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Annales Henri Poincaré 22 (11), 3795–3840 (2021)

MPQT: From Finite to Infinite Dimensions -
Edinburgh, May 2023



Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

Dynamics in closed quantum systems

For a closed system with associated Hilbert space H the time
evolution is governed by Schrödinger’s equation{

i∂tψ(t) = Hψ(t)

ψ(0) = ψ0,

with H Hamiltonian of the system.

Solution given by unitary group
(
e−itH

)
t∈R,

i.e. ψ(t) = e−itHψ0.
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Quantum Zeno effect in closed systems
Simplest Setup: Frequently perform projective measurement
{|ψ0⟩⟨ψ0|,1− |ψ0⟩⟨ψ0|} in time intervals t/n:

Quantum Zeno effect:

Prob(Measure ψ0 n times)

=
∥∥∥(|ψ0⟩⟨ψ0|e−itH/n

)n
ψ0

∥∥∥2 = ∣∣⟨ψ0, e
−itH/nψ0⟩

∣∣2n −−−→
n→∞

1.

System is frozen in its initial state.
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More generally:

• Mixed intial state ρ0 ∈ T (H), i.e. ρ0 ≥ 0 and Tr(ρ0) = 1.

• General binary projective measurement {P,1− P}, P ∈ B(H)
projection.

Quantum Zeno setup:
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What is the effective dynamics of this process?

Formally:(
Pe−itH/n

)n
−−−→
n→∞

e−itPHPP. (1)

Note (1) implies freezing of measurement probabilities (QZE):

Prob(Measure P n times) = Tr
(
(Pe−itH/n)nρ0(e

itH/nP )n
)

−−−→
n→∞

Tr
(
e−itPHPPρ0Pe

itPHP
)
= Tr(Pρ0)

= Prob(Measure P at t = 0).



Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

What is the effective dynamics of this process? Formally:(
Pe−itH/n

)n
−−−→
n→∞

e−itPHPP. (1)

Note (1) implies freezing of measurement probabilities (QZE):

Prob(Measure P n times) = Tr
(
(Pe−itH/n)nρ0(e

itH/nP )n
)

−−−→
n→∞

Tr
(
e−itPHPPρ0Pe

itPHP
)
= Tr(Pρ0)

= Prob(Measure P at t = 0).



Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

What is the effective dynamics of this process? Formally:(
Pe−itH/n

)n
−−−→
n→∞

e−itPHPP. (1)

Note (1) implies freezing of measurement probabilities (QZE):

Prob(Measure P n times) = Tr
(
(Pe−itH/n)nρ0(e

itH/nP )n
)

−−−→
n→∞

Tr
(
e−itPHPPρ0Pe

itPHP
)
= Tr(Pρ0)

= Prob(Measure P at t = 0).



Introduction Spectral condition on M Zeno limits under spectral condition Beyond the spectral condition Strong damping

Quantum Zeno setup in open quantum systems

What about open quantum systems, generalised
measurements/applications of general quantum operations?

Composite Hilbert space H⊗HE .
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Consider open quantum system with time evolution governed by
Lindblad equation {

∂tρ(t) = L(ρ(t))
ρ(0) = ρ0,

with L Lindbladian of the dynamics.

Solution given by semigroup
(
etL

)
t≥0

of CPTP maps,

i.e. ρ(t) = etL(ρ0).

etL strongly continuous, i.e. t 7→ etL(ρ) continuous for all ρ.
If L bounded operator then even t 7→ etL continuous in operator
norm.
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Consider M quantum operation, i.e. completely positive and trace
non-increasing linear map.

For example generalised measurements: {Mj}j collection of
quantum operations such that

∑
j Mj is trace-preserving.

Quantum Zeno setup in open systems: Frequently interleave
dynamics by applying quantum operation M
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What is the effective dynamics of this process
(
MetL/n

)n
for

n→ ∞?

• For M = P projection and L bounded Matolcsi and Shvidkoy
proved in 2003

lim
n→∞

(PetL/n)n = etPLPP.

• Möbus and Wolf extended in 2019 to quantum operations M
satisfying a certain spectral condition.

lim
n→∞

(MetL/n)n = etPLPP,

with P being projector on invariant subspace of M , i.e.
ker(1−M).
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Here:

• Quantitative version of Möbus’ and Wolf’s result under
generalised spectral condition.

• Proof of necessity and sufficiency of spectral condition for
convergence of

(
MetL/n

)n
in operator norm.

• Extension of the result to unbounded generators L.
• Proof of convergence

(
MetL/n

)n
in strong operator topology

while omitting the spectral condition. Applies for many
models in quantum optics.

• Using similar techniques we also derive strong damping.
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In the following we consider a general Banach space X and M
contraction, i.e. ∥M∥ ≤ 1, and

(
etL

)
t≥0

contraction semigroup on
X.

Consider first the case L = 0 for which
(
MetL/n

)n
simplifies to

Mn.

Under what conditions does Mn converge in which topology?

If Mn −−−→
n→∞

P then P projector on invariant subspace

ker (1−M) on X.
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Uniform convergence: Spectral condition on M
Spec(M) =

{
λ ∈ C

∣∣λ1−M not invertible
}
.

Spectral condition:

1. Spec(M) ⊆ Bδ(0) ∪ {1}, with 0 ≤ δ < 1.

2. ...
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Γ closed, counterclockwise oriented curve in complex plane
surrounding 1 but no other point in Spec(M).
γ closed curve, counterclockwise oriented, with fixed distance to
origin δ̃, 0 < δ < δ̃ < 1.

Spectral projectors:

P =
1

2πi

∮
Γ
(z −M)−1 dz

1− P =
1

2πi

∮
γ
(z −M)−1 dz

Write

M =MP +M(1− P )

and notice

Mn = (MP )n + (M(1− P ))n .

Here

∥(M(1− P ))n∥ =

∥∥∥∥ 1

2πi

∮
γ
zn (z −M)−1 dz

∥∥∥∥ ≤ Cδ̃n.
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We have MP = P +N with

N = (M − 1)P =
1

2πi

∮
Γ
(z − 1) (z −M)−1 dz.

Easy to see: N quasi-nilpotent, i.e. Spec(N) = {0} or equivalently
limk→∞ ∥Nk∥1/k = 0.

Hence, assuming additionally N = 0 gives

lim
n→∞

Mn = P

in operator norm.
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Uniform convergence: Spectral condition on M
Spectral condition:

1. Spec(M) ⊆ Bδ(0) ∪ {1}, with 0 ≤ δ < 1.

2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).
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Example

For σ ∈ T (H) state and p ∈ [0, 1] consider M to be the
generalised depolarising channel, i.e.

M(ρ) = (1− p)ρ+ pTr(ρ)σ.

One can prove that M satisfies spectral condition with
Spec(M) = {1− p, 1}.
Projector on invariant subspace given by

P (ρ) = Tr(ρ)σ.
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In finite dimensions N nilpotent, i.e. Nm = 0 for some m ∈ N.

This gives N = 0 for all contractions M as otherwise

(PM)n = (P +N)n =

n∑
k=0

(
n

k

)
Nk =

m−1∑
k=0

(
n

k

)
Nk

blows up for n→ ∞.

In infinite dimensions this is not the case! There exists
contraction having a spectral gap but non-vanishing quasi-nilpotent
operator corresponding to spectral point on unit circle.
Open question: Can one also find quantum operation or channel
with spectral gap but non-trivial quasi-nilpotent operator?
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Spectral condition is necessary for uniform convergence

Spectral condition:

1. Spec(M) ⊆ Bδ(0) ∪ {1}, with 0 ≤ δ < 1.

2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Proposition (Equivalent conditions for uniform convergence of
Mn)

Let M be a contraction.
The following are equivalent:

1. (Mn)n∈N converges in operator norm.

2. ∥Mn − P∥ ≤ Cδ̃n for some 0 ≤ δ < δ̃ < 1, C ≥ 0 and P
being projector onto invariant subspace ker (1−M) .

3. M satisfies the spectral condition.
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Let M be a contraction.
The following are equivalent:

1. (Mn)n∈N converges in operator norm.

2. ∥Mn − P∥ ≤ Cδ̃n for some 0 ≤ δ < δ̃ < 1, C ≥ 0 and P
being projector onto invariant subspace ker (1−M) .

3. M satisfies the spectral condition.
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Quantum Zeno dynamics for bounded generators
Spectral condition:

1. Spec(M) ⊆ Bδ(0) ∪ {1}, with 0 ≤ δ < 1.

2. quasi-nilpotent operator at spectral point 1 is zero
(diagonalisability at 1).

Theorem

Let L bounded and M be a contraction satisfying the spectral
condition. Then∥∥∥(MetL/n

)n
− etPLPP

∥∥∥ ≤ C

(
∥L∥√
n

+ δ̃n+1

)
,

for some 0 ≤ δ < δ̃ < 1 and C > 0 independent of L and n. Here
P projector on invariant subspace of M .

Similar result also for M having finitely many isolated spectral
points on the unit circle.
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Quantum Zeno dynamics for bounded generators

Proof method: Holomorphic functional calculus to cut out part of
MetL/n with spectrum strictly in unit circle, then use Chernoff’s√
n-Lemma.

Möbus and Rouzé (2021) improved to tight convergence rate
O(1/n).
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Quantum Zeno limit for unbounded generators

Theorem

Let L with domain D(L) ⊂ X generator of strongly continuous
contraction semigroup

(
etL

)
t≥0

.

M contraction satisfying the spectral condition and furthermore
ML and LM are densely defined and bounded.
Then we have∥∥∥((MetL/n

)n
− etPLPP

)
x
∥∥∥ −−−→

n→∞
0

for all x ∈ X.

Idea of Proof: Consider Yosida approximants of generator L given
by Lk = kL(k−L)−1, k ∈ N. ∥Lk∥ ≤ k and Lkx −−−→

k→∞
Lx for all

x ∈ D(L).
Use quantitiative result for bounded generators Lk and coupled
limit k, n→ ∞.
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Beyond the spectral condition:

Example

Consider for λ ∈ [0, 1) (bosonic quantum-limited) attenuator
channel Φatt

λ which is defined on coherent states

|α⟩ = e−|α|2/2∑
n

αn

n! |n⟩ as

Φatt
λ (|α⟩⟨α|) = |λα⟩⟨λα|.

Let now M = Φatt
λ . For all x ∈ T (H) one can show

lim
n→∞

Mnx = Tr(x)|0⟩⟨0| =: Px.

But
∥Mn − P∥ = sup∥x∥1=1 ∥Mnx− Px∥1
≥ sup|α⟩⟨α| ∥Mn(|α⟩⟨α|)− P (|α⟩⟨α|)∥1 =
sup|α⟩⟨α| ∥|λnα⟩⟨λnα| − |0⟩⟨0|∥1 = 2 for all n ∈ N. Hence,
(Mn)n∈N does not converge in operator norm and does therefore
not satisfy the spectral condition.
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Quantum Zeno dynamics without spectral condition

Theorem

Let L be bounded and M be a contraction which satisfies for all
x ∈ X

lim
n→∞

Mnx = Px,

for some P ∈ B(X).

Then

lim
n→∞

(
MetL/n

)n
x = etPLPPx.
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Idea of the proof
Let Ln :=

(
etL/n − 1

)
n, which satisfies

lim
n→∞

Ln = tL, etL/n = 1+ Ln/n.

Then for x ∈ X(
MetL/n

)n
x =

(
M +M

Ln

n

)n

x

=Mnx+
n∑

k=1

1

nk

∑
i∈∆k

disc(n)

Mn+1−
∑k

l=1 ilLnM
ikLn · · ·M i2LnM

i1−1x.

with discrete simplex

∆k
disc(n) =

{
(i1, . . . , ik) ∈ Nk

∣∣∣ k∑
l=1

il ≤ n

}
.
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Lemma

Consider (Ln)n∈N and M contraction such that limn→∞ Ln = tL
and s- limn→∞Mn =M . Then for all x ∈ X and k ∈ N we have

lim
n→∞

1

nk

∑
i∈∆k

disc(n)

Mn+1−
∑k

l=1 ilLnM
ikLn · · ·M i2LnM

i1−1x

=
(tPLP )k

k!
x

(
MeL/n

)n
x =

(
M +M

Ln

n

)n

x

=Mnx+
n∑

k=1

1

nk

∑
i∈∆k

disc(n)

Mn+1−
∑k

l=1 ilLnM
ikLn · · ·M i2LnM

i1−1x

−−−→
n→∞

Px+

∞∑
k=1

(tPLP )k

k!
x = etPLPPx.
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Strong damping

Consider dynamics governed by generator

Ltotal = γK + L

where K being, possibly unbounded, generator of strongly
continuous contraction semigroup, L ∈ B(X) and γ ≥ 0.

Note

Ltotal generates a strongly continuous semigroup
(
et(γK+L))

t≥0
which satisfies ∥∥∥et(γK+L)

∥∥∥ ≤ et∥L∥.

We consider strong interaction limit, i.e. γ → ∞.
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Theorem

Let K with domain D(K) ⊂ X be the generator of a strongly
continuous contraction semigroup which satisfies

lim
γ→∞

eγKx = Px (2)

for all x ∈ X and some P ∈ B(X). Furthermore, let L ∈ B(X).
Then for all t > 0

lim
γ→∞

et(γK+L)x = etPLPPx. (3)
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Idea of the proof

Here, we only consider γ = n ∈ N. Let Ln =
(
et(K+L/n) − etK

)
n.

Note

et(K+L/n) − etK =

∫ 1

0

d

ds

(
est(K+L/n)e(1−s)tK

)
ds

=
t

n

∫ 1

0
est(K+L/n)Le(1−s)tKds.

Noting by the above that limn→∞ et(K+L/n) = etK we see

lim
n→∞

Ln = t

∫ 1

0
estKLe(1−s)tKds.
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Hence, et(K+L/n) = etK + Ln/n and therefore for x ∈ X and
M ≡ etK we have

et(nK+L)x =
(
et(K+L/n)

)n
x = (M + Ln/n)

n x

=Mnx+
n∑

k=1

1

nk

∑
i∈∆k

disc(n)

Mn−
∑k

l=1 ilLnM
ik−1Ln · · ·M i2−1LnM

i1−1x

−−−→
n→∞

Px+
∞∑
k=1

(
tP

∫ 1
0 e

stKLe(1−s)tKdsP
)k

k!
x

= etPLPPx.
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Where to go further?

• Can one find quantum operations/channels having a spectral
gap but non-trivial quasi-nilpotent part?

• Can one extend the result for unbounded generators? Possibly
with a pointwise instead of an uniform boundedness
assumption?

With or without the spectral condition for M?

• Convergence rates beyond spectral condition on M or for
strong damping with unbounded generators?

Thanks for your attention!
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