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A finite dimensional example

> Let M3 be the C*-algebra of 3 x 3 complex matrices.
» Let 7: M3 — Ms be the UCP map defined by

a1l ar a3 air a2 O
T(| a1 ax a3 |)=| an ax O
a1 asx ass 0 0 ann

» The fixed point space of 7 is given by

F(r) = {X:7(X) = X},

a1 a2 O
= { a1 ax» 0 taj € C, Vi,j}.
0 0 all
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» Consider the sequence space /> = /?(7Z, ) with the standard
orthonormal basis {eg, €1, e, ..., }.

> Let V be the unilateral right shift defined by Ve, = e, 11, Vn
and extended linearly and continuously.

» Then V is an isometry and has the matrix:

000

O O = O
o = O

0 0
0 0
10

» The adjoint V* is the unilateral left shift. It has the matrix:
[0 1 00 i

0
0
0

o O O
O O =

0
1
0
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A different product

> We may naturally identify the Toeplitz operator

da 4d-1 4a-2 a-3
ai =[] d_1 4d—-o
A= a a a a-1
a3 d» a1 =[]

with a function 7 on the unit circle whose nth Fourier
coefficient is a,. Here f is in the L*° of the unit circle and it
is known as the symbol of the Toeplitz operator A.

» If f, g are two such functions, we have the usual pointwise
product (f.g)(z) = f(z)g(z), defined almost everywhere.
» Going back, using the identification made above, one can

define a new product on Toeplitz operators, which makes it a
commutative algebra!
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Let  be a complex Hilbert space.

Let A C B(#H) be a von Neumann algebra.

Let 7 : A — A be a normal unital completely positive (UCP)
map.

The fixed points of 7

F(r)y={XeA:7(X) =X}

are known as harmonic elements for 7.

Since | € F, it is always non-trivial.

In general, F is a subspace of A but it is not a sub-algebra.
The Choi Effros product is a product ‘o’ on F(7), which
makes it a von Neumann algebra. The norm and the adjoint
remain unchanged.

The original formula for the product was complicated. We will
come back to this.

Izumi called the von Neumann algebra (F(7),0) (or its explicit
realization) as the non-commutative Poisson boundary of 7.
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The Dynamics

» Question: Suppose 7 : A — A is a normal UCP map.
Consider the discrete dynamics:

{r,72,73,...}.

» Look at
.7:(7),]:(72),.7:(73), .
as Poisson boundaries.

» How are these Poisson boundaries related?

> If 7(Xo) = —Xo and Xp # 0. Then Xp € F(72) but
Xo & F(73).
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Peripheral eigenvectors and peripheral Poisson boundary

» Let 7: A — A be a normal UCP map.
> Take

E(7) = span {X : 7(X) = AX, forsome A € T}.
T={AeC:|\=1}

> A vector X as above is called a peripheral eigenvector.

» E(7) is an operator system which may not be closed under
multiplication.

» Theorem: Take

P(r) = m\\'ﬂ_

Then P(7) has a new product o, which makes it a
C*-algebra.

» Definition: The C*-algebra (P(7),0) is called the peripheral
Poisson boundary of 7.

» How to compute the product ‘o' ?
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Dilation theory
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Dilation Theorem: Let A C B(#) be a von Neumann algebra.
Let 7: A — A be a normal UCP map.

Then there exists a triple (IC, B, 6), where

(i) K is a Hilbert space containing 7 as a closed subspace;
(i) B € B(K) is a von Neumann algebra, satisfying A = PBP
where P is the orthogonal projection of I onto H;

(iii) 0 : B — B is a normal, unital *-endomorphism;

(iv) (dilation property):

(X)) = PO"(X)P, ¥X € A,n€ Zy;

That is,
X 0 T"(X) *
n —
oo =[]
The dilation is unique up to unitary equivalence under a
natural minimality condition.
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Classical Markov processes: Start with Stochastic map/
Stochastic semigroup.

The Markov process consists of (i) A measure space (the
space of trajectories with a measure, thanks to Kolmogorov);
(i) A filtration (iii) Co-ordinate random variables, conditional
expectation.

Similarly, starting with a UCP map/semigrup, a quantum
Markov process would have (i) A Hilbert space (ii) A filtration
of projections or subalgebras (iii) A family of homomorphisms
and conditional expectation— Quantum Markov processes.
Long history. L. Accardi, Hudson and Parthasarathy,...

The minimal one, called ‘Weak Markov Flow' is constructed
using Stinespring's theorem. The Time shift gives a semigroup
of endomorphisms.

Further dilation to automorphisms, may or may not exist
(depending upon the set-up) and when it exists it is typically
not unique.
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Lifting of peripheral eigenvectors

> Let 0 : B — B be minimal dilation of an UCP map
7: A— A. The x-endomorphism property of € implies that
P(0) is a C*-algebra under multiplication.

» Theorem: Every peripheral eigenvector X of 7 lifts uniquely to
a peripheral eigenvector of 0: That is, if 7(X) = AX with
|A| = 1, then there exists unique X such that

> (i) 0(X) = AX;
> (i) PXP = X.
Moreover || X|| = ||X| and more generally

1> Xl =11 Xl
j j

v

> We set X oY = PXYP as the modified product. This defines
the peripheral Poisson boundary (P(7),0). As a C*-algebra it
is isomorphic to (P(#), -).
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No von Neumann algebra

» In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

» Consider the Toeplitz algebra example. For |\| = 1, we have
A-Toeplitz operators satisfying: S*XS = A X.

» The dilation is given by §(Z) = U*ZU, where U is the
bilateral shift.

» The von Neumann algebra generated by P(#) is the algebra of
all bounded operators.

» Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



A formula for the new product

» The extended Choi-Effros product on P(7) is defined by

XoY =PXYP.



A formula for the new product

» The extended Choi-Effros product on P(7) is defined by

XoY =PXYP.

» A careful analysis of the dilation theorem gives the following.



A formula for the new product

» The extended Choi-Effros product on P(7) is defined by

XoY =PXYP.

» A careful analysis of the dilation theorem gives the following.

» Formula: Suppose 7(X) = AX and 7(Y) = pY with
(Al = [ul = 1.



A formula for the new product

» The extended Choi-Effros product on P(7) is defined by

XoY =PXYP.

» A careful analysis of the dilation theorem gives the following.
» Formula: Suppose 7(X) = AX and 7(Y) = pY with
Al = [ul =1.
» Then,
XoY = slim (Au) "7"(XY).



A formula for the new product

» The extended Choi-Effros product on P(7) is defined by

XoY =PXYP.

» A careful analysis of the dilation theorem gives the following.
» Formula: Suppose 7(X) = AX and 7(Y) = pY with
Al = [ul =1.
» Then,
XoY = slim (Au) "7"(XY).

> We do not know of any proof the existence of this limit
without using dilation theory.
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» Corollary 1: If the original von Neumann algebra A is abelian
then (P(7),0) is also abelian.

» Corollary 2: If 7(X) = AX and 7(Y) = pY with
Al = |u| =1. Then 7(X oY) = A.u(X o Y). [Note that, if
A.uu is not in the point spectrum of 7 then X o Y = 0]

» Corollary 3: The map X > 7(X) is an automorphism on the
peripheral boundary (P(7), o).



The dynamics revisited

» Theorem: Let A be a von Neumann algebra and let
7: A — A bea normal UCP map.



The dynamics revisited

» Theorem: Let A be a von Neumann algebra and let
7: A — A bea normal UCP map.

» Then

for every n > 1.



The dynamics revisited
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7: A — A bea normal UCP map.

» Then

for every n > 1.

» Proof: From elementary linear algebra the linear span of
peripheral eigenvectors of 7 and 7" are same for every n > 1.
Now the result is not hard to prove from the formula for the
Choi-Effros product proved before.
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Peripherally automorphic maps in finite dimensions

» Definition: Let 7: My — My be a UCP map. Then 7 is said
to be peripherally automorphic if X o Y = XY for every X, Y
in P(7).

» Remark: If 7 has a faithful invariant state then 7 is
peripherally automorphic.

» Theorem: Let 7 : My — M, be a UCP map with a
Choi-Kraus decomposition 7(X) = >""_; L*XL;, VX € My.
Then the following are equivalent.

» (i) 7 is peripherally automorphic.

» (ii) For A e T, 7(Y) =AY if and only if YL; = AL;Y for
every 1 </ <r.
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A decomposition theorem

v

Let 7 be a UCP map on M,. Then the vector space My has a
unique direct sum decomposition:

My = 7)(7—) @N(T)v

where P(7) is the peripheral space of 7,
and V(1) ={X € My : lim,_, 7"(X) = 0}.

Furthermore, P(7) = P(7) and N(7™) = N (1) for every
m>1.



THANKS
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