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Examples

Mean field limit  (N→, permutation symmetry)

Classical limit  (ħ→0)

Infinite volume limit (lattice system) 

Continuum limits (lattice spacing →0, renormalization) 

Continuum limits (repeated → continuous measurement) 

Features
Not just a parameter, structure may change in the limit

Limit in norm for states and/or observables

General results do some of the work for

• Limit space

• Dynamics

• Equilibrium states



Soft inductive limits

Each term in a sequence/net 

lives in a different universe

Then how can they be called similar?

Introduce comparison maps

These are the conceptual basis of 

the limit scheme



Soft inductive limits

Indices for the limit: a directed set (N,>)

Nets (xn)nN, xnEn = Banach space 

Comparison maps  jnm:Em→En for n>m, 

such that

• each jnm is linear, ||jnm||1

• system is asymptotically transitive: 

limklimsupn||(jnm− jnk jkm)xm||=0     xmEm

More (or less) structure as needed: jnm then

completely positive, unital, homomorphism



Soft inductive limits

A nets (xnEn )nN is called j-convergent,

if    limklimsupn||xn− jnmxm||=0. 

• E is complete with the norm ||x|| =limsupn||xn||

• For fixed xmEm the basic net yn= jnmxm converges

• Define jm:Em→E by jm xm:=j-limn yn

• Basic nets are dense 

j-convergent sets xn, yn are said to have the 

same limit if limn||xn− yn||=0. 

j-limn xn=x E = quotient space

=“abstract limit space”



Soft inductive limits: general remarks

The notion of convergent net is more fundamental than the 

comparison maps: 

Can change jnm for any finite n,m. Only asymptotic n>>m→ enter.

Construction jointly generalizes strict inductive limits (jnm= jnk jkm)

and the completion construction (all jnm=id, any seminorm on E1).

Sometimes may compare directly En and E

A split inductive system is of the form jnm= pn im with 

in:En →E , pn:E →En , pnin=idn , inpn→id strongly.

Two families jnm and j’nm are called equivalent, if they have same 

convergent nets



Example 1:  Mean Field

Fix one-site algebra A      (C*, often finite matrix algebra)

En=An jnm(A)=symn(A1(n-m))  

=average over permutations

Strict inductive system, unknown if equivalent to split 

An,Bn convergent, Cn= AnBn  Cn convergent, [An,Bn]→0

Hence E is an abelian C*-algebra.

E  C(), = state space of A:   A()=limn n(An)



Example 2:  Classical Limit  

Hħ carries Weyl operators Wħ(), 

Wħ() Wħ()=exp(-i(,)/(2ħ)) Wħ(+)

ħ
(A)= W()ħ*AW()ħ

Fix a finite dimensional phase space (,)

Eħ=T(Hħ)  or    Eħ={AB(Hħ) |  → ħ
(A) norm contin.}

j= -covariant / not too noisy / wħ():=Wħ(ħ) convergent

can be chosen split or strict (not both)    

E0=L1(,d) or    E0={fL(,d) |  → ħ
(f) norm contin.}

Get j0ħ  by expectation with coherent vector

Aymptotically homomorphic. 

j-convergence  j*-convergence



Example 3:  Quasilocal algebra

X= Zd, lattice with observables Ax at site xX

N= family of (some) finite regions, 

An = xn Ax ;   jnm= inclusion by tensoring with 1

A = quasilocal algebra [Bratteli-Robinson]

Examples …:

• renormalization/lattice refinement

• Finite Weyl systems → [x,p]=i

• Continuous measurement

• Tensor products of inductive systems



Dynamics

Hamiltonians usually not convergent: 

Mean field:  Hn=nhn must be extensive

Classical:    dynamics generated by Ut=exp(-iHħt/ħ)

must not converge to implement anything

Lattice:        Hamiltonian is not quasilocal

Mean field/Classical:    

get Poisson bracket as next order commutator: 

j-limn ni[An,Bn] ={A,B}

Aim: jj-convergence Tn,t = semigroup on En such that

xn convergent  Tn,txn convergent.   

T,tx :=j-limn Tn,txn



Dynamics

Our theory neatly separates: 

(A) Limit for the generator

equations of motion

(B) Limit for the semigroup

solution

(A) Uses net structure jnm

(B) Can be done in E (often simpler!)

Nettified version of 

semigroup theory

(A) Densely defined

generator G

(B) (s-G)  has  

dense range



Dynamics: Theorem

Given soft inductive system (E,j) and semigroups 

Tn,t=exp(t Gn). 

Then equivalent

(1) Tn,t preserves j-convergence and T,t is a 

strongly continuous semigroup with generator G

(2) The resolvents Rn()=(-Gn)
-1 (>0) preserve 

j-convergence and R() has dense range.

(3) There is a dense subset D of convergent nets such that 

(-Gn)D is also a dense subspace of convergent nets

(4) G is well-defined and generates a semigroup



Mean field dynamics, Hamiltonian case 

For fC(): gradient df()A: 
tr( df() ) :=d/(dt) f(t+(1-t)) |t=0

{f,g}() =tr( i[df(),dg() ])

Gn(A)=i[nhn,A]   energy density h =j-limnhn

G(f) ={h ,f}, with suitable definition of Poisson bracket
(T,t f)()=f(Ft()), Ft()= Hamiltonian flow

Mean field tagged dynamics, Hamiltonian case 

Modified inductive system: leave M sites out of sym-operation
E=C()AM AM-valued functions on 

For dynamics get   (T,t f)()=U*(t,)M f(Ft()) U(t,)M

d/(dt)U(t,)=iH(t)U(t,)  with    H(t)= i dh(Ft()) 



Mean field dynamics, Lindblad case 

Gn(A)=n Symn(Lindblad terms)     (operator permutations)

Special simple case: 

Gn(A)=  i[nhn,A]   + nj(a*j,n[A, aj,n]+[a*j,n,A] aj,n)       (*)

Tagged dynamics:

(T,t f)()= t,
M( f(Ft()) )

Ft()= non-Hamiltonian flow

(arbitrary)      

t, = cp cocycle

Assuming (*)

Spectrum of Ft() conserved

(otherwise arbitrary)

 generated by Hamiltonian 

dh + j Im(a*j, daj, )
S(*t,, Ft() ) decreases 



Classical limit dynamics, Hamiltonian case 

Hn= Schrödinger operator with quadratic potential

or → ħ
(Hħ) has j-convergent (bounded!) 2nd derivatives        

This approach avoids WKB artefacts:

(x)= (x) exp(iS(x)/ħ);   ħ=||

0=j*-lim ħ ħ , i.e., for all j-convergent A: 

i.e., limħ tr(ħ Aħ)= 0(d) A0()

0(dp dq)= |(x)|2 (p-dS(x))  dp dq

This ensures Hamiltonian vector field of H0

uniformly Lipschitz, hence with global existence

Project: extend this to incomplete dynamics

(escape→ and non-esa Hamiltonians)

p=S

q

supp 0

Form not stable under flow



Classical limit dynamics, monitored

The hallmark of classical theory is the possibility to monitor 

the system continuously, essentially without disturbance. 

How does this arise in the limit?

Interlace the dynamics with (“mildħ”) measurements:

• at times fixed independently of the state, or

• as jump events in a Lindblad evolution (e.g. GRW).

Then, with suitable choice of parameters,  

• limiting dynamics with same Hamiltonian 

• monitoring outcomes correct. 



Classical limit dynamics, quasifree (divisible)

Quasifree evolution: Tt(W())=ft() W(St)   on (,)

Limit ħ→ of semigroups with data (a,A,) gives same for ħ=:

Generalized Ornstein-Uhlenbeck process, which also describes

the evolution of Wigner functions for all ħ

This defines a dynamical semigroup iff

• St =exp(tZ) is a matrix semigroup

• ft()  = exp 0
t 
d (S)

• () = iaT- ½ TA + (d) ( eiT -1- iT h() )

•  =Lèvy measure: min{||2,1} integrable, h=cutoff

• A+     (Z+ZT)  0
iħ

2

Probable Theorem (Alberto Barchielli, RFW, yesterday)



Lattice dynamics: some features

Nothing really new relative to Bratteli&Robinson,

but some features simplified/more natural: 

N=(regions,), directed index set 

• Translations act in no finite En, but do map

j-convergent sequences to j-convergent  sequences.

Hence they act on the infinite lattice.

• Independence of boundary conditions is automatic:

Choose D so observables see only interior points. 

(3) There is a dense subset D of convergent nets such that 

(-Gn)D is also a dense subspace of convergent nets.



Equilibrium states: Gibbs variational principle

Start from j-limit of observables, 

Hn=Hamiltonian density

Local equilibrium state n minimizes “free energy”

g()= (Hn) - -1 sn()                  (-1 =kT)

Take sn:En*→R{-}  entropy density functional 

upper semicont. and concave

Find: limn g(n)  and j*-limits or cluster points of the net n

Idea: understand limit sn→ s

Then free energies converge, satisfy Gibbs, and 

minimizers converge to minimizers


