non-trivial quasi-nilpotent part?

e Can one extend the result for unbounded generators? Possibly
with a pointwise instead of an uniform boundedness
assumption?

With or without the spectral condition for M?

® Convergence rates beyond spectral condition on M or for

strong damping with unbounded generators?

Thanks for your attention!
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