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A finite dimensional example

I Let M3 be the C ∗-algebra of 3× 3 complex matrices.

I Let τ : M3 → M3 be the UCP map defined by

τ(

 a11 a12 a13
a21 a22 a23
a31 a32 a33

) =

 a11 a12 0
a21 a22 0
0 0 a11


I The fixed point space of τ is given by

F(τ) := {X : τ(X ) = X},

I

= {

 a11 a12 0
a21 a22 0
0 0 a11

 : aij ∈ C, ∀i , j}.
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Products

I We note that F(τ) is a subspace of M3 but not a subalgebra,
as in general for A,B ∈ F , AB may not be in F .

I For A,B in F ,

I AB has the form

AB =

 a11b11 + a12b21 ∗ 0
∗ ∗ 0
0 0 a11b11


I which need not be in F .
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New product

I We can see that, if we define

A ◦ B =

 a11b11 + a12b21 ∗ 0
∗ ∗ 0
0 0 a11b11 + a12b21


then F is an algebra.

I Choi and Effros observed this phenomenon. They showed that
under a very general context, it is possible to modify the
product to get an algebra. This product is now known as
Choi-Effros product.

I Here is another example.
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Unilateral shifts

I Consider the sequence space l2 = l2(Z+) with the standard
orthonormal basis {e0, e1, e2, . . . , }.

I Let V be the unilateral right shift defined by Ven = en+1, ∀n
and extended linearly and continuously.

I Then V is an isometry and has the matrix:
0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

 .

I The adjoint V ∗ is the unilateral left shift. It has the matrix:
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .
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A natural UCP map

I Consider τ : B(l2)→ B(l2) defined by

τ(X ) = V ∗XV , ∀X ∈ B(l2).

I We have
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x30 x31 x32 x33 . . .
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I The set of fixed points of τ are precisely the Toeplitz
operators.
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Toeplitz Operators

I These are bounded operators on l2, whose matrices with
respect to the standard basis have the form:

a0 a−1 a−2 a−3 . . .
a1 a0 a−1 a−2 . . .
a2 a1 a0 a−1 . . .
a3 a2 a1 a0 . . .
...

...
...

...
. . .

 .

I Clearly the collection of Toeplitz operators forms a vector
space.

I But it is not an algebra. As product of two Toeplitz operators
need not be Toeplitz.

I For instance, V ,V ∗ are Toeplitz but VV ∗ is not Toeplitz.
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A different product

I We may naturally identify the Toeplitz operator

A =


a0 a−1 a−2 a−3 . . .
a1 a0 a−1 a−2 . . .
a2 a1 a0 a−1 . . .
a3 a2 a1 a0 . . .
...

...
...

...
. . .

 .

with a function f on the unit circle whose nth Fourier
coefficient is an. Here f is in the L∞ of the unit circle and it
is known as the symbol of the Toeplitz operator A.

I If f , g are two such functions, we have the usual pointwise
product (f .g)(z) = f (z)g(z), defined almost everywhere.

I Going back, using the identification made above, one can
define a new product on Toeplitz operators, which makes it a
commutative algebra!
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Fixed points and noncommutative Poisson boundary

I Let H be a complex Hilbert space.

I Let A ⊆ B(H) be a von Neumann algebra.
I Let τ : A → A be a normal unital completely positive (UCP)

map.
I The fixed points of τ

F(τ) := {X ∈ A : τ(X ) = X}

are known as harmonic elements for τ .
I Since I ∈ F , it is always non-trivial.
I In general, F is a subspace of A but it is not a sub-algebra.
I The Choi Effros product is a product ‘◦’ on F (τ), which

makes it a von Neumann algebra. The norm and the adjoint
remain unchanged.

I The original formula for the product was complicated. We will
come back to this.

I Izumi called the von Neumann algebra (F (τ), ◦) (or its explicit
realization) as the non-commutative Poisson boundary of τ.
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The Dynamics

I Question: Suppose τ : A → A is a normal UCP map.
Consider the discrete dynamics:

{τ, τ2, τ3, . . .}.

I Look at
F(τ),F(τ2),F(τ3), . . .

as Poisson boundaries.

I How are these Poisson boundaries related?

I If τ(X0) = −X0 and X0 6= 0. Then X0 ∈ F (τ2) but
X0 /∈ F (τ3).
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Peripheral eigenvectors and peripheral Poisson boundary

I Let τ : A → A be a normal UCP map.

I Take

E (τ) = span {X : τ(X ) = λX , for some λ ∈ T}.

T = {λ ∈ C : |λ| = 1}.

I A vector X as above is called a peripheral eigenvector.
I E (τ) is an operator system which may not be closed under

multiplication.
I Theorem: Take

P(τ) := E (τ)
‖·‖
.

Then P(τ) has a new product ◦, which makes it a
C ∗-algebra.

I Definition: The C ∗-algebra (P(τ), ◦) is called the peripheral
Poisson boundary of τ.

I How to compute the product ‘◦’?
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Dilation theory

I Dilation Theorem: Let A ⊆ B(H) be a von Neumann algebra.

I Let τ : A → A be a normal UCP map.
I Then there exists a triple (K,B, θ), where
I (i) K is a Hilbert space containing H as a closed subspace;
I (ii) B ⊆ B(K) is a von Neumann algebra, satisfying A = PBP

where P is the orthogonal projection of K onto H;
I (iii) θ : B → B is a normal, unital ∗-endomorphism;
I (iv) (dilation property):

τn(X ) = Pθn(X )P, ∀X ∈ A, n ∈ Z+;

I That is,

θn(

[
X 0
0 0

]
) =

[
τn(X ) ∗
∗ ∗

]
.

I The dilation is unique up to unitary equivalence under a
natural minimality condition.
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What is dilation theory?

I Classical Markov processes: Start with Stochastic map/
Stochastic semigroup.

I The Markov process consists of (i) A measure space (the
space of trajectories with a measure, thanks to Kolmogorov);
(ii) A filtration (iii) Co-ordinate random variables, conditional
expectation.

I Similarly, starting with a UCP map/semigrup, a quantum
Markov process would have (i) A Hilbert space (ii) A filtration
of projections or subalgebras (iii) A family of homomorphisms
and conditional expectation– Quantum Markov processes.

I Long history. L. Accardi, Hudson and Parthasarathy,...
I The minimal one, called ‘Weak Markov Flow’ is constructed

using Stinespring’s theorem. The Time shift gives a semigroup
of endomorphisms.

I Further dilation to automorphisms, may or may not exist
(depending upon the set-up) and when it exists it is typically
not unique.
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Lifting of peripheral eigenvectors

I Let θ : B → B be minimal dilation of an UCP map
τ : A → A. The ∗-endomorphism property of θ implies that
P(θ) is a C ∗-algebra under multiplication.

I Theorem: Every peripheral eigenvector X of τ lifts uniquely to
a peripheral eigenvector of θ: That is, if τ(X ) = λX with
|λ| = 1, then there exists unique X̂ such that

I (i) θ(X̂ ) = λX̂ ;

I (ii) PX̂P = X .

I Moreover ‖X̂‖ = ‖X‖ and more generally

‖
∑
j

cj X̂j‖ = ‖
∑
j

cjXj‖.

I We set X ◦Y = PX̂ Ŷ P as the modified product. This defines
the peripheral Poisson boundary (P(τ), ◦). As a C ∗-algebra it
is isomorphic to (P(θ), ·).
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No von Neumann algebra

I In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

I Consider the Toeplitz algebra example. For |λ| = 1, we have
λ-Toeplitz operators satisfying: S∗XS = λX .

I The dilation is given by θ(Z ) = U∗ZU, where U is the
bilateral shift.

I The von Neumann algebra generated by P(θ) is the algebra of
all bounded operators.

I Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



No von Neumann algebra

I In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

I Consider the Toeplitz algebra example. For |λ| = 1, we have
λ-Toeplitz operators satisfying: S∗XS = λX .

I The dilation is given by θ(Z ) = U∗ZU, where U is the
bilateral shift.

I The von Neumann algebra generated by P(θ) is the algebra of
all bounded operators.

I Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



No von Neumann algebra

I In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

I Consider the Toeplitz algebra example. For |λ| = 1, we have
λ-Toeplitz operators satisfying: S∗XS = λX .

I The dilation is given by θ(Z ) = U∗ZU, where U is the
bilateral shift.

I The von Neumann algebra generated by P(θ) is the algebra of
all bounded operators.

I Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



No von Neumann algebra

I In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

I Consider the Toeplitz algebra example. For |λ| = 1, we have
λ-Toeplitz operators satisfying: S∗XS = λX .

I The dilation is given by θ(Z ) = U∗ZU, where U is the
bilateral shift.

I The von Neumann algebra generated by P(θ) is the algebra of
all bounded operators.

I Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



No von Neumann algebra

I In general the peripheral Poisson boundary does not have von
Neumann algebra structure.

I Consider the Toeplitz algebra example. For |λ| = 1, we have
λ-Toeplitz operators satisfying: S∗XS = λX .

I The dilation is given by θ(Z ) = U∗ZU, where U is the
bilateral shift.

I The von Neumann algebra generated by P(θ) is the algebra of
all bounded operators.

I Remark: In general, it is not possible to lift non-peripheral
eigenvectors.



A formula for the new product

I The extended Choi-Effros product on P(τ) is defined by

X ◦ Y = PX̂ Ŷ P.

I A careful analysis of the dilation theorem gives the following.

I Formula: Suppose τ(X ) = λX and τ(Y ) = µY with
|λ| = |µ| = 1.

I Then,
X ◦ Y = s-lim (λµ)−nτn(XY ).

I We do not know of any proof the existence of this limit
without using dilation theory.
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Consequences

I Corollary 1: If the original von Neumann algebra A is abelian
then (P(τ), ◦) is also abelian.

I Corollary 2: If τ(X ) = λX and τ(Y ) = µY with
|λ| = |µ| = 1. Then τ(X ◦ Y ) = λ.µ(X ◦ Y ). [Note that, if
λ.µ is not in the point spectrum of τ then X ◦ Y = 0.]

I Corollary 3: The map X 7→ τ(X ) is an automorphism on the
peripheral boundary (P(τ), ◦).
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The dynamics revisited

I Theorem: Let A be a von Neumann algebra and let
τ : A → A be a normal UCP map.

I Then
(P(τ), ◦) = (P(τn), ◦)

for every n ≥ 1.

I Proof: From elementary linear algebra the linear span of
peripheral eigenvectors of τ and τn are same for every n ≥ 1.
Now the result is not hard to prove from the formula for the
Choi-Effros product proved before.
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Peripherally automorphic maps in finite dimensions

I Definition: Let τ : Md → Md be a UCP map. Then τ is said
to be peripherally automorphic if X ◦ Y = XY for every X ,Y
in P(τ).

I Remark: If τ has a faithful invariant state then τ is
peripherally automorphic.

I Theorem: Let τ : Md → Md be a UCP map with a
Choi-Kraus decomposition τ(X ) =

∑r
i=1 L

∗
i XLi , ∀X ∈ Md .

Then the following are equivalent.

I (i) τ is peripherally automorphic.

I (ii) For λ ∈ T, τ(Y ) = λY if and only if YLi = λLiY for
every 1 ≤ i ≤ r .
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∑r
i=1 L

∗
i XLi , ∀X ∈ Md .

Then the following are equivalent.

I (i) τ is peripherally automorphic.

I (ii) For λ ∈ T, τ(Y ) = λY if and only if YLi = λLiY for
every 1 ≤ i ≤ r .
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A decomposition theorem

I Let τ be a UCP map on Md . Then the vector space Md has a
unique direct sum decomposition:

Md = P(τ)⊕N (τ),

I where P(τ) is the peripheral space of τ ,

I and N (τ) = {X ∈ Md : limn→∞ τ
n(X ) = 0}.

I Furthermore, P(τm) = P(τ) and N (τm) = N (τ) for every
m ≥ 1.
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