Zeno limits under spectral conditio

Beyond the spectral condition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strong damping

Quantum Zeno effect and strong damping for infinite dimensional open systems

Robert Salzmann

Joint work with Simon Becker and Nilanjana Datta Annales Henri Poincaré 22 (11), 3795–3840 (2021)

MPQT: From Finite to Infinite Dimensions -Edinburgh, May 2023

Beyond the spectral condition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strong damping 0000

Dynamics in closed quantum systems

For a **closed system** with associated Hilbert space \mathcal{H} the time evolution is governed by Schrödinger's equation

 $\begin{cases} i\partial_t \psi(t) = H\psi(t) \\ \psi(0) = \psi_0, \end{cases}$

with H Hamiltonian of the system.

Beyond the spectral condition

Strong damping 0000

Dynamics in closed quantum systems

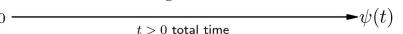
For a **closed system** with associated Hilbert space \mathcal{H} the time evolution is governed by Schrödinger's equation

 $\begin{cases} i\partial_t \psi(t) = H\psi(t) \\ \psi(0) = \psi_0, \end{cases}$

with H Hamiltonian of the system.

Solution given by unitary group $(e^{-itH})_{t\in\mathbb{R}}$, i.e. $\psi(t)=e^{-itH}\psi_0$.

 e^{-itH}



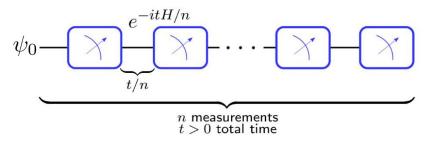
Zeno limits under spectral conditio

Beyond the spectral condition 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strong damping

Quantum Zeno effect in closed systems Simplest Setup: Frequently perform projective measurement $\{|\psi_0\rangle\langle\psi_0|, 1 - |\psi_0\rangle\langle\psi_0|\}$ in time intervals t/n:

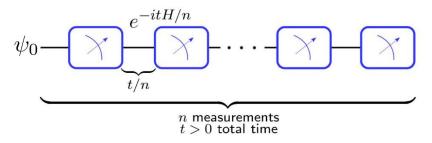


Zeno limits under spectral conditio

Beyond the spectral condition

Strong damping

Quantum Zeno effect in closed systems Simplest Setup: Frequently perform projective measurement $\{|\psi_0\rangle\langle\psi_0|, 1 - |\psi_0\rangle\langle\psi_0|\}$ in time intervals t/n:



Quantum Zeno effect:

 $\begin{aligned} &\operatorname{Prob}(\mathsf{Measure}\ \psi_0\ n\ \mathsf{times}) \\ &= \left\| \left(|\psi_0\rangle\!\langle\psi_0|e^{-itH/n} \right)^n \!\psi_0 \right\|^2 = \left| \langle\psi_0, e^{-itH/n} \psi_0\rangle \right|^{2n} \xrightarrow[n \to \infty]{} 1. \end{aligned}$

System is frozen in its initial state.

Introduction 00000000		Zeno limits under spectral condition	Beyond the spectral condition	Strong da
--------------------------	--	--------------------------------------	-------------------------------	-----------

More generally:

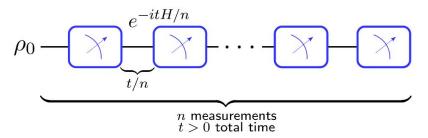
- Mixed intial state $\rho_0 \in \mathcal{T}(\mathcal{H})$, i.e. $\rho_0 \ge 0$ and $\operatorname{Tr}(\rho_0) = 1$.
- General binary projective measurement $\{P, \mathbb{1} P\}$, $P \in \mathcal{B}(\mathcal{H})$ projection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

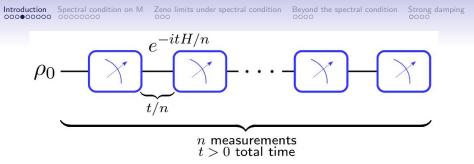
More generally:

- Mixed intial state $\rho_0 \in \mathcal{T}(\mathcal{H})$, i.e. $\rho_0 \ge 0$ and $\operatorname{Tr}(\rho_0) = 1$.
- General binary projective measurement $\{P, \mathbb{1} P\}$, $P \in \mathcal{B}(\mathcal{H})$ projection.

Quantum Zeno setup:

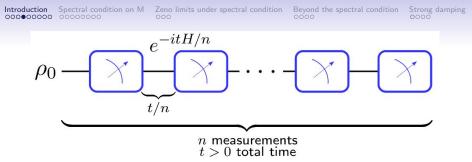


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

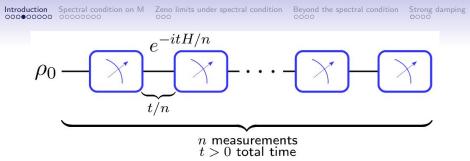
What is the effective dynamics of this process?



What is the effective dynamics of this process? Formally:

$$\left(Pe^{-itH/n}\right)^n \xrightarrow[n \to \infty]{} e^{-itPHP}P.$$
 (1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



What is the effective dynamics of this process? Formally:

$$\left(Pe^{-itH/n}\right)^n \xrightarrow[n \to \infty]{} e^{-itPHP}P.$$
 (1)

Note (1) implies freezing of measurement probabilities (QZE):

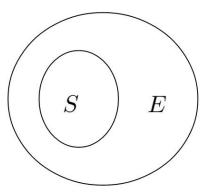
$$\operatorname{Prob}(\operatorname{\mathsf{Measure}} P \ n \ \operatorname{times}) = \operatorname{Tr}\left((Pe^{-itH/n})^n \rho_0 (e^{itH/n}P)^n\right)$$
$$\xrightarrow[n \to \infty]{} \operatorname{Tr}\left(e^{-itPHP} P \rho_0 P e^{itPHP}\right) = \operatorname{Tr}(P \rho_0)$$
$$= \operatorname{Prob}(\operatorname{\mathsf{Measure}} P \ \operatorname{at} \ t = 0).$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Quantum Zeno setup in open quantum systems

What about open quantum systems, generalised measurements/applications of general quantum operations?



Composite Hilbert space $\mathcal{H} \otimes \mathcal{H}_E$.

Introduction

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

Consider open quantum system with time evolution governed by Lindblad equation

$$\begin{cases} \partial_t \rho(t) = \mathcal{L}(\rho(t)) \\ \rho(0) = \rho_0, \end{cases}$$

with \mathcal{L} Lindbladian of the dynamics.

Introduction Spectral condition on M

condition Beyond t

he spectral condition Strong

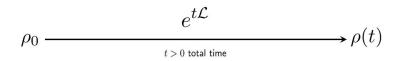
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider **open quantum system** with time evolution governed by Lindblad equation

$$\begin{cases} \partial_t \rho(t) = \mathcal{L}(\rho(t)) \\ \rho(0) = \rho_0, \end{cases}$$

with \mathcal{L} Lindbladian of the dynamics.

Solution given by semigroup $(e^{t\mathcal{L}})_{t\geq 0}$ of CPTP maps, i.e. $\rho(t) = e^{t\mathcal{L}}(\rho_0)$.



Introduction Spectral condition on N 000000000 00000000 condition Beyond t

Beyond the spectral condition

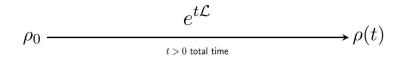
Strong damping

Consider **open quantum system** with time evolution governed by Lindblad equation

$$\begin{cases} \partial_t \rho(t) = \mathcal{L}(\rho(t)) \\ \rho(0) = \rho_0, \end{cases}$$

with $\ensuremath{\mathcal{L}}$ Lindbladian of the dynamics.

Solution given by semigroup $(e^{t\mathcal{L}})_{t\geq 0}$ of CPTP maps, i.e. $\rho(t) = e^{t\mathcal{L}}(\rho_0)$.



 $e^{t\mathcal{L}}$ strongly continuous, i.e. $t\mapsto e^{t\mathcal{L}}(\rho)$ continuous for all ρ .

Introduction Spectral condition on M 000000000 00000000 condition Beyond t

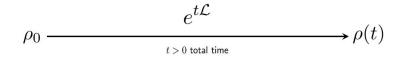
spectral condition Strong da

Consider **open quantum system** with time evolution governed by Lindblad equation

$$\begin{cases} \partial_t \rho(t) = \mathcal{L}(\rho(t)) \\ \rho(0) = \rho_0, \end{cases}$$

with $\ensuremath{\mathcal{L}}$ Lindbladian of the dynamics.

Solution given by semigroup $(e^{t\mathcal{L}})_{t\geq 0}$ of CPTP maps, i.e. $\rho(t) = e^{t\mathcal{L}}(\rho_0)$.



 $e^{t\mathcal{L}}$ strongly continuous, i.e. $t \mapsto e^{t\mathcal{L}}(\rho)$ continuous for all ρ . If \mathcal{L} bounded operator then even $t \mapsto e^{t\mathcal{L}}$ continuous in operator norm.

Consider M quantum operation, i.e. completely positive and trace non-increasing linear map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider M quantum operation, i.e. completely positive and trace non-increasing linear map.

For example generalised measurements: $\{M_i\}_i$ collection of quantum operations such that $\sum_{j} M_{j}$ is trace-preserving.

Beyond the spectral condition

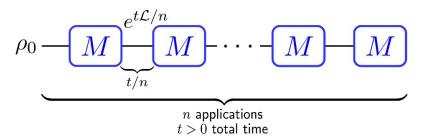
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

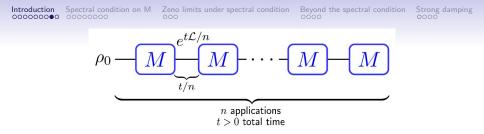
Strong damping

Consider ${\cal M}$ quantum operation, i.e. completely positive and trace non-increasing linear map.

For example generalised measurements: $\{M_j\}_j$ collection of quantum operations such that $\sum_j M_j$ is trace-preserving.

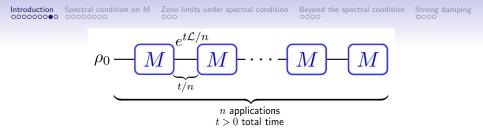
Quantum Zeno setup in open systems: Frequently interleave dynamics by applying quantum operation M





What is the effective dynamics of this process $(Me^{t\mathcal{L}/n})^n$ for $n \to \infty$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

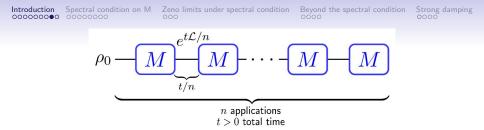


What is the **effective dynamics** of this process $(Me^{t\mathcal{L}/n})^n$ for $n \to \infty$?

• For M = P projection and \mathcal{L} bounded Matolcsi and Shvidkoy proved in 2003

$$\lim_{n \to \infty} (Pe^{t\mathcal{L}/n})^n = e^{tP\mathcal{L}P}P.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



What is the **effective dynamics** of this process $(Me^{t\mathcal{L}/n})^n$ for $n \to \infty$?

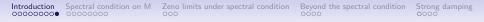
• For M = P projection and \mathcal{L} bounded Matolcsi and Shvidkoy proved in 2003

$$\lim_{n \to \infty} (Pe^{t\mathcal{L}/n})^n = e^{tP\mathcal{L}P}P.$$

• Möbus and Wolf extended in 2019 to quantum operations *M* satisfying a certain spectral condition.

$$\lim_{n \to \infty} (M e^{t\mathcal{L}/n})^n = e^{tP\mathcal{L}P} P,$$

with P being projector on invariant subspace of M, i.e. $\ker(\mathbb{1} - M)$.



• Quantitative version of Möbus' and Wolf's result under generalised spectral condition.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction S	Zeno limits under spectral condition 000	Beyond the spectral condition	Strong damping 0000

- Quantitative version of Möbus' and Wolf's result under generalised spectral condition.
- Proof of necessity and sufficiency of spectral condition for convergence of $(Me^{t\mathcal{L}/n})^n$ in operator norm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 00000000	Zeno limits under spectral condition	Beyond the spectral condition	Strong damping 0000

- Quantitative version of Möbus' and Wolf's result under generalised spectral condition.
- Proof of necessity and sufficiency of spectral condition for convergence of $(Me^{t\mathcal{L}/n})^n$ in operator norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Extension of the result to unbounded generators \mathcal{L} .

Spectral condition on M 00000000	Zeno limits under spectral condition 000	Beyond the spectral condition	Strong damping 0000

- Quantitative version of Möbus' and Wolf's result under generalised spectral condition.
- Proof of necessity and sufficiency of spectral condition for convergence of $\left(Me^{t\mathcal{L}/n}\right)^n$ in operator norm.
- Extension of the result to unbounded generators \mathcal{L} .
- Proof of convergence $(Me^{t\mathcal{L}/n})^n$ in strong operator topology while omitting the spectral condition. Applies for many models in quantum optics.

Spectral condition on M 00000000	Zeno limits under spectral condition	Beyond the spectral condition	Strong damping 0000

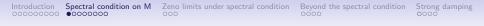
- Quantitative version of Möbus' and Wolf's result under generalised spectral condition.
- Proof of necessity and sufficiency of spectral condition for convergence of $\left(Me^{t\mathcal{L}/n}\right)^n$ in operator norm.
- Extension of the result to unbounded generators \mathcal{L} .
- Proof of convergence $(Me^{t\mathcal{L}/n})^n$ in strong operator topology while omitting the spectral condition. Applies for many models in quantum optics.

• Using similar techniques we also derive strong damping.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider first the case $\mathcal{L} = 0$ for which $(Me^{t\mathcal{L}/n})^n$ simplifies to M^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



Consider first the case $\mathcal{L} = 0$ for which $(Me^{t\mathcal{L}/n})^n$ simplifies to M^n .

Under what conditions does M^n converge in which topology?



Consider first the case $\mathcal{L} = 0$ for which $(Me^{t\mathcal{L}/n})^n$ simplifies to M^n .

Under what conditions does M^n converge in which topology?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $M^n \xrightarrow[n \to \infty]{} P$ then P projector on invariant subspace $\ker (\mathbbm{1} - M)$ on X.

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

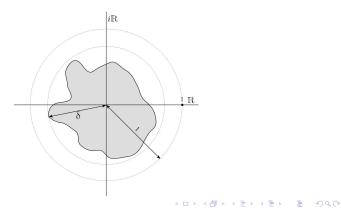
Uniform convergence: Spectral condition on M $\operatorname{Spec}(M) = \left\{ \lambda \in \mathbb{C} \, \middle| \, \lambda \mathbb{1} - M \text{ not invertible} \right\}.$

Uniform convergence: Spectral condition on M $\operatorname{Spec}(M) = \left\{ \lambda \in \mathbb{C} \, \big| \, \lambda \mathbb{1} - M \text{ not invertible} \right\}.$

Spectral condition:

1. Spec
$$(M) \subseteq B_{\delta}(0) \cup \{1\}$$
, with $0 \le \delta < 1$.

2. ...



Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Γ closed, counterclockwise oriented curve in complex plane surrounding 1 but no other point in Spec(M).

 γ closed curve, counterclockwise oriented, with fixed distance to origin $\tilde{\delta}$, $0 < \delta < \tilde{\delta} < 1$.

Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Γ closed, counterclockwise oriented curve in complex plane surrounding 1 but no other point in Spec(M).

 γ closed curve, counterclockwise oriented, with fixed distance to origin $\tilde{\delta}$, $0 < \delta < \tilde{\delta} < 1$.

Spectral projectors:

$$P = \frac{1}{2\pi i} \oint_{\Gamma} (z - M)^{-1} dz$$
$$\mathbb{1} - P = \frac{1}{2\pi i} \oint_{\gamma} (z - M)^{-1} dz$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Γ closed, counterclockwise oriented curve in complex plane surrounding 1 but no other point in Spec(M).

 γ closed curve, counterclockwise oriented, with fixed distance to origin $\tilde{\delta}$, $0 < \delta < \tilde{\delta} < 1$.

Spectral projectors:

$$P = \frac{1}{2\pi i} \oint_{\Gamma} (z - M)^{-1} dz$$
$$\mathbb{1} - P = \frac{1}{2\pi i} \oint_{\gamma} (z - M)^{-1} dz$$

Write

$$M = MP + M(1 - P)$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Γ closed, counterclockwise oriented curve in complex plane surrounding 1 but no other point in Spec(M).

 γ closed curve, counterclockwise oriented, with fixed distance to origin $\tilde{\delta}$, $0 < \delta < \tilde{\delta} < 1$.

Spectral projectors:

$$P = \frac{1}{2\pi i} \oint_{\Gamma} (z - M)^{-1} dz$$
$$\mathbb{1} - P = \frac{1}{2\pi i} \oint_{\gamma} (z - M)^{-1} dz$$

Write

$$M = MP + M(1 - P)$$

and notice

$$M^{n} = (MP)^{n} + (M(\mathbb{1} - P))^{n}$$

 Γ closed, counterclockwise oriented curve in complex plane surrounding 1 but no other point in Spec(M).

 γ closed curve, counterclockwise oriented, with fixed distance to origin $\tilde{\delta}$, $0 < \delta < \tilde{\delta} < 1$.

Spectral projectors:

$$P = \frac{1}{2\pi i} \oint_{\Gamma} (z - M)^{-1} dz$$
$$\mathbb{1} - P = \frac{1}{2\pi i} \oint_{\gamma} (z - M)^{-1} dz$$

Write

$$M = MP + M(1 - P)$$

and notice

$$M^{n} = (MP)^{n} + (M(\mathbb{1} - P))^{n}.$$

Here

$$\|(M(\mathbb{1}-P))^n\| = \left\|\frac{1}{2\pi i} \oint_{\gamma} z^n \left(z-M\right)^{-1} dz\right\| \le C\tilde{\delta}^n.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We have MP = P + N with

$$N = (M - 1) P = \frac{1}{2\pi i} \oint_{\Gamma} (z - 1) (z - M)^{-1} dz.$$

Introduction Spectral condition on M Zeno limits under spectral condition 000 000 000 000 000 000 000 000 000 0	
---	--

We have MP = P + N with

$$N = (M - 1) P = \frac{1}{2\pi i} \oint_{\Gamma} (z - 1) (z - M)^{-1} dz.$$

Easy to see: N quasi-nilpotent, i.e. $\operatorname{Spec}(N) = \{0\}$ or equivalently $\lim_{k\to\infty} \|N^k\|^{1/k} = 0.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction Spectral condition on M Zeno limits under spectral condition 000 000 000 000 000 000 000 000 000 0	
---	--

We have MP = P + N with

$$N = (M - 1) P = \frac{1}{2\pi i} \oint_{\Gamma} (z - 1) (z - M)^{-1} dz.$$

Easy to see: N quasi-nilpotent, i.e. $\operatorname{Spec}(N) = \{0\}$ or equivalently $\lim_{k\to\infty} \|N^k\|^{1/k} = 0.$

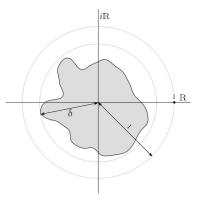
Hence, assuming additionally N = 0 gives

$$\lim_{n \to \infty} M^n = P$$

in operator norm.

Uniform convergence: Spectral condition on M**Spectral condition:**

- 1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \leq \delta < 1$.
- 2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

000000000 00000000

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example

For $\sigma \in \mathcal{T}(\mathcal{H})$ state and $p \in [0,1]$ consider M to be the generalised depolarising channel, i.e.

$$M(\rho) = (1-p)\rho + p\operatorname{Tr}(\rho)\sigma.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

For $\sigma \in \mathcal{T}(\mathcal{H})$ state and $p \in [0,1]$ consider M to be the generalised depolarising channel, i.e.

$$M(\rho) = (1-p)\rho + p \operatorname{Tr}(\rho)\sigma.$$

One can prove that M satisfies spectral condition with $Spec(M) = \{1 - p, 1\}.$ Projector on invariant subspace given by

$$P(\rho) = \operatorname{Tr}(\rho)\sigma.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In finite dimensions N nilpotent, i.e. $N^m = 0$ for some $m \in \mathbb{N}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In finite dimensions N nilpotent, i.e. $N^m = 0$ for some $m \in \mathbb{N}$.

This gives N = 0 for all contractions M

Introduction Spectral condition on M	Zeno limits under spectral condition	Beyond the spectral condition	Strong damping
000000000000000000000000000000000000000	000	0000	0000

In finite dimensions N nilpotent, i.e. $N^m = 0$ for some $m \in \mathbb{N}$. This gives N = 0 for all contractions M as otherwise

$$(PM)^n = (P+N)^n = \sum_{k=0}^n \binom{n}{k} N^k = \sum_{k=0}^{m-1} \binom{n}{k} N^k$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

blows up for $n \to \infty$.

Introduction Spectral condition on M	Zeno limits under spectral condition	Beyond the spectral condition	Strong damping
00000000 0000000	000	0000	0000

In finite dimensions N nilpotent, i.e. $N^m = 0$ for some $m \in \mathbb{N}$. This gives N = 0 for all contractions M as otherwise

$$(PM)^n = (P+N)^n = \sum_{k=0}^n \binom{n}{k} N^k = \sum_{k=0}^{m-1} \binom{n}{k} N^k$$

blows up for $n \to \infty$.

In infinite dimensions this is not the case! There exists contraction having a spectral gap but non-vanishing quasi-nilpotent operator corresponding to spectral point on unit circle.

In finite dimensions N nilpotent, i.e. $N^m = 0$ for some $m \in \mathbb{N}$. This gives N = 0 for all contractions M as otherwise

$$(PM)^n = (P+N)^n = \sum_{k=0}^n \binom{n}{k} N^k = \sum_{k=0}^{m-1} \binom{n}{k} N^k$$

blows up for $n \to \infty$.

In infinite dimensions this is not the case! There exists contraction having a spectral gap but non-vanishing quasi-nilpotent operator corresponding to spectral point on unit circle. **Open question:** Can one also find quantum operation or channel with spectral gap but non-trivial quasi-nilpotent operator?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Spectral condition is necessary for uniform convergence

Spectral condition:

- 1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \leq \delta < 1$.
- 2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

Spectral condition is necessary for uniform convergence

Spectral condition:

1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \le \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of M^n

Let M be a contraction. The following are equivalent:

1. $(M^n)_{n \in \mathbb{N}}$ converges in operator norm.

Spectral condition is necessary for uniform convergence

Spectral condition:

1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \le \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of M^n

Let M be a contraction. The following are equivalent:

- 1. $(M^n)_{n \in \mathbb{N}}$ converges in operator norm.
- 2. $||M^n P|| \leq C \tilde{\delta}^n$ for some $0 \leq \delta < \tilde{\delta} < 1$, $C \geq 0$ and P being projector onto invariant subspace ker (1 - M).

Spectral condition is necessary for uniform convergence

Spectral condition:

1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \leq \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of M^n

Let M be a contraction. The following are equivalent:

- 1. $(M^n)_{n \in \mathbb{N}}$ converges in operator norm.
- 2. $||M^n P|| \le C\delta^n$ for some $0 \le \delta < \delta < 1$, $C \ge 0$ and Pbeing projector onto invariant subspace ker (1 - M).
- 3. M satisfies the spectral condition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum Zeno dynamics for bounded generators **Spectral condition:**

- 1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \leq \delta < 1$.
- 2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Quantum Zeno dynamics for bounded generators **Spectral condition:**

1. Spec $(M) \subseteq B_{\delta}(0) \cup \{1\}$, with $0 \le \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Theorem

Let \mathcal{L} bounded and M be a contraction satisfying the spectral condition. Then

$$\left\| \left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right\| \le C \left(\frac{\|\mathcal{L}\|}{\sqrt{n}} + \tilde{\delta}^{n+1} \right),$$

for some $0 \le \delta < \tilde{\delta} < 1$ and C > 0 independent of \mathcal{L} and n. Here *P* projector on invariant subspace of *M*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Zeno dynamics for bounded generators **Spectral condition:**

1. Spec(M) $\subseteq B_{\delta}(0) \cup \{1\}$, with $0 < \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Theorem

Let \mathcal{L} bounded and M be a contraction satisfying the spectral condition. Then

$$\left\| \left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right\| \le C \left(\frac{\|\mathcal{L}\|}{\sqrt{n}} + \tilde{\delta}^{n+1} \right),$$

for some $0 \le \delta \le \tilde{\delta} \le 1$ and $C \ge 0$ independent of \mathcal{L} and n. Here *P* projector on invariant subspace of *M*.

Similar result also for M having **finitely many isolated spectral points** on the unit circle. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum Zeno dynamics for bounded generators **Spectral condition:**

1. Spec(M) $\subseteq B_{\delta}(0) \cup \{1\}$, with $0 < \delta < 1$.

2. quasi-nilpotent operator at spectral point 1 is zero (diagonalisability at 1).

Theorem

Let \mathcal{L} bounded and M be a contraction satisfying the spectral condition. Then

$$\left\| \left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right\| \le C \left(\frac{\|\mathcal{L}\|}{\sqrt{n}} + \tilde{\delta}^{n+1} \right),$$

for some $0 \le \delta \le \tilde{\delta} \le 1$ and $C \ge 0$ independent of \mathcal{L} and n. Here *P* projector on invariant subspace of *M*.

Similar result also for M having **finitely many isolated spectral points** on the unit circle. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum Zeno dynamics for bounded generators

Proof method: Holomorphic functional calculus to cut out part of $Me^{t\mathcal{L}/n}$ with spectrum strictly in unit circle, then use Chernoff's \sqrt{n} -Lemma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum Zeno dynamics for bounded generators

Proof method: Holomorphic functional calculus to cut out part of $Me^{t\mathcal{L}/n}$ with spectrum strictly in unit circle, then use Chernoff's \sqrt{n} -Lemma.

Möbus and Rouzé (2021) improved to tight convergence rate $\mathcal{O}(1/n).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$. M contraction satisfying the **spectral condition** and furthermore $M\mathcal{L}$ and $\mathcal{L}M$ are densely defined and bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$. M contraction satisfying the **spectral condition** and furthermore $M\mathcal{L}$ and $\mathcal{L}M$ are densely defined and bounded. Then we have

$$\left\| \left(\left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right) x \right\| \xrightarrow[n \to \infty]{} 0$$

for all $x \in X$.

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$. M contraction satisfying the **spectral condition** and furthermore $M\mathcal{L}$ and $\mathcal{L}M$ are densely defined and bounded. Then we have

$$\left\| \left(\left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right) x \right\| \xrightarrow[n \to \infty]{} 0$$

for all $x \in X$.

Idea of Proof: Consider Yosida approximants of generator \mathcal{L} given by $\mathcal{L}_k = k\mathcal{L}(k - \mathcal{L})^{-1}$, $k \in \mathbb{N}$.

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$. M contraction satisfying the **spectral condition** and furthermore $M\mathcal{L}$ and $\mathcal{L}M$ are densely defined and bounded. Then we have

$$\left\| \left(\left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right) x \right\| \xrightarrow[n \to \infty]{} 0$$

for all $x \in X$.

Idea of Proof: Consider Yosida approximants of generator \mathcal{L} given by $\mathcal{L}_k = k\mathcal{L}(k-\mathcal{L})^{-1}$, $k \in \mathbb{N}$. $\|\mathcal{L}_k\| \leq k$ and $\mathcal{L}_k x \longrightarrow \mathcal{L} x$ for all $x \in \mathcal{D}(\mathcal{L}).$

Quantum Zeno limit for unbounded generators

Theorem

Let \mathcal{L} with domain $\mathcal{D}(\mathcal{L}) \subset X$ generator of strongly continuous contraction semigroup $(e^{t\mathcal{L}})_{t>0}$. M contraction satisfying the **spectral condition** and furthermore $M\mathcal{L}$ and $\mathcal{L}M$ are densely defined and bounded. Then we have

$$\left\| \left(\left(M e^{t\mathcal{L}/n} \right)^n - e^{tP\mathcal{L}P} P \right) x \right\| \xrightarrow[n \to \infty]{} 0$$

for all $x \in X$.

Idea of Proof: Consider Yosida approximants of generator \mathcal{L} given by $\mathcal{L}_k = k\mathcal{L}(k-\mathcal{L})^{-1}$, $k \in \mathbb{N}$. $\|\mathcal{L}_k\| \leq k$ and $\mathcal{L}_k x \longrightarrow \mathcal{L} x$ for all $x \in \mathcal{D}(\mathcal{L}).$ Use quantitiative result for bounded generators \mathcal{L}_k and coupled limit $k, n \to \infty$. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

0000

Beyond the spectral condition:

Example

Consider for $\lambda \in [0,1)$ (bosonic quantum-limited) attenuator **channel** Φ_{λ}^{att} which is defined on coherent states $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{n!} |n\rangle$ as

 $\Phi_{\lambda}^{att}(|\alpha\rangle\langle\alpha|) = |\lambda\alpha\rangle\langle\lambda\alpha|.$

OOO

Beyond the spectral condition:

Example

Consider for $\lambda \in [0,1)$ (bosonic quantum-limited) attenuator **channel** Φ^{att}_{λ} which is defined on coherent states $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n = \frac{\alpha^n}{n!}} |n\rangle$ as

 $\Phi_{\lambda}^{att}(|\alpha\rangle\langle\alpha|) = |\lambda\alpha\rangle\langle\lambda\alpha|.$

Let now $M = \Phi_{\lambda}^{att}$. For all $x \in \mathcal{T}(\mathcal{H})$ one can show

$$\lim_{n \to \infty} M^n x = \operatorname{Tr}(x)|0\rangle\!\langle 0| =: Px.$$

OOO

Beyond the spectral condition:

Example

Consider for $\lambda \in [0,1)$ (bosonic quantum-limited) attenuator **channel** Φ^{att}_{λ} which is defined on coherent states $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n = \frac{\alpha^n}{n!}} |n\rangle$ as

 $\Phi_{\lambda}^{att}(|\alpha\rangle\!\langle\alpha|) = |\lambda\alpha\rangle\!\langle\lambda\alpha|.$

Let now $M = \Phi_{\lambda}^{att}$. For all $x \in \mathcal{T}(\mathcal{H})$ one can show

$$\lim_{n \to \infty} M^n x = \operatorname{Tr}(x)|0\rangle\!\langle 0| =: Px.$$

But $||M^n - P|| = \sup_{||x||_1=1} ||M^n x - Px||_1$

OOO

Beyond the spectral condition:

Example

Consider for $\lambda \in [0,1)$ (bosonic quantum-limited) attenuator **channel** Φ_{λ}^{att} which is defined on coherent states $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n = \frac{\alpha^n}{n!}} |n\rangle$ as

 $\Phi_{\lambda}^{att}(|\alpha\rangle\langle\alpha|) = |\lambda\alpha\rangle\langle\lambda\alpha|.$

Let now $M = \Phi_{\lambda}^{att}$. For all $x \in \mathcal{T}(\mathcal{H})$ one can show

$$\lim_{n \to \infty} M^n x = \operatorname{Tr}(x)|0\rangle\!\langle 0| =: Px$$

But

$$\begin{split} \|M^n - P\| &= \sup_{\|x\|_1 = 1} \|M^n x - Px\|_1 \\ &\geq \sup_{|\alpha\rangle\langle\alpha|} \|M^n(|\alpha\rangle\langle\alpha|) - P(|\alpha\rangle\langle\alpha|)\|_1 = \\ &\sup_{|\alpha\rangle\langle\alpha|} \||\lambda^n \alpha\rangle\langle\lambda^n \alpha| - |0\rangle\langle 0|\|_1 = 2 \quad \text{for all } n \in \mathbb{N}. \end{split}$$

OOO

Beyond the spectral condition:

Example

Consider for $\lambda \in [0,1)$ (bosonic quantum-limited) attenuator **channel** Φ^{att}_{λ} which is defined on coherent states $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n = \frac{\alpha^n}{n!}} |n\rangle$ as

 $\Phi_{\lambda}^{att}(|\alpha\rangle\!\langle\alpha|) = |\lambda\alpha\rangle\!\langle\lambda\alpha|.$

Let now $M = \Phi_{\lambda}^{att}$. For all $x \in \mathcal{T}(\mathcal{H})$ one can show

$$\lim_{n \to \infty} M^n x = \operatorname{Tr}(x)|0\rangle\!\langle 0| =: Px$$

But

 $||M^n - P|| = \sup_{||x||_1=1} ||M^n x - Px||_1$ $\geq \sup_{|\alpha\rangle\langle\alpha|} \|M^n(|\alpha\rangle\langle\alpha|) - P(|\alpha\rangle\langle\alpha|)\|_1 =$ $\sup_{|\alpha\rangle\langle\alpha|} \|\lambda^n \alpha\rangle\langle\lambda^n \alpha| - |0\rangle\langle 0|\|_1 = 2$ for all $n \in \mathbb{N}$. Hence, $(M^n)_{n \in \mathbb{N}}$ does not converge in operator norm and does therefore not satisfy the spectral condition.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum Zeno dynamics without spectral condition

Theorem

Let \mathcal{L} be bounded and M be a contraction which satisfies for all $x \in X$

$$\lim_{n \to \infty} M^n x = P x,$$

for some $P \in \mathcal{B}(X)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum Zeno dynamics without spectral condition

Theorem

Let \mathcal{L} be bounded and M be a contraction which satisfies for all $x \in X$

$$\lim_{n \to \infty} M^n x = P x,$$

for some $P \in \mathcal{B}(X)$. Then

$$\lim_{n \to \infty} \left(M e^{t \mathcal{L}/n} \right)^n x = e^{t P \mathcal{L} P} P x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Idea of the proof

Let
$$\mathcal{L}_n := \left(e^{t\mathcal{L}/n} - \mathbb{1}\right)n$$
, which satisfies

$$\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}, \qquad e^{t\mathcal{L}/n} = \mathbb{1} + \mathcal{L}_n/n.$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition

0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Idea of the proof

Let
$$\mathcal{L}_n := \left(e^{t\mathcal{L}/n} - \mathbb{1}\right)n$$
, which satisfies

$$\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}, \qquad e^{t\mathcal{L}/n} = \mathbb{1} + \mathcal{L}_n/n.$$

Then for $x \in X$

$$\left(Me^{t\mathcal{L}/n}\right)^n x = \left(M + M\frac{\mathcal{L}_n}{n}\right)^n x$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition

0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Idea of the proof

Let
$$\mathcal{L}_n := \left(e^{t\mathcal{L}/n} - \mathbb{1}\right)n$$
, which satisfies

$$\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}, \qquad e^{t\mathcal{L}/n} = \mathbb{1} + \mathcal{L}_n/n.$$

Then for $x \in X$

$$\left(Me^{t\mathcal{L}/n}\right)^n x = \left(M + M\frac{\mathcal{L}_n}{n}\right)^n x$$
$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\mathsf{disc}}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x.$$

with discrete simplex

$$\Delta^k_{\mathsf{disc}}(n) = \left\{ (i_1, \dots, i_k) \in \mathbb{N}^k \mid \sum_{l=1}^k i_l \le n \right\}.$$

Lemma

Consider $(\mathcal{L}_n)_{n \in \mathbb{N}}$ and M contraction such that $\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}$ and $s - \lim_{n \to \infty} M^n = M$. Then for all $x \in X$ and $k \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \frac{1}{n^k} \sum_{i \in \Delta_{disc}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x$$
$$= \frac{(tP\mathcal{L}P)^k}{k!} x$$

Lemma

Consider $(\mathcal{L}_n)_{n \in \mathbb{N}}$ and M contraction such that $\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}$ and $s - \lim_{n \to \infty} M^n = M$. Then for all $x \in X$ and $k \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \frac{1}{n^k} \sum_{i \in \Delta_{disc}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x$$
$$= \frac{(tP\mathcal{L}P)^k}{k!} x$$

$$\left(Me^{\mathcal{L}/n}\right)^n x = \left(M + M\frac{\mathcal{L}_n}{n}\right)^n x$$
$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\mathsf{disc}}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x$$

Lemma

Consider $(\mathcal{L}_n)_{n \in \mathbb{N}}$ and M contraction such that $\lim_{n \to \infty} \mathcal{L}_n = t\mathcal{L}$ and $s - \lim_{n \to \infty} M^n = M$. Then for all $x \in X$ and $k \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \frac{1}{n^k} \sum_{i \in \Delta_{disc}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x$$
$$= \frac{(tP\mathcal{L}P)^k}{k!} x$$

$$\left(M e^{\mathcal{L}/n} \right)^n x = \left(M + M \frac{\mathcal{L}_n}{n} \right)^n x$$

$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\mathrm{disc}}^k(n)} M^{n+1-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k} \mathcal{L}_n \cdots M^{i_2} \mathcal{L}_n M^{i_1-1} x$$

$$\xrightarrow[n \to \infty]{} Px + \sum_{k=1}^\infty \frac{(tP\mathcal{L}P)^k}{k!} x = e^{tP\mathcal{L}P} Px.$$

Strong damping • 0 0 0

Strong damping

Consider dynamics governed by generator

$$\mathcal{L}_{\mathsf{total}} = \gamma \mathcal{K} + \mathcal{L}$$

where \mathcal{K} being, possibly unbounded, generator of strongly continuous contraction semigroup, $\mathcal{L} \in \mathcal{B}(X)$ and $\gamma \geq 0$.

Beyond the spectral condition

Strong damping

Strong damping

Consider dynamics governed by generator

$$\mathcal{L}_{\mathsf{total}} = \gamma \mathcal{K} + \mathcal{L}$$

where \mathcal{K} being, possibly unbounded, generator of strongly continuous contraction semigroup, $\mathcal{L} \in \mathcal{B}(X)$ and $\gamma \geq 0$. Note

 $\mathcal{L}_{\text{total}}$ generates a strongly continuous semigroup $\big(e^{t(\gamma\mathcal{K}+\mathcal{L})}\big)_{t\geq 0}$ which satisfies

$$\left\|e^{t(\gamma\mathcal{K}+\mathcal{L})}\right\| \le e^{t\|\mathcal{L}\|}.$$

Strong damping

Consider dynamics governed by generator

$$\mathcal{L}_{\mathsf{total}} = \gamma \mathcal{K} + \mathcal{L}$$

where \mathcal{K} being, possibly unbounded, generator of strongly continuous contraction semigroup, $\mathcal{L} \in \mathcal{B}(X)$ and $\gamma \geq 0$. Note

 $\mathcal{L}_{\text{total}}$ generates a strongly continuous semigroup $\left(e^{t(\gamma \mathcal{K}+\mathcal{L})}\right)_{t>0}$ which satisfies

$$\left\|e^{t(\gamma\mathcal{K}+\mathcal{L})}\right\| \le e^{t\|\mathcal{L}\|}.$$

We consider strong interaction limit, i.e. $\gamma \to \infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Spectral condition on M	Zer
000000000	0000000	00

no limits under spectral condition Beyond the spectral condition Strong damping

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0000

Theorem

Let \mathcal{K} with domain $\mathcal{D}(\mathcal{K}) \subset X$ be the generator of a strongly continuous contraction semigroup which satisfies

$$\lim_{\gamma \to \infty} e^{\gamma \mathcal{K}} x = P x \tag{2}$$

for all $x \in X$ and some $P \in \mathcal{B}(X)$. Furthermore, let $\mathcal{L} \in \mathcal{B}(X)$. Then for all t > 0

$$\lim_{\gamma \to \infty} e^{t(\gamma \mathcal{K} + \mathcal{L})} x = e^{tP\mathcal{L}P} Px.$$
(3)

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

0000

Idea of the proof

Here, we only consider $\gamma = n \in \mathbb{N}$. Let $\mathcal{L}_n = (e^{t(\mathcal{K} + \mathcal{L}/n)} - e^{t\mathcal{K}}) n$.

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

0000

Idea of the proof

Here, we only consider $\gamma = n \in \mathbb{N}$. Let $\mathcal{L}_n = (e^{t(\mathcal{K} + \mathcal{L}/n)} - e^{t\mathcal{K}}) n$. Note

$$e^{t(\mathcal{K}+\mathcal{L}/n)} - e^{t\mathcal{K}} = \int_0^1 \frac{d}{ds} \left(e^{st(\mathcal{K}+\mathcal{L}/n)} e^{(1-s)t\mathcal{K}} \right) ds$$
$$= \frac{t}{n} \int_0^1 e^{st(\mathcal{K}+\mathcal{L}/n)} \mathcal{L} e^{(1-s)t\mathcal{K}} ds.$$

Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

0000

Idea of the proof

Here, we only consider $\gamma = n \in \mathbb{N}$. Let $\mathcal{L}_n = (e^{t(\mathcal{K} + \mathcal{L}/n)} - e^{t\mathcal{K}}) n$. Note

$$e^{t(\mathcal{K}+\mathcal{L}/n)} - e^{t\mathcal{K}} = \int_0^1 \frac{d}{ds} \left(e^{st(\mathcal{K}+\mathcal{L}/n)} e^{(1-s)t\mathcal{K}} \right) ds$$
$$= \frac{t}{n} \int_0^1 e^{st(\mathcal{K}+\mathcal{L}/n)} \mathcal{L} e^{(1-s)t\mathcal{K}} ds.$$

Noting by the above that $\lim_{n\to\infty}e^{t(\mathcal{K}+\mathcal{L}/n)}=e^{t\mathcal{K}}$ we see

$$\lim_{n \to \infty} \mathcal{L}_n = t \int_0^1 e^{st\mathcal{K}} \mathcal{L} e^{(1-s)t\mathcal{K}} ds.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hence, $e^{t(\mathcal{K}+\mathcal{L}/n)} = e^{t\mathcal{K}} + \mathcal{L}_n/n$ and therefore for $x \in X$ and $M \equiv e^{t\mathcal{K}}$ we have

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hence,
$$e^{t(\mathcal{K}+\mathcal{L}/n)}=e^{t\mathcal{K}}+\mathcal{L}_n/n$$
 and therefore for $x\in X$ and $M\equiv e^{t\mathcal{K}}$ we have

$$e^{t(n\mathcal{K}+\mathcal{L})}x = \left(e^{t(\mathcal{K}+\mathcal{L}/n)}\right)^n x = (M+\mathcal{L}_n/n)^n x$$
$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\text{disc}}^k(n)} M^{n-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k-1} \mathcal{L}_n \cdots M^{i_2-1} \mathcal{L}_n M^{i_1-1} x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hence,
$$e^{t(\mathcal{K}+\mathcal{L}/n)}=e^{t\mathcal{K}}+\mathcal{L}_n/n$$
 and therefore for $x\in X$ and $M\equiv e^{t\mathcal{K}}$ we have

$$e^{t(n\mathcal{K}+\mathcal{L})}x = \left(e^{t(\mathcal{K}+\mathcal{L}/n)}\right)^n x = (M+\mathcal{L}_n/n)^n x$$
$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\mathsf{disc}}^k(n)} M^{n-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k-1} \mathcal{L}_n \cdots M^{i_2-1} \mathcal{L}_n M^{i_1-1} x$$
$$\xrightarrow[n \to \infty]{} Px + \sum_{k=1}^\infty \frac{\left(tP \int_0^1 e^{st\mathcal{K}} \mathcal{L}e^{(1-s)t\mathcal{K}} dsP\right)^k}{k!} x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hence,
$$e^{t(\mathcal{K}+\mathcal{L}/n)}=e^{t\mathcal{K}}+\mathcal{L}_n/n$$
 and therefore for $x\in X$ and $M\equiv e^{t\mathcal{K}}$ we have

$$e^{t(n\mathcal{K}+\mathcal{L})}x = \left(e^{t(\mathcal{K}+\mathcal{L}/n)}\right)^n x = (M+\mathcal{L}_n/n)^n x$$
$$= M^n x + \sum_{k=1}^n \frac{1}{n^k} \sum_{i \in \Delta_{\mathsf{disc}}^k(n)} M^{n-\sum_{l=1}^k i_l} \mathcal{L}_n M^{i_k-1} \mathcal{L}_n \cdots M^{i_2-1} \mathcal{L}_n M^{i_1-1} x$$
$$\xrightarrow[n \to \infty]{} Px + \sum_{k=1}^\infty \frac{\left(tP \int_0^1 e^{st\mathcal{K}} \mathcal{L}e^{(1-s)t\mathcal{K}} dsP\right)^k}{k!} x = e^{tP\mathcal{L}P} Px.$$

Introduction Spectral condition on M

eno limits under spectral conditio

Beyond the spectral condition 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strong damping

Where to go further?

• Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?

Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

000

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption?

Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

000

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption?

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption? With or without the spectral condition for M?

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption? With or without the spectral condition for M?
- Convergence rates beyond spectral condition on M or for strong damping with unbounded generators?

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption? With or without the spectral condition for M?
- Convergence rates beyond spectral condition on M or for strong damping with unbounded generators?

Where to go further?

- Can one find quantum operations/channels having a spectral gap but non-trivial quasi-nilpotent part?
- Can one extend the result for unbounded generators? Possibly with a pointwise instead of an uniform boundedness assumption? With or without the spectral condition for M?
- Convergence rates beyond spectral condition on M or for strong damping with unbounded generators?

Thanks for your attention!