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Goal: generic controllability – from finite to infinite dimensions

What’s known?

Let H ∼= Cn be “the” n-dimensional Hilbert space and Un its unitary group.

Given a controlled Schrödinger Equation (lifted form)

U̇(t) = −iH(t)U(t) , U(0) = In ∈ Un , (Sn)

where the control Hamiltonian H(t) is given by

H(t) = H0 +
m∑

j=1

vj (t)Hj

with real-valued (piecewise constant) controls v1(t), . . . , vm(t) ∈ R.

Then ...
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Goal: generic controllability – from finite to infinite dimensions

Theorem (Jurdjevic, Kupka, ...)
Then (Sn) is generically controllable, i.e. for all m ≥ 1 the set of (m + 1)-tuples
(iH0, iH1, . . . , iHm) such that (Sn) is controllable on Un is a generic subset of
un × · · · × un.

Corollary (m = 1)
For a generic pair (H0,H1) of Hamiltonians the Schrödinger Equation (Sn) is
controllable on Un.

Remark
The same result holds for SUn and sun.
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Goal: generic controllability – from finite to infinite dimensions

Recall:
Controllability of (Sn) means that the reachable set of (Sn), i.e.

R(In) := {U(t) : t ≥ 0 , U(·) solves (Sn) for some controls vj (·)}

coincides with Un.

What is the precise meaning of generic? – There are different definitions:
(MT): generic = complement has measure zero;
(TOP): generic = complement is meager (i.e. the complement is con-
tained in a countable union of nowhere dense subsets);
A useful simplification:

G open and dense =⇒ G (top)-generic

In the following, we will work with the topological notion of genericity.
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Goal: generic controllability – from finite to infinite dimensions

Goal:

Let H denote “the”∞-dim. separable Hilbert space and U(H) its unitary group.

Given a controlled Schrödinger Equation

U̇(t) = −iH(t)U(t) , U(0) = IH ∈ U(H) , (S∞)

where the control Hamiltonian H(t) is given by

H(t) = H0 +
m∑

j=1

vj (t)Hj

with real-valued piecewise constant controls v1(t), . . . , vm(t) ∈ R, bounded
control Hamiltonians H1, . . . ,Hm and possibly unbounded drift H0.

Then ...
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Goal: generic controllability – from finite to infinite dimensions

Goal
Under some suitable assumption on H0 Eq. (S∞) is generically controllable in
the following sense, for all m ≥ 1 the set of m tuples (iH1, . . . , iHm) such that
(S∞) is controllable on U(H) is a generic subset of u(H)× · · · × u(H).

Remark
Due to technical reasons, we have fixed H0 in contrast to the finite
dimensional case.
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The finite dimensional case – a brief overview

Consider again the controlled Schrödinger Equation

U̇(t) = −i
(

H0 +
m∑

j=1

vj (t)Hj

)
U(t) , U(0) = In ∈ Un (Sn)

with real-valued (piecewise) controls v1(t), . . . , vm(t).

Fundamental controllability result [Jurdjevic, Sussmann, Brockett, ...]

(Sn) is controllable on Un if and only if the system Lie algebra given by
g := 〈iH0, iH1 . . . , iHm〉LA coincides with un. The same holds for SUn and sun.

Recall:
〈iH0, iH1 . . . , iHm〉LA denotes the Lie algebra generated by iH0, iH1, . . .
. . . , iHm, i.e. the linear span of iH0, iH1 . . . , iHm and all their commutators.
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The finite dimensional case – a brief overview

Sketch of proof:

The closure to the systems group G, i.e. the group generated by all
unitaries of the form

eit(H0+
∑m

j=1 vj Hj ) , t ∈ R , (v1, . . . , vm) ∈ Rm (∗)

contains all one-parameter groups eitHj , t ∈ R, j = 0,1, . . . ,m.

If the Lie-algebra-rank-condition, i.e.

g = un or g = sun (LARC)

is satisfied then the closure of G coincides with Un (or SUn).

Due to compactness of Un (and SUn) we conclude (Sn) is (exactly)
controllable, i.e. R(In) = G = Un (or R(In) = G = Un).

G. Dirr Edinbrugh 2023 9 / 25



The finite dimensional case – a brief overview

How to prove generic controllability in finite dimensions:

First note that one can restrict to the case m = 1.
Then the following observation is essential:

Given a pair (H0,H1) such that the adiH0 -invariant subspace

span
{

adk
iH0

(iH1) : k ∈ N
}

(G)

has dimension n2 − n. Then

〈iH0, iH1〉LA =

{
sun if tr H0 = tr H1 = 0,
un else.

Hence it suffices to show that the set of pairs (H0,H1) ∈ sun × sun which
satisfy condition (G) are generic in sun × sun.
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The finite dimensional case – a brief overview
How to prove generic controllability in finite dimensions:

To this end consider the maps

(H0,H1) 7→ PI(H0,H1) := det
(

adiH0 (iH1) · · · adn2−n
iH0

(iH1)
)

I
,

where I = (k1, . . . , kn2−n) is a fixed multi-index of the from

1 ≤ k1 < k2 · · · < kn2−n ≤ n2 − 1 .

Finally, set
P(H0,H1) :=

(
PI(H0.H1)

)
I∈I ,

where I denotes the set of multi-indices of the above from.
Then one has the equivalence

(H0,H1) satisfies (G) ⇐⇒ P(H0,H1) 6= 0

Since P is polynomial (and not identical zero) we conclude that the set
P 6= 0 is open and dense and thus we conclude generic controllability.
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First results in infinite dimensions: setup & basic notions

Key issues:

What is the “right” setup for an operator-theoretic approach?

In particular,

What is the “right” topology on U(H)?
How to generalized/adapt LARC.

Recall: There are at least three commonly used topologies on U(H): the
uniform (= norm) topology, the strong and the weak operator topology.

Here we favor the strong operator topology for several reasons:

If some of the Hamiltonians e.g. H0 is unbounded, then the corresponding
one-parameter group eitH0 is only strongly (but not uniformly) continuous.

For dimH =∞ the set U(H) is non-separable with respect to the uniform
topology; thus (S∞) is never (uniformly) approximately controllable.

U(H) is still a topological/metric group with respect to the strong operator
topology.
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First results in infinite dimensions: setup & basic notions

Consider over again the controlled Schrödinger Equation:

U̇(t) = −i
(

H0 +
m∑

j=1

vj (t)Hj

)
︸ ︷︷ ︸

=:H(t)

U(t) , U(0) = IH ∈ U(H) . (S∞)

Assumption A:

1 Drift Hamiltonian H0: (possibly unbounded) self-adjoint operator;
2 Control Hamiltonians H1, . . . ,Hm: bounded self-adjoint operators;
3 Admissible controls v1(t), . . . , vm(t): real-valued and piecewise constant;

Solution concept: The above assumptions guarantee the for all admissible
controls v1(t), . . . , vn(t) there exists of a unitary evolution family U(t , s) which
satisfies (S∞) in the strong sense, i.e.

(t , s)→ U(t , s) ∈ U(H) is strongly continuous.
U(t , s)U(s, r) = U(t , r) for all t , s ∈ R
There exists a dense subset D ⊂ H s.t. ∂+

t U(t , s)ψ
∣∣
t=s = iH(t)ψ for all ψ.
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First results in infinite dimensions: setup & basic notions

Let H0, . . . ,Hm be as above.

1 The strongly reachable set R(IH) of (S∞) is the smallest strongly closed
subsemigroup of U(H) which contains all exponentials of the form

eit(H0+
∑m

j=1 vj Hj ) , t ≥ 0 , (v1, . . . , vm) ∈ Rm .

2 The system group G of (S∞) is the smallest strongly closed subgroup of
U(H) which contains all exponentials of the form

eit(H0+
∑N

j=1 vj Hj ) , t ∈ R , (v1, . . . , vm) ∈ Rm .

3 (S∞) is called strongly approximately controllable if R(IH) = U(H).
4 The system Lie algebra g of (S∞) is defined as

g := {Ω ∈ u(H) : etΩ ∈ G for all t ∈ R} ,

where u(H) denotes the Lie algebra of all bounded skew-adjoint
operators.

Note: So far, g could collapse to {0}.
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First results in infinite dimensions: some preparations

Proposition A (M. Keyl)
Let H0, . . .Hm satisfy assumption A.
(a) The dynamical group G coincides with the smallest strongly closed sub-

group of U(H) generated by the one-parameter groups eitHj , t ∈ R and
j = 0, . . . ,m.

(b) The dynamical Lie algebra g is a strongly closed Lie subalgebra of u(H).

Comments on the proof:
Both results follow – similar to the finite dimensional case – by:

continuity of the exponential map (with respect to the strong topology)

the Trotter formula (RS for A being unbounded)

eA+B = lim
n→∞

(
e

A
n e

B
n

)n
and e[A,B] = lim

n→∞

(
e

A
n e

B
n e

−A
n e

−B
n

)n2

and the trivial observations Hj = (H0 + Hj )− H0 for j = 1, . . . ,m
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First results in infinite dimensions: some preparations

Spectral assumption PS:

The drift Hamiltonian H0 has pure point spectrum (not necessarily isolated).

Proposition B (M. Keyl)
Let H0, . . .Hm satisfy assumption A and PS.
(a) The reachable set R(IH) contains the backward evolution one parameter

group generated by iH0, i.e. e−itH0 ∈ R(IH) for all t ≥ 0.
(b) and thus

R(IH) = G .

Comments on the proof:
1 Part (a) follows by a straightforward truncation argument combined with

the corresponding finite dimensional result.
2 Part (b) is an immediate consequence of part (a).
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First results in infinite dimensions: some preparations

Next goal: improve part (a) of Prop. B.

Definition: Let H0 satisfy assumption A and PS. Then H0 allows the spectral
decomposition

H0 =
∞∑

n=1

λnEn

and let E(H0) denote the smallest strongly closed complex subspace which
contains all spectral projections En. Then

T (H0) := E(H0) ∩ U(H) is called the maximal torus of H0.

and t(H0) := E(H0) ∩ u(H) its maximal torus algebra.

Remark:
E(H0) is an abelian von Neumann algebra with alternative description:

E(H0) = {eitH0 | t ∈ R}′′ .
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First results in infinite dimensions: Theorem A

Non-rationality assumption NR:

The eigenvalues of the drift Hamiltonian H0 are rationally independent.

Theorem A (M. Keyl)
Let H0, . . . ,Hm satisfy assumptions A, PS, and NR. Then the strong closure of
{eitH0 | t ∈ R} in U(H) coincides with T (H0).

Comments on the proof:
The inclusion {eitH0 | t ∈ R} ⊂ T (H0) is straightforward.
The converse inclusion is based on the classification of abelian von
Neumann algebras and the non-rationality condition.
In principle, there are three different types of abelian von Neumann.
Here we are faced with the case l∞(N).
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First results in infinite dimensions: Theorem A

What is Theorem A good for?

Formally, the finite dimensional LARC suggests to consider the “Lie algebra”

〈iH0, iH1, . . . , iHn〉Lie (∗)

BUT (∗) is in general not well-defined when iH0, is unbounded.

Theorem A tells us that we can replace H0 in (∗) by its spectral projections En
and consider instead

〈iH1, . . . , iHm, iE1, iE2, . . . 〉Lie (∗∗)

Thus, checking controllability boils down to verifying

〈iH1, . . . , iHm, iE1, iE2, . . . 〉Lie = u(H) .
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First results in infinite dimensions: Theorem B

Non-degeneracy and connectivity assumptions ND + C:

All eigenvalues of H0 are non-degenerate.
The connectivity graph Γ(H0,H1, . . . ,Hm) defined below is connected.

Connectivity graph:

(k , l) is an edge of Γ(H0, . . . ,Hm) :⇐⇒ ∃ j ∈ {1, . . . ,m} s.t. 〈bk ,Hjbl〉 6= 0

where bk , k ∈ N denotes “the” complete eigenbasis of H0.

Theorem B (M. Keyl)
Let H0, . . . ,Hm satisfy assumptions A, PS, NR and ND+C. Then (S∞) is
strongly approximately controllable.
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First results in infinite dimensions: Theorem B

Theorem B (M. Keyl)
Let H0, . . . ,Hm satisfy assumptions A, PS, NR and ND+C. Then (S∞) is
strongly approximately controllable.

Comments on the proof:
Combining Theorem A and Condition ND we conclude that g contains all
rank-one projections

i |bn〉 〈bn|

where bn is a complete eigenbasis of H0.
Now taking commutators (and allowing for complex linear combinations)
yields

〈bk ,Hjbl〉 |bk 〉 〈bl | ∈ gC

Finally, Condition C guarantees that all |bk 〉 〈bl | belong to gC and thus the
strong closure of gC coincides with the set of all bounded operators on H.
Hence g = u(H) which implies strong approximate controllability of (S∞).
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Genericity for∞-dimensional systems: Theorem C

Spectral assumption DPS:

The Hamiltonian H0 has discrete pure point spectrum (no accumulation points).

Theorem C (Dirr/Keyl in preparation)
Let H0 satisfy assumptions A, ND and DPS. Then for m ≥ 1 Eq. (S∞) is
generically strongly approximately controllable, i.e. the set of (iH1, . . . , iHm)
such that (S∞) is strongly approximately controllable is a generic subset of
u(H)× · · · × u(H).

Sketch of proof: ...
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Open Problems

Extend Thm. C to Hamiltonians H0 with degenerate eigenvalues;
Extend Thm. C to Hamiltonians H0 with finitely many accumulation points;
Extend Thm. B to Hamiltonian H0 with continuous spectrum;
Pass to more than one unbounded Hamiltonian;
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That’s it!

Thanks for your attention and patience!
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