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Quantum parameter estimation
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m Estimation problem: estimate 6 by performing a measurement M on system in state pg

m What is quantum about this ?

P> fixed measurement: "classical stats" problem with special probabilistic structure

P> "optimal" measurement: need to understand structure of quantum statistical model

m Classical and quantum Cramér-Rao bounds!: if § is unbiased

E [(9 0T (0 9)} > [M(g)~1 > F(g)~!

Classical Quantum
Fisher info Fisher info

LA, Holevo. Probabilistic and Statistical Aspects of Quantum Theory (1982); S. L. Braunstein, C. M. Caves, P.R.L. (1994)



Measurements and Fisher information

One parameter pure qubit model: |1g) = e~ "7y = cos(#)|0) + sin(8)|1)

m QFl: F(0) = 4||4|? = 4
m At 0 =0:
> FI=QFI for any basis {|v;) = e~ ¥ ¥|i)} with 7 # 0

> classical FI =0 for the standard basis

for any neighbourhood of § =0
model is not identifiable : py(i) = p_g (i)

Gaussian shift model: coherent state

%S

m QFl: F(u) = f
mAtu=0

» FI=QFI for quadrature measurement of Q

» Fl =0 for number operator
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Quantum input-output systems

m Input-output formalism describes controlled open system dynamics
m Quantum filtering, feedback control, quantum networks

m Control and estimation (system identification): two sides of the coin
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Quantum open system in the input-output formalism (discrete time)

‘ System

Input utput

\x) \x>
m Unitary interaction U on C% ® C* depends on unknown parameter 6

m System-output state at time n

[¥o(n)) = Ué") ~~~~~ UiVl X&)

= Z KY KL @)@ @lin),  K{ = (ilUslx)

cin=1

m Assume transition operator Ty : My — My is aperiodic and has a unique stationary state pgsgs

7—919'—>ZK¢9PK16*7 To" (p) — pss

m Output state becomes stationary for large n

Pl (n) = Trs (|¥o (n)) (Fo (n)])



Output quantum Fisher information

Theorem [M.G., J. Kiukas, J. Math. Phys. (2017), Commun. Math. Phys. (2015)]

The quantum Fisher information Fy(n) of the output state scales linearly with n at rate

n—oo N

k
1 L . .
lim ~Fy(n) = fo =4 E Tt [pes K} Ki] + 2Tt | Im(Kipss K7) - R(Im E KIK;)
=1 i

where R is the Moore-Penrose inverse of Z — Ty.

m System-ouptut QFI scales quadratically for times shorter than coherence time of 753

Heisenberg (quadratic) scaling is possible for systems with multiple stationary states*

Full parametrisation: QFI provides information geometry metric on the manifold of
identifiable parameters®

Standard sequential measurements typically do not achieve the QFI (even asymptotically)

3K. Macieszczak, MG, |. Lesanovsky, J. P. Garrahan, Phys. Rev. Lett. (2016)
4F, Girotti, MG, in preparation
SM.G., J. Kiukas, J. Math. Phys. (2017), Commun. Math. Phys. (2015)



Local Asymptotic Normality®

m Suppose 6 is known to lie in a n~'/2¢ neighbourhood of g, so 6 = 6y + u/+/n

Theorem (Local asymptotic normality)

The quantum model “F;;iu/\/ﬁ(n» converges locally to coherent states model (Gaussian shift) .

fo Jo
. s+o s+o _ 0 2%
nlgnoo <‘I{90+U/\F( )‘ TGO‘H//\F( )> o 2 v 2 v

where |u) is a one mode coherent state of mean (u,0).
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m Multiparameter LAN: convergence to multimode coherent state model

V)

m Canonical coordinates of limit CV system are not explicit and may be hard to access
sequentially

6M.G., J. Kiukas, J. Math. Phys. (2017), Commun. Math. Phys. (2015)




Output post-processing with quantum coherent absorber

m Each output unit interacts with a quantum coherent absorber 7 8 9 C? via Vo, such that

system-absorber have a pure stationary state |1)ss) € Ct®C? at 6 =6y, ie.

Weo = Vo, Uy, : [¥ss) ® |X) = [¥ss) ® |x)

m At 0 = 0y system-output state is uncorrelated

[¥00) = W . W e © IX®™) = [hes) ® XE™), Wo = Vi U

m At 6 = 6p output carries info about 6 as ‘vacuum excitations’
K. Stannigel, P. Rabl, and P. Zoller, New J. Phys. (2012)

8A. Godley, M.G., Quantum (2023)

°D. Yang, S. F. Huelga, M. B. Plenio, arXiv:2209.08777




Output translationally invariant modes

m Translationally invariant modes given by ‘excitation patterns’

> Excitation pattern a = (a17 oo ap)€{0,1}F with ap = ap = 1

A¥ (n) = \FZ" k‘*'l at L., (oF )"
> Level 1:

— 1 n +

At(n) = 75 2

> Level 2
n—2 +
ATy \ﬁ E 2+1’ Ao (n f Z 7,+27
m Fock space of pattern number states P = (k1, a(V;. ..k, al™))
1 k1 km
[Pin) = ————— (A%, (n)) . (A7, () [0)E
ki!. . km! a

m Asymptotic orthogonality of number states basis
* 2
12,1;n) = o5 (A1%(n)” [0)®" = —4= 37, 10...010...010...0)
[1,11;n) = A%, (n)|0)®"™ = %ﬁ >, 10...0110...0)

(1,11;n]2,1;n) = O(\/Lﬁ)



Central Limit, Poisson Limit & LAN

m Known abs. parameter 6p. Unknown sys. parameter 6 = 6y + u/+/n for some local par. u

m Assume that system+absorber is primitive

Theorem
The output state converges to a (joint) coherent state of all translationally invariant modes

1. The quadratures satisfy CLT:
1 1
a(n) = —(Aa(n) + A% (n —)N(Re\/i aw—)
Qa(n) \/5( (n) (n)) Hatl, o

Pa(n) i= ——(Aa(n) — A%(n)) — N (Im\@uau, 1)
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2. The number operators No(n) = A% (n)Aq(n) have asymptotic Poisson distributions
Nu(n) — Poisson(|ua|?u?)

where pio = Tt ([Ja(ld = T) "1 0 T+ Ju] (p)) with Jo = Jay 0+ 0 Ty,
Jo=Jar0--0Jay and Jo = T and Ji(-) = Ko - K}

3. Output QFl is carried by the Gaussian TIM: fp, = 4Za |pte |




Law of the counting process

m Counting process X1, Xo,...,Xn € {0,1} of sequential standard basis measurements

m Total counts operator: N(n) = X1+ X2 +---+ X,

The total counts operator converges in distribution to the sum

N(n) =) lol-Ya

where Y, are independent Poisson variables with intensity |ua|2.

m This suggests that the counting process performs a joint measurement of all Ny (n)!

m For large n the trajectory consists of O(1) patterns separated by long sequences of Os.

Extract (low order) pattern excitations numbers C': (z1,z2,...,2n) — P = {ka}a
0,0,0,1,0,1 0,0,0,0,0,00,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,041, 1}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
(),0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,00,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,
0,0,0,00,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0



Compatibility between modes counting operators and the counting process

0,0,0,)1,0,140,0,0 0,0,00,0,0,0,0 0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1]0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0/1]0,0,0,0,0,0,0,0,0,0,0,0]1}0,0,0,0,0,0,0 0,0,00,0 0,0,0,0,0,0,0,0,0,
0,0,0,00,0,0,0,0,00,0.0,0,0,0,0.0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Claim: asymptotically in n...

Counting process effectively measures the TIM number operators and therefore the distribution
of P is given by multidimensional Poisson Ha Poisson (|ua|?).

m Coarse grained counting measurement with POVM {Pp}p where Pp is the projection onto
Hp :=Lin{|z1,...,2n) : C(z1,...,2n) = P}, P ={ka}ta

m Output state is a superposition of translationally invariant multiple excitation states

O ) = S 1Pin) +o(1),  [Pin) = [ —== (A% ()" [0)="



Compatibility between modes counting operators and the counting process

Claim: asymptotically in n...

Counting process effectively measures the TIM number operators and therefore the distribution
of P is given by multidimensional Poisson Ha Poisson(|,ua|2).
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Two stage adaptive optimal measurement strategy

System Absorber

Input U, VHU Counting measurement
X) Ix) X X1

Optimal measurement depends on the unknown parameter 6

m Design two stage adaptive measurement procedure:

m Stage 1: use standard measurements on a small portion of output 72 = n'~¢ to compute a
preliminary estimator 6,

m Stage 2: Set absorber parameter to 0y := 0,, — §,, where §,, = n~1/2+3¢

counting measurement on output of sys+abs

and perform

» collect pattern statistics X1,...,Xp, — P = {Ka}a-

» Optimal linear estimator based on the homodyne limit of counting

A~ ~ 2 1 671,

0 =0, + - § K, | =2

n n fe(sn n (e 2
(e



Asymptotic normality and optimality of linear estimator

m Optimal linear estimator for local parameter u with 6 = ,, + u/y/m

2 1 on
An = - Ka -
“ \/ﬁ foon n Z

«

m Asymptotic normality and achievability of QCRB

in _>N(o,f_19)




Null measurement is problematic

m Localisation:
use nl~¢€ <« n samples to compute preliminary estimator 6,

Concentration — 6 = 0y, +u/+/n with |u| < n¢
m Asymptotic normality:

with absorber set at 5 = O, output state model is equivalent to

fo
\ 2 “>
m Quadrature Q measurement is optimal : 4 ~ N(u, %)

m Number (null) measurement cannot distinguish u and —u (non-identifiability)

Pne

V)




Displaced-null measurement is asymptotically optimal

3e

Tn

e with 7, = n°¢ — local parameter v + 7,

\/fj"(u+m)>

m Set absorber to 0y = 0,, —

m Asymptotic normality: output state model is equivalent to

m Counting measurement becomes linear (homodyne):

Y ~ Poisson (E(u_;,_.,.n)?) — 0= Y - — NN(u,—>
4 Tnfo 2 o

‘\/f;"(u+7n)>
@
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Conclusions and Outlook

m Primitive quantum Markov chains satisfy LAN with closed form formula for QFI
m Coherent absorber rotates output to vacuum state at matching parameters

m Translationally invariant modes have asymptotically coherent states

m Counting performs simultaneous measurement of all modes number operators

m Two step adaptive procedure with displaced-null strategy achieves QFI

m Simple final estimator based on pattern counts

m Extension to multidimensional parameters, continuous time



