Peripheral Poisson Boundary

B V Rajarama Bhat, Indian Statistical Institute, Bangalore
Mathematical Physics in Quantum Technology: From finite to infinite dimensions, ICMS, Edinburgh, UK

May 26, 2023

Acknowledgements

- Thanks to the organisers for the invitation and all the arrangements.

Acknowledgements

- Thanks to the organisers for the invitation and all the arrangements.
- This talk is based on a joint work with Samir Kar and Bharat Talwar.

Acknowledgements

- Thanks to the organisers for the invitation and all the arrangements.
- This talk is based on a joint work with Samir Kar and Bharat Talwar.
- Peripheral Poisson boundary, https://arxiv.org/abs/2209.07731

Acknowledgements

- Thanks to the organisers for the invitation and all the arrangements.
- This talk is based on a joint work with Samir Kar and Bharat Talwar.
- Peripheral Poisson boundary, https://arxiv.org/abs/2209.07731
- Peripherally automorphic completely positive maps, https://arxiv.org/abs/2212.07351.

Outline

- Two examples.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.
- Dilation theory

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.
- Dilation theory

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.
- Dilation theory
- Main results.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.
- Dilation theory
- Main results.
- Dynamics revisited.

Outline

- Two examples.
- Fixed points and noncommutative Poisson Boundary.
- Dynamics.
- Peripheral Poisson boundary.
- Dilation theory
- Main results.
- Dynamics revisited.
- Finite dimensional case.

A finite dimensional example

- Let M_{3} be the C^{*}-algebra of 3×3 complex matrices.

A finite dimensional example

- Let M_{3} be the C^{*}-algebra of 3×3 complex matrices.
- Let $\tau: M_{3} \rightarrow M_{3}$ be the UCP map defined by

$$
\tau\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{11}
\end{array}\right]
$$

A finite dimensional example

- Let M_{3} be the C^{*}-algebra of 3×3 complex matrices.
- Let $\tau: M_{3} \rightarrow M_{3}$ be the UCP map defined by

$$
\tau\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{11}
\end{array}\right]
$$

- The fixed point space of τ is given by

$$
\mathcal{F}(\tau):=\{X: \tau(X)=X\},
$$

A finite dimensional example

- Let M_{3} be the C^{*}-algebra of 3×3 complex matrices.
- Let $\tau: M_{3} \rightarrow M_{3}$ be the UCP map defined by

$$
\tau\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{11}
\end{array}\right]
$$

- The fixed point space of τ is given by

$$
\mathcal{F}(\tau):=\{X: \tau(X)=X\}
$$

$$
=\left\{\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{11}
\end{array}\right]: a_{i j} \in \mathbb{C}, \quad \forall i, j\right\} .
$$

Products

- We note that $\mathcal{F}(\tau)$ is a subspace of M_{3} but not a subalgebra, as in general for $A, B \in \mathcal{F}, A B$ may not be in \mathcal{F}.

Products

- We note that $\mathcal{F}(\tau)$ is a subspace of M_{3} but not a subalgebra, as in general for $A, B \in \mathcal{F}, A B$ may not be in \mathcal{F}.
- For A, B in \mathcal{F},

Products

- We note that $\mathcal{F}(\tau)$ is a subspace of M_{3} but not a subalgebra, as in general for $A, B \in \mathcal{F}, A B$ may not be in \mathcal{F}.
- For A, B in \mathcal{F},
- $A B$ has the form

$$
A B=\left[\begin{array}{ccc}
a_{11} b_{11}+a_{12} b_{21} & * & 0 \\
* & * & 0 \\
0 & 0 & a_{11} b_{11}
\end{array}\right]
$$

Products

- We note that $\mathcal{F}(\tau)$ is a subspace of M_{3} but not a subalgebra, as in general for $A, B \in \mathcal{F}, A B$ may not be in \mathcal{F}.
- For A, B in \mathcal{F},
- $A B$ has the form

$$
A B=\left[\begin{array}{ccc}
a_{11} b_{11}+a_{12} b_{21} & * & 0 \\
* & * & 0 \\
0 & 0 & a_{11} b_{11}
\end{array}\right]
$$

- which need not be in \mathcal{F}.

New product

- We can see that, if we define

$$
A \circ B=\left[\begin{array}{ccc}
a_{11} b_{11}+a_{12} b_{21} & * & 0 \\
* & * & 0 \\
0 & 0 & a_{11} b_{11}+a_{12} b_{21}
\end{array}\right]
$$

then \mathcal{F} is an algebra.

New product

- We can see that, if we define

$$
A \circ B=\left[\begin{array}{ccc}
a_{11} b_{11}+a_{12} b_{21} & * & 0 \\
* & * & 0 \\
0 & 0 & a_{11} b_{11}+a_{12} b_{21}
\end{array}\right]
$$

then \mathcal{F} is an algebra.

- Choi and Effros observed this phenomenon. They showed that under a very general context, it is possible to modify the product to get an algebra. This product is now known as Choi-Effros product.

New product

- We can see that, if we define

$$
A \circ B=\left[\begin{array}{ccc}
a_{11} b_{11}+a_{12} b_{21} & * & 0 \\
* & * & 0 \\
0 & 0 & a_{11} b_{11}+a_{12} b_{21}
\end{array}\right]
$$

then \mathcal{F} is an algebra.

- Choi and Effros observed this phenomenon. They showed that under a very general context, it is possible to modify the product to get an algebra. This product is now known as Choi-Effros product.
- Here is another example.

Unilateral shifts

- Consider the sequence space $I^{2}=I^{2}\left(\mathbb{Z}_{+}\right)$with the standard orthonormal basis $\left\{e_{0}, e_{1}, e_{2}, \ldots,\right\}$.
- Let V be the unilateral right shift defined by $V e_{n}=e_{n+1}, \quad \forall n$ and extended linearly and continuously.

Unilateral shifts

- Consider the sequence space $I^{2}=I^{2}\left(\mathbb{Z}_{+}\right)$with the standard orthonormal basis $\left\{e_{0}, e_{1}, e_{2}, \ldots,\right\}$.
- Let V be the unilateral right shift defined by $V e_{n}=e_{n+1}, \quad \forall n$ and extended linearly and continuously.
- Then V is an isometry and has the matrix:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- The adjoint V^{*} is the unilateral left shift. It has the matrix:

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & \ldots
\end{array}\right]
$$

A natural UCP map

- Consider $\tau: \mathcal{B}\left(I^{2}\right) \rightarrow \mathcal{B}\left(I^{2}\right)$ defined by

$$
\tau(X)=V^{*} X V, \quad \forall X \in \mathcal{B}\left(I^{2}\right) .
$$

A natural UCP map

- Consider $\tau: \mathcal{B}\left(I^{2}\right) \rightarrow \mathcal{B}\left(I^{2}\right)$ defined by

$$
\tau(X)=V^{*} X V, \quad \forall X \in \mathcal{B}\left(I^{2}\right)
$$

- We have

$$
\tau\left(\left[\begin{array}{ccccc}
x_{00} & x_{01} & x_{02} & x_{03} & \ldots \\
x_{10} & x_{11} & x_{12} & x_{13} & \ldots \\
x_{20} & x_{21} & x_{22} & x_{23} & \ldots \\
x_{30} & x_{31} & x_{32} & x_{33} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\right)=\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & x_{14} & \cdots \\
x_{21} & x_{22} & x_{23} & x_{24} & \cdots \\
x_{31} & x_{32} & x_{33} & x_{34} & \cdots \\
x_{41} & x_{42} & x_{43} & x_{44} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

A natural UCP map

- Consider $\tau: \mathcal{B}\left(I^{2}\right) \rightarrow \mathcal{B}\left(I^{2}\right)$ defined by

$$
\tau(X)=V^{*} X V, \quad \forall X \in \mathcal{B}\left(I^{2}\right)
$$

- We have

$$
\tau\left(\left[\begin{array}{ccccc}
x_{00} & x_{01} & x_{02} & x_{03} & \ldots \\
x_{10} & x_{11} & x_{12} & x_{13} & \ldots \\
x_{20} & x_{21} & x_{22} & x_{23} & \ldots \\
x_{30} & x_{31} & x_{32} & x_{33} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\right)=\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & x_{14} & \ldots \\
x_{21} & x_{22} & x_{23} & x_{24} & \cdots \\
x_{31} & x_{32} & x_{33} & x_{34} & \cdots \\
x_{41} & x_{42} & x_{43} & x_{44} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- The set of fixed points of τ are precisely the Toeplitz operators.

Toeplitz Operators

- These are bounded operators on l^{2}, whose matrices with respect to the standard basis have the form:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Toeplitz Operators

- These are bounded operators on l^{2}, whose matrices with respect to the standard basis have the form:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Clearly the collection of Toeplitz operators forms a vector space.

Toeplitz Operators

- These are bounded operators on I^{2}, whose matrices with respect to the standard basis have the form:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Clearly the collection of Toeplitz operators forms a vector space.
- But it is not an algebra. As product of two Toeplitz operators need not be Toeplitz.

Toeplitz Operators

- These are bounded operators on I^{2}, whose matrices with respect to the standard basis have the form:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Clearly the collection of Toeplitz operators forms a vector space.
- But it is not an algebra. As product of two Toeplitz operators need not be Toeplitz.
- For instance, V, V^{*} are Toeplitz but $V V^{*}$ is not Toeplitz.

A different product

- We may naturally identify the Toeplitz operator

$$
A=\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

with a function f on the unit circle whose nth Fourier coefficient is a_{n}. Here f is in the L^{∞} of the unit circle and it is known as the symbol of the Toeplitz operator A.

A different product

- We may naturally identify the Toeplitz operator

$$
A=\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

with a function f on the unit circle whose nth Fourier coefficient is a_{n}. Here f is in the L^{∞} of the unit circle and it is known as the symbol of the Toeplitz operator A.

- If f, g are two such functions, we have the usual pointwise product $(f . g)(z)=f(z) g(z)$, defined almost everywhere.

A different product

- We may naturally identify the Toeplitz operator

$$
A=\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

with a function f on the unit circle whose nth Fourier coefficient is a_{n}. Here f is in the L^{∞} of the unit circle and it is known as the symbol of the Toeplitz operator A.

- If f, g are two such functions, we have the usual pointwise product $(f . g)(z)=f(z) g(z)$, defined almost everywhere.
- Going back, using the identification made above, one can define a new product on Toeplitz operators, which makes it a commutative algebra!

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

- Since $I \in \mathcal{F}$, it is always non-trivial.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

- Since $I \in \mathcal{F}$, it is always non-trivial.
- In general, \mathcal{F} is a subspace of \mathcal{A} but it is not a sub-algebra.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

- Since $I \in \mathcal{F}$, it is always non-trivial.
- In general, \mathcal{F} is a subspace of \mathcal{A} but it is not a sub-algebra.
- The Choi Effros product is a product ' \circ ' on $F(\tau)$, which makes it a von Neumann algebra. The norm and the adjoint remain unchanged.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

- Since $I \in \mathcal{F}$, it is always non-trivial.
- In general, \mathcal{F} is a subspace of \mathcal{A} but it is not a sub-algebra.
- The Choi Effros product is a product ' \circ ' on $F(\tau)$, which makes it a von Neumann algebra. The norm and the adjoint remain unchanged.
- The original formula for the product was complicated. We will come back to this.

Fixed points and noncommutative Poisson boundary

- Let \mathcal{H} be a complex Hilbert space.
- Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal unital completely positive (UCP) map.
- The fixed points of τ

$$
\mathcal{F}(\tau):=\{X \in \mathcal{A}: \tau(X)=X\}
$$

are known as harmonic elements for τ.

- Since $I \in \mathcal{F}$, it is always non-trivial.
- In general, \mathcal{F} is a subspace of \mathcal{A} but it is not a sub-algebra.
- The Choi Effros product is a product ' \circ ' on $F(\tau)$, which makes it a von Neumann algebra. The norm and the adjoint remain unchanged.
- The original formula for the product was complicated. We will come back to this.
- Izumi called the von Neumann algebra ($F(\tau), \circ$) (or its explicit realization) as the non-commutative Poisson boundary of τ.

The Dynamics

- Question: Suppose $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is a normal UCP map. Consider the discrete dynamics:

$$
\left\{\tau, \tau^{2}, \tau^{3}, \ldots\right\}
$$

The Dynamics

- Question: Suppose $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is a normal UCP map. Consider the discrete dynamics:

$$
\left\{\tau, \tau^{2}, \tau^{3}, \ldots\right\}
$$

- Look at

$$
\mathcal{F}(\tau), \mathcal{F}\left(\tau^{2}\right), \mathcal{F}\left(\tau^{3}\right), \ldots
$$

as Poisson boundaries.

The Dynamics

- Question: Suppose $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is a normal UCP map. Consider the discrete dynamics:

$$
\left\{\tau, \tau^{2}, \tau^{3}, \ldots\right\}
$$

- Look at

$$
\mathcal{F}(\tau), \mathcal{F}\left(\tau^{2}\right), \mathcal{F}\left(\tau^{3}\right), \ldots
$$

as Poisson boundaries.

- How are these Poisson boundaries related?

The Dynamics

- Question: Suppose $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is a normal UCP map. Consider the discrete dynamics:

$$
\left\{\tau, \tau^{2}, \tau^{3}, \ldots\right\}
$$

- Look at

$$
\mathcal{F}(\tau), \mathcal{F}\left(\tau^{2}\right), \mathcal{F}\left(\tau^{3}\right), \ldots
$$

as Poisson boundaries.

- How are these Poisson boundaries related?
- If $\tau\left(X_{0}\right)=-X_{0}$ and $X_{0} \neq 0$. Then $X_{0} \in F\left(\tau^{2}\right)$ but $X_{0} \notin F\left(\tau^{3}\right)$.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\operatorname{span}\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\text { span }\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

- A vector X as above is called a peripheral eigenvector.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\text { span }\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

- A vector X as above is called a peripheral eigenvector.
- $E(\tau)$ is an operator system which may not be closed under multiplication.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\operatorname{span}\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

- A vector X as above is called a peripheral eigenvector.
- $E(\tau)$ is an operator system which may not be closed under multiplication.
- Theorem: Take

$$
\mathcal{P}(\tau):=\overline{E(\tau)}\|\cdot\| .
$$

Then $\mathcal{P}(\tau)$ has a new product \circ, which makes it a C^{*}-algebra.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\operatorname{span}\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

- A vector X as above is called a peripheral eigenvector.
- $E(\tau)$ is an operator system which may not be closed under multiplication.
- Theorem: Take

$$
\mathcal{P}(\tau):=\overline{E(\tau)}{ }^{\|\cdot\|} .
$$

Then $\mathcal{P}(\tau)$ has a new product \circ, which makes it a C^{*}-algebra.

- Definition: The C^{*}-algebra $(\mathcal{P}(\tau), \circ)$ is called the peripheral Poisson boundary of τ.

Peripheral eigenvectors and peripheral Poisson boundary

- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Take

$$
\begin{gathered}
E(\tau)=\operatorname{span}\{X: \tau(X)=\lambda X, \text { for some } \lambda \in \mathbb{T}\} \\
\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{gathered}
$$

- A vector X as above is called a peripheral eigenvector.
- $E(\tau)$ is an operator system which may not be closed under multiplication.
- Theorem: Take

$$
\mathcal{P}(\tau):=\overline{E(\tau)}{ }^{\|\cdot\|} .
$$

Then $\mathcal{P}(\tau)$ has a new product \circ, which makes it a C^{*}-algebra.

- Definition: The C^{*}-algebra $(\mathcal{P}(\tau), \circ)$ is called the peripheral Poisson boundary of τ.
- How to compute the product ' \circ '?

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where
- (i) \mathcal{K} is a Hilbert space containing \mathcal{H} as a closed subspace;

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where
- (i) \mathcal{K} is a Hilbert space containing \mathcal{H} as a closed subspace;
- (ii) $\mathcal{B} \subseteq \mathcal{B}(\mathcal{K})$ is a von Neumann algebra, satisfying $\mathcal{A}=P \mathcal{B} P$ where P is the orthogonal projection of \mathcal{K} onto \mathcal{H};

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where
- (i) \mathcal{K} is a Hilbert space containing \mathcal{H} as a closed subspace;
- (ii) $\mathcal{B} \subseteq \mathcal{B}(\mathcal{K})$ is a von Neumann algebra, satisfying $\mathcal{A}=P \mathcal{B} P$ where P is the orthogonal projection of \mathcal{K} onto \mathcal{H};
- (iii) $\theta: \mathcal{B} \rightarrow \mathcal{B}$ is a normal, unital $*$-endomorphism;

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where
- (i) \mathcal{K} is a Hilbert space containing \mathcal{H} as a closed subspace;
- (ii) $\mathcal{B} \subseteq \mathcal{B}(\mathcal{K})$ is a von Neumann algebra, satisfying $\mathcal{A}=P \mathcal{B} P$ where P is the orthogonal projection of \mathcal{K} onto \mathcal{H};
- (iii) $\theta: \mathcal{B} \rightarrow \mathcal{B}$ is a normal, unital $*$-endomorphism;
- (iv) (dilation property):

$$
\tau^{n}(X)=P \theta^{n}(X) P, \quad \forall X \in \mathcal{A}, n \in \mathbb{Z}_{+} ;
$$

Dilation theory

- Dilation Theorem: Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra.
- Let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then there exists a triple $(\mathcal{K}, \mathcal{B}, \theta)$, where
- (i) \mathcal{K} is a Hilbert space containing \mathcal{H} as a closed subspace;
- (ii) $\mathcal{B} \subseteq \mathcal{B}(\mathcal{K})$ is a von Neumann algebra, satisfying $\mathcal{A}=P \mathcal{B} P$ where P is the orthogonal projection of \mathcal{K} onto \mathcal{H};
- (iii) $\theta: \mathcal{B} \rightarrow \mathcal{B}$ is a normal, unital $*$-endomorphism;
- (iv) (dilation property):

$$
\tau^{n}(X)=P \theta^{n}(X) P, \quad \forall X \in \mathcal{A}, n \in \mathbb{Z}_{+} ;
$$

- That is,

$$
\theta^{n}\left(\left[\begin{array}{ll}
X & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
\tau^{n}(X) & * \\
* & *
\end{array}\right]
$$

- The dilation is unique up to unitary equivalence under a natural minimality condition.

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.
- The Markov process consists of (i) A measure space (the space of trajectories with a measure, thanks to Kolmogorov); (ii) A filtration (iii) Co-ordinate random variables, conditional expectation.

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.
- The Markov process consists of (i) A measure space (the space of trajectories with a measure, thanks to Kolmogorov); (ii) A filtration (iii) Co-ordinate random variables, conditional expectation.
- Similarly, starting with a UCP map/semigrup, a quantum Markov process would have (i) A Hilbert space (ii) A filtration of projections or subalgebras (iii) A family of homomorphisms and conditional expectation- Quantum Markov processes.

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.
- The Markov process consists of (i) A measure space (the space of trajectories with a measure, thanks to Kolmogorov); (ii) A filtration (iii) Co-ordinate random variables, conditional expectation.
- Similarly, starting with a UCP map/semigrup, a quantum Markov process would have (i) A Hilbert space (ii) A filtration of projections or subalgebras (iii) A family of homomorphisms and conditional expectation- Quantum Markov processes.
- Long history. L. Accardi, Hudson and Parthasarathy,...

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.
- The Markov process consists of (i) A measure space (the space of trajectories with a measure, thanks to Kolmogorov); (ii) A filtration (iii) Co-ordinate random variables, conditional expectation.
- Similarly, starting with a UCP map/semigrup, a quantum Markov process would have (i) A Hilbert space (ii) A filtration of projections or subalgebras (iii) A family of homomorphisms and conditional expectation- Quantum Markov processes.
- Long history. L. Accardi, Hudson and Parthasarathy,...
- The minimal one, called 'Weak Markov Flow' is constructed using Stinespring's theorem. The Time shift gives a semigroup of endomorphisms.

What is dilation theory?

- Classical Markov processes: Start with Stochastic map/ Stochastic semigroup.
- The Markov process consists of (i) A measure space (the space of trajectories with a measure, thanks to Kolmogorov); (ii) A filtration (iii) Co-ordinate random variables, conditional expectation.
- Similarly, starting with a UCP map/semigrup, a quantum Markov process would have (i) A Hilbert space (ii) A filtration of projections or subalgebras (iii) A family of homomorphisms and conditional expectation- Quantum Markov processes.
- Long history. L. Accardi, Hudson and Parthasarathy,...
- The minimal one, called 'Weak Markov Flow' is constructed using Stinespring's theorem. The Time shift gives a semigroup of endomorphisms.
- Further dilation to automorphisms, may or may not exist (depending upon the set-up) and when it exists it is typically not unique.

Lifting of peripheral eigenvectors

- Let $\theta: \mathcal{B} \rightarrow \mathcal{B}$ be minimal dilation of an UCP map $\tau: \mathcal{A} \rightarrow \mathcal{A}$. The $*$-endomorphism property of θ implies that $\mathcal{P}(\theta)$ is a C^{*}-algebra under multiplication.

Lifting of peripheral eigenvectors

- Let $\theta: \mathcal{B} \rightarrow \mathcal{B}$ be minimal dilation of an UCP map $\tau: \mathcal{A} \rightarrow \mathcal{A}$. The $*$-endomorphism property of θ implies that $\mathcal{P}(\theta)$ is a C^{*}-algebra under multiplication.
- Theorem: Every peripheral eigenvector X of τ lifts uniquely to a peripheral eigenvector of θ : That is, if $\tau(X)=\lambda X$ with $|\lambda|=1$, then there exists unique \hat{X} such that
- (i) $\theta(\hat{X})=\lambda \hat{X}$;

Lifting of peripheral eigenvectors

- Let $\theta: \mathcal{B} \rightarrow \mathcal{B}$ be minimal dilation of an UCP map $\tau: \mathcal{A} \rightarrow \mathcal{A}$. The $*$-endomorphism property of θ implies that $\mathcal{P}(\theta)$ is a C^{*}-algebra under multiplication.
- Theorem: Every peripheral eigenvector X of τ lifts uniquely to a peripheral eigenvector of θ : That is, if $\tau(X)=\lambda X$ with $|\lambda|=1$, then there exists unique \hat{X} such that
- (i) $\theta(\hat{X})=\lambda \hat{X}$;
- (ii) $P \hat{X} P=X$.

Lifting of peripheral eigenvectors

- Let $\theta: \mathcal{B} \rightarrow \mathcal{B}$ be minimal dilation of an UCP map $\tau: \mathcal{A} \rightarrow \mathcal{A}$. The $*$-endomorphism property of θ implies that $\mathcal{P}(\theta)$ is a C^{*}-algebra under multiplication.
- Theorem: Every peripheral eigenvector X of τ lifts uniquely to a peripheral eigenvector of θ : That is, if $\tau(X)=\lambda X$ with $|\lambda|=1$, then there exists unique \hat{X} such that
- (i) $\theta(\hat{X})=\lambda \hat{X}$;
- (ii) $P \hat{X} P=X$.
- Moreover $\|\hat{X}\|=\|X\|$ and more generally

$$
\left\|\sum_{j} c_{j} \hat{X}_{j}\right\|=\left\|\sum_{j} c_{j} X_{j}\right\|
$$

Lifting of peripheral eigenvectors

- Let $\theta: \mathcal{B} \rightarrow \mathcal{B}$ be minimal dilation of an UCP map $\tau: \mathcal{A} \rightarrow \mathcal{A}$. The $*$-endomorphism property of θ implies that $\mathcal{P}(\theta)$ is a C^{*}-algebra under multiplication.
- Theorem: Every peripheral eigenvector X of τ lifts uniquely to a peripheral eigenvector of θ : That is, if $\tau(X)=\lambda X$ with $|\lambda|=1$, then there exists unique \hat{X} such that
- (i) $\theta(\hat{X})=\lambda \hat{X}$;
- (ii) $P \hat{X} P=X$.
- Moreover $\|\hat{X}\|=\|X\|$ and more generally

$$
\left\|\sum_{j} c_{j} \hat{X}_{j}\right\|=\left\|\sum_{j} c_{j} X_{j}\right\|
$$

- We set $X \circ Y=P \hat{X} \hat{Y} P$ as the modified product. This defines the peripheral Poisson boundary $(\mathcal{P}(\tau), \circ)$. As a C^{*}-algebra it is isomorphic to $(\mathcal{P}(\theta), \cdot)$.

No von Neumann algebra

- In general the peripheral Poisson boundary does not have von Neumann algebra structure.

No von Neumann algebra

- In general the peripheral Poisson boundary does not have von Neumann algebra structure.
- Consider the Toeplitz algebra example. For $|\lambda|=1$, we have λ-Toeplitz operators satisfying: $S^{*} X S=\lambda X$.

No von Neumann algebra

- In general the peripheral Poisson boundary does not have von Neumann algebra structure.
- Consider the Toeplitz algebra example. For $|\lambda|=1$, we have λ-Toeplitz operators satisfying: $S^{*} X S=\lambda X$.
- The dilation is given by $\theta(Z)=U^{*} Z U$, where U is the bilateral shift.

No von Neumann algebra

- In general the peripheral Poisson boundary does not have von Neumann algebra structure.
- Consider the Toeplitz algebra example. For $|\lambda|=1$, we have λ-Toeplitz operators satisfying: $S^{*} X S=\lambda X$.
- The dilation is given by $\theta(Z)=U^{*} Z U$, where U is the bilateral shift.
- The von Neumann algebra generated by $\mathcal{P}(\theta)$ is the algebra of all bounded operators.

No von Neumann algebra

- In general the peripheral Poisson boundary does not have von Neumann algebra structure.
- Consider the Toeplitz algebra example. For $|\lambda|=1$, we have λ-Toeplitz operators satisfying: $S^{*} X S=\lambda X$.
- The dilation is given by $\theta(Z)=U^{*} Z U$, where U is the bilateral shift.
- The von Neumann algebra generated by $\mathcal{P}(\theta)$ is the algebra of all bounded operators.
- Remark: In general, it is not possible to lift non-peripheral eigenvectors.

A formula for the new product

- The extended Choi-Effros product on $\mathcal{P}(\tau)$ is defined by

$$
X \circ Y=P \hat{X} \hat{Y} P .
$$

A formula for the new product

- The extended Choi-Effros product on $\mathcal{P}(\tau)$ is defined by

$$
X \circ Y=P \hat{X} \hat{Y} P
$$

- A careful analysis of the dilation theorem gives the following.

A formula for the new product

- The extended Choi-Effros product on $\mathcal{P}(\tau)$ is defined by

$$
X \circ Y=P \hat{X} \hat{Y} P
$$

- A careful analysis of the dilation theorem gives the following.
- Formula: Suppose $\tau(X)=\lambda X$ and $\tau(Y)=\mu Y$ with

$$
|\lambda|=|\mu|=1
$$

A formula for the new product

- The extended Choi-Effros product on $\mathcal{P}(\tau)$ is defined by

$$
X \circ Y=P \hat{X} \hat{Y} P
$$

- A careful analysis of the dilation theorem gives the following.
- Formula: Suppose $\tau(X)=\lambda X$ and $\tau(Y)=\mu Y$ with $|\lambda|=|\mu|=1$.
- Then,

$$
X \circ Y=s-\lim (\lambda \mu)^{-n} \tau^{n}(X Y)
$$

A formula for the new product

- The extended Choi-Effros product on $\mathcal{P}(\tau)$ is defined by

$$
X \circ Y=P \hat{X} \hat{Y} P .
$$

- A careful analysis of the dilation theorem gives the following.
- Formula: Suppose $\tau(X)=\lambda X$ and $\tau(Y)=\mu Y$ with

$$
|\lambda|=|\mu|=1 .
$$

- Then,

$$
X \circ Y=s-\lim (\lambda \mu)^{-n} \tau^{n}(X Y)
$$

- We do not know of any proof the existence of this limit without using dilation theory.

Consequences

- Corollary 1: If the original von Neumann algebra \mathcal{A} is abelian then $(\mathcal{P}(\tau), \circ)$ is also abelian.

Consequences

- Corollary 1: If the original von Neumann algebra \mathcal{A} is abelian then $(\mathcal{P}(\tau), \circ)$ is also abelian.
- Corollary 2: If $\tau(X)=\lambda X$ and $\tau(Y)=\mu Y$ with $|\lambda|=|\mu|=1$. Then $\tau(X \circ Y)=\lambda \cdot \mu(X \circ Y)$. [Note that, if $\lambda . \mu$ is not in the point spectrum of τ then $X \circ Y=0$.]

Consequences

- Corollary 1: If the original von Neumann algebra \mathcal{A} is abelian then $(\mathcal{P}(\tau), \circ)$ is also abelian.
- Corollary 2: If $\tau(X)=\lambda X$ and $\tau(Y)=\mu Y$ with $|\lambda|=|\mu|=1$. Then $\tau(X \circ Y)=\lambda \cdot \mu(X \circ Y)$. [Note that, if $\lambda . \mu$ is not in the point spectrum of τ then $X \circ Y=0$.]
- Corollary 3: The map $X \mapsto \tau(X)$ is an automorphism on the peripheral boundary $(\mathcal{P}(\tau), \circ)$.

The dynamics revisited

- Theorem: Let \mathcal{A} be a von Neumann algebra and let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.

The dynamics revisited

- Theorem: Let \mathcal{A} be a von Neumann algebra and let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then

$$
(\mathcal{P}(\tau), \circ)=\left(\mathcal{P}\left(\tau^{n}\right), \circ\right)
$$

for every $n \geq 1$.

The dynamics revisited

- Theorem: Let \mathcal{A} be a von Neumann algebra and let $\tau: \mathcal{A} \rightarrow \mathcal{A}$ be a normal UCP map.
- Then

$$
(\mathcal{P}(\tau), \circ)=\left(\mathcal{P}\left(\tau^{n}\right), \circ\right)
$$

for every $n \geq 1$.

- Proof: From elementary linear algebra the linear span of peripheral eigenvectors of τ and τ^{n} are same for every $n \geq 1$. Now the result is not hard to prove from the formula for the Choi-Effros product proved before.

Peripherally automorphic maps in finite dimensions

- Definition: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map. Then τ is said to be peripherally automorphic if $X \circ Y=X Y$ for every X, Y in $\mathcal{P}(\tau)$.

Peripherally automorphic maps in finite dimensions

- Definition: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map. Then τ is said to be peripherally automorphic if $X \circ Y=X Y$ for every X, Y in $\mathcal{P}(\tau)$.
- Remark: If τ has a faithful invariant state then τ is peripherally automorphic.

Peripherally automorphic maps in finite dimensions

- Definition: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map. Then τ is said to be peripherally automorphic if $X \circ Y=X Y$ for every X, Y in $\mathcal{P}(\tau)$.
- Remark: If τ has a faithful invariant state then τ is peripherally automorphic.
- Theorem: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map with a Choi-Kraus decomposition $\tau(X)=\sum_{i=1}^{r} L_{i}^{*} X L_{i}, \quad \forall X \in M_{d}$. Then the following are equivalent.

Peripherally automorphic maps in finite dimensions

- Definition: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map. Then τ is said to be peripherally automorphic if $X \circ Y=X Y$ for every X, Y in $\mathcal{P}(\tau)$.
- Remark: If τ has a faithful invariant state then τ is peripherally automorphic.
- Theorem: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map with a Choi-Kraus decomposition $\tau(X)=\sum_{i=1}^{r} L_{i}^{*} X L_{i}, \quad \forall X \in M_{d}$. Then the following are equivalent.
- (i) τ is peripherally automorphic.

Peripherally automorphic maps in finite dimensions

- Definition: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map. Then τ is said to be peripherally automorphic if $X \circ Y=X Y$ for every X, Y in $\mathcal{P}(\tau)$.
- Remark: If τ has a faithful invariant state then τ is peripherally automorphic.
- Theorem: Let $\tau: M_{d} \rightarrow M_{d}$ be a UCP map with a Choi-Kraus decomposition $\tau(X)=\sum_{i=1}^{r} L_{i}^{*} X L_{i}, \quad \forall X \in M_{d}$. Then the following are equivalent.
- (i) τ is peripherally automorphic.
- (ii) For $\lambda \in \mathbb{T}, \tau(Y)=\lambda Y$ if and only if $Y L_{i}=\lambda L_{i} Y$ for every $1 \leq i \leq r$.

A decomposition theorem

- Let τ be a UCP map on M_{d}. Then the vector space M_{d} has a unique direct sum decomposition:

$$
M_{d}=\mathcal{P}(\tau) \oplus \mathcal{N}(\tau)
$$

A decomposition theorem

- Let τ be a UCP map on M_{d}. Then the vector space M_{d} has a unique direct sum decomposition:

$$
M_{d}=\mathcal{P}(\tau) \oplus \mathcal{N}(\tau)
$$

- where $\mathcal{P}(\tau)$ is the peripheral space of τ,

A decomposition theorem

- Let τ be a UCP map on M_{d}. Then the vector space M_{d} has a unique direct sum decomposition:

$$
M_{d}=\mathcal{P}(\tau) \oplus \mathcal{N}(\tau)
$$

- where $\mathcal{P}(\tau)$ is the peripheral space of τ,
- and $\mathcal{N}(\tau)=\left\{X \in M_{d}: \lim _{n \rightarrow \infty} \tau^{n}(X)=0\right\}$.

A decomposition theorem

- Let τ be a UCP map on M_{d}. Then the vector space M_{d} has a unique direct sum decomposition:

$$
M_{d}=\mathcal{P}(\tau) \oplus \mathcal{N}(\tau)
$$

- where $\mathcal{P}(\tau)$ is the peripheral space of τ,
- and $\mathcal{N}(\tau)=\left\{X \in M_{d}: \lim _{n \rightarrow \infty} \tau^{n}(X)=0\right\}$.
- Furthermore, $\mathcal{P}\left(\tau^{m}\right)=\mathcal{P}(\tau)$ and $\mathcal{N}\left(\tau^{m}\right)=\mathcal{N}(\tau)$ for every $m \geq 1$.

THANKS

