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Goal: generic controllability — from finite to infinite dimensions

What’s known?

Let H = C" be “the” n-dimensional Hilbert space and U, its unitary group.
Given a controlled Schrédinger Equation (lifted form)
U(t) = —iH(U(t),  U(0) = Iy € Up, (Sn)

where the control Hamiltonian H(t) is given by
m
H(t) = Ho + Y vi(hH
j=1

with real-valued (piecewise constant) controls v4(t),..., vn(t) € R.

Then ...
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Goal: generic controllability — from finite to infinite dimensions

Theorem (Jurdjevic, Kupka, ...)

Then (Sp) is generically controllable, i.e. for all m > 1 the set of (m + 1)-tuples
(iHo,iH1, . ..,iHm) such that (Sy) is controllable on U, is a generic subset of
Up X -+ X Up.

Corollary (m = 1)

For a generic pair (Hy, Hy) of Hamiltonians the Schrédinger Equation (S;) is
controllable on U,,.

Remark
@ The same result holds for SU, and su,,.
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Goal: generic controllability — from finite to infinite dimensions

Recall:
@ Controllability of (S,) means that the reachable set of (S,), i.e.

R(lx) :=={U(t) : t>0, U(-) solves (S,) for some controls v;(-)}

coincides with Uj,.

What is the precise meaning of generic? — There are different definitions:

@ (MT): generic = complement has measure zero;

@ (TOP): generic = complement is meager (i.e. the complement is con-
tained in a countable union of nowhere dense subsets);

@ A useful simplification:

Gopenanddense — @ (top)-generic
In the following, we will work with the topological notion of genericity.
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Goal: generic controllability — from finite to infinite dimensions

Goal:

Let H denote “the” oco-dim. separable Hilbert space and U(H) its unitary group.
Given a controlled Schrédinger Equation
U(t) = —iH(U(t), U(0) = Ix € U(H), (Sec)

where the control Hamiltonian H(t) is given by
m
H(t) = Ho+ Y vi(t)H;
j=1

with real-valued piecewise constant controls v4(t),. .., vy(t) € R, bounded
control Hamiltonians H;, . .., Hy and possibly unbounded drift Hp.

Then ...
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Goal: generic controllability — from finite to infinite dimensions

Under some suitable assumption on Hy Eq. (S is generically controllable in
the following sense, for all m > 1 the set of mtuples (iH;, .. .,iHp) such that
(Swo) is controllable on U(H) is a generic subset of u(H) x - - - x u(H).

Remark

@ Due to technical reasons, we have fixed Hy in contrast to the finite
dimensional case.
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The finite dimensional case — a brief overview

Consider again the controlled Schrédinger Equation

m
U(t) = =i(Ho + 3 v(HH) U(D),  U©) = h e Uy (Sn)
j=1
with real-valued (piecewise) controls v (t), ..., viu(f).

Fundamental controllability result [Jurdjevic, Sussmann, Brockett, ...]

(Sp) is controllable on U, if and only if the system Lie algebra given by
g := (iHo,iH; . .., iHm)La coincides with u,. The same holds for SU, and su,.

Recall:

@ (iHp,iH; ...,iHm)La denotes the Lie algebra generated by iHp,iH;, . . .
...,1Hp, i.e. the linear span of iHy,iH; . ..,iHy and all their commutators.
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The finite dimensional case — a brief overview

Sketch of proof:

@ The closure to the systems group G, i.e. the group generated by all
unitaries of the form

S+ M) te R, (vy,...,vm) €RT (%)
contains all one-parameter groups e/, t c R, j = 0,1,...,m.
@ If the Lie-algebra-rank-condition, i.e.
g=u, Or g=su, (LARC)

is satisfied then the closure of G coincides with U, (or SU,).

@ Due to compactness of U, (and SU,;) we conclude (S,) is (exactly)
controllable, i.e. R(I5) = G = U, (or R(I,) = G = Up).
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The finite dimensional case — a brief overview

How to prove generic controllability in finite dimensions:

@ First note that one can restrict to the case m = 1.
@ Then the following observation is essential:

Given a pair (Hp, Hi) such that the ad;y,-invariant subspace
span { adff, (iH;) : k € N} (G)
has dimension n® — n. Then

su, if trHo =trH; =0,

(iHo,iH1)La = {
u, else.

@ Hence it suffices to show that the set of pairs (Hp, Hi) € su, x su, which
satisfy condition (G) are generic in su, x suy.
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The finite dimensional case — a brief overview

How to prove generic controllability in finite dimensions:

@ To this end consider the maps
(Ho, H1) = Pi(Ho, Hy) := det (adiHo(iH1) adi’}i;”(im ))/ ,
where | = (k1,. .., Kpe_p) is a fixed multi-index of the from

1§k1<k2-~-<k,,2_n§n2—1.

@ Finally, set
:D(l'/o7 H1) = (P/(Ho.H1 ))IEI s
where Z denotes the set of multi-indices of the above from.
@ Then one has the equivalence
(Ho, Hy) satisfies (G) <= P(Hp,H;i) #0

@ Since P is polynomial (and not identical zero) we conclude that the set
P #£ 0 is open and dense and thus we conclude generic controllability.
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First results in infinite dimensions: setup & basic notions

Key issues:
@ What is the “right” setup for an operator-theoretic approach?
In particular,

@ What is the “right” topology on U(H)?
@ How to generalized/adapt LARC.

Recall: There are at least three commonly used topologies on U(H): the
uniform (= norm) topology, the strong and the weak operator topology.

Here we favor the strong operator topology for several reasons:
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First results in infinite dimensions: setup & basic notions

Key issues:
@ What is the “right” setup for an operator-theoretic approach?
In particular,

@ What is the “right” topology on U(H)?
@ How to generalized/adapt LARC.
Recall: There are at least three commonly used topologies on U(H): the
uniform (= norm) topology, the strong and the weak operator topology.
Here we favor the strong operator topology for several reasons:
@ If some of the Hamiltonians e.g. Hy is unbounded, then the corresponding
one-parameter group e is only strongly (but not uniformly) continuous.

@ For dimH = oo the set U(H) is non-separable with respect to the uniform
topology; thus (S,) is never (uniformly) approximately controllable.

@ U(H) is still a topological/metric group with respect to the strong operator
topology.
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First results in infinite dimensions: setup & basic notions

Consider over again the controlled Schrédinger Equation:

U(t) = =i (Ho+ Y v(hH) UD), UO) =Ty UHE). (S«
j=1

=:H(t)
Assumption A:

@ Drift Hamiltonian Hy: (possibly unbounded) self-adjoint operator;
@ Control Hamiltonians Hi, . .., Hp,: bounded self-adjoint operators;
© Admissible controls vy (t),..., vn(t): real-valued and piecewise constant;
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First results in infinite dimensions: setup & basic notions

Consider over again the controlled Schrédinger Equation:

U(t) = =i (Ho+ Y v(hH) UD), UO) =Ty UHE). (S«
j=1

=:H(t)
Assumption A:

@ Drift Hamiltonian Hy: (possibly unbounded) self-adjoint operator;
@ Control Hamiltonians Hj, ..., Hn: bounded self-adjoint operators;
© Admissible controls vy (t),..., vn(t): real-valued and piecewise constant;
Solution concept: The above assumptions guarantee the for all admissible
controls vy(t),..., vy(t) there exists of a unitary evolution family U(t, s) which
satisfies (S..) in the strong sense, i.e.
@ (t,s) — U(t,s) € U(H) is strongly continuous.
e U(t,s)U(s,r)=U(t,r)forallt,s e R
@ There exists a dense subset D c H s.t. ;" U(t, s)w|t:s = iH(t)y for all 4.
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First results in infinite dimensions: setup & basic notions

Let Hy, ..., Hn be as above.

@ The strongly reachable set R(1y) of (S.) is the smallest strongly closed
subsemigroup of U(H) which contains all exponentials of the form

M+ viH)  t> 0, (w,...,Vp) ER™.
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First results in infinite dimensions: setup & basic notions

Let Hy, ..., Hn be as above.

@ The strongly reachable set R(1y) of (S.) is the smallest strongly closed
subsemigroup of U(H) which contains all exponentials of the form

M+ viH)  t> 0, (w,...,Vp) ER™.

@ The system group G of (S..) is the smallest strongly closed subgroup of
U(H) which contains all exponentials of the form

: N VH:
HFZm k) e R, (wy,...,vpn) €ER™.

@ (S.) is called strongly approximately controllable if R(Iy) = U(H).
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First results in infinite dimensions: setup & basic notions

Let Hy, ..., Hn be as above.

@ The strongly reachable set R(1y) of (S.) is the smallest strongly closed
subsemigroup of U(H) which contains all exponentials of the form

M+ viH)  t> 0, (w,...,Vp) ER™.

@ The system group G of (S..) is the smallest strongly closed subgroup of
U(H) which contains all exponentials of the form

: N VH:
HFZm k) e R, (wy,...,vpn) €ER™.

@ (S.) is called strongly approximately controllable if R(Iy) = U(H).
© The system Lie algebra g of (S.,) is defined as

g={QculM) : e cg forallteR},

where u(H) denotes the Lie algebra of all bounded skew-adjoint
operators.

Note: So far, g could collapse to {0}.
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First results in infinite dimensions: some preparations

Proposition A (M. Keyl)
Let Hy, ... Hy satisfy assumption A.

(a) The dynamical group G coincides with the smallest strongly closed sub-
group of U(H) generated by the one-parameter groups e, t ¢ R and
j=0,....m.

(b) The dynamical Lie algebra g is a strongly closed Lie subalgebra of u(H).
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First results in infinite dimensions: some preparations

Proposition A (M. Keyl)
Let Hy, ... Hy satisfy assumption A.

(a) The dynamical group G coincides with the smallest strongly closed sub-
group of U(H) generated by the one-parameter groups e, t ¢ R and
j=0,....m.

(b) The dynamical Lie algebra g is a strongly closed Lie subalgebra of u(H).

Comments on the proof:

Both results follow — similar to the finite dimensional case — by:
@ continuity of the exponential map (with respect to the strong topology)
@ the Trotter formula (RS for A being unbounded)

2

. A B\N . A B —A —=B\N

B — |im (e"e") and 4B = |im (e"e"e nen )
n—oo n—oo

@ and the trivial observations H; = (Ho + H;) — Ho forj=1,...,m
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First results in infinite dimensions: some preparations

Spectral assumption PS:

The drift Hamiltonian Hy has pure point spectrum (not necessarily isolated).

Proposition B (M. Keyl)

Let Hy, ... Hy satisfy assumption A and PS.
(a) The reachable set R(Ix) contains the backward evolution one parameter
group generated by iHp, i.e. e "' ¢ R(Iy) for all t > 0.
(b) and thus
R(Im)=6.
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First results in infinite dimensions: some preparations

Spectral assumption PS:

The drift Hamiltonian Hy has pure point spectrum (not necessarily isolated).

Proposition B (M. Keyl)

Let Hy, ... Hy satisfy assumption A and PS.
(a) The reachable set R(Ix) contains the backward evolution one parameter
group generated by iHp, i.e. e "' ¢ R(Iy) for all t > 0.
(b) and thus
R(Im)=6.

Comments on the proof:

@ Part (a) follows by a straightforward truncation argument combined with
the corresponding finite dimensional result.

@ Part (b) is an immediate consequence of part (a).
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First results in infinite dimensions: some preparations

Next goal: improve part (a) of Prop. B.

Definition: Let H, satisfy assumption A and PS. Then H, allows the spectral
decomposition
Ho =Y AnEn
n=1

and let £(Hp) denote the smallest strongly closed complex subspace which
contains all spectral projections E,. Then

@ T(Ho) := E(Hy) NU(H) is called the maximal torus of Hp.
@ and t(Hp) := £(Hy) N u(H) its maximal torus algebra.

Remark:
@ &(Hp) is an abelian von Neumann algebra with alternative description:

E(Ho) = {el | t e R} .
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First results in infinite dimensions: Theorem A

Non-rationality assumption NR:

The eigenvalues of the drift Hamiltonian H, are rationally independent.

Theorem A (M. Keyl)

Let Hy, ..., Hy satisfy assumptions A, PS, and NR. Then the strong closure of
{eio | t € R} in U(H) coincides with 7 (Hp).

Comments on the proof:
@ The inclusion {e® | t € R} C T(Ho) is straightforward.

@ The converse inclusion is based on the classification of abelian von
Neumann algebras and the non-rationality condition.

@ In principle, there are three different types of abelian von Neumann.
@ Here we are faced with the case /(N).
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First results in infinite dimensions: Theorem A

What is Theorem A good for?

Formally, the finite dimensional LARC suggests to consider the “Lie algebra”
(iHo,iHi, ..., iHp)Lie (*)

BUT (%) is in general not well-defined when iHy, is unbounded.

Theorem A tells us that we can replace Hy in (x) by its spectral projections E,
and consider instead

<iH1,...,iHm,iE1,iE2,...>Lie (**)
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First results in infinite dimensions: Theorem A

What is Theorem A good for?

Formally, the finite dimensional LARC suggests to consider the “Lie algebra”
(iHo,iHi, ..., iHp)Lie (*)

BUT (%) is in general not well-defined when iHy, is unbounded.

Theorem A tells us that we can replace Hy in (x) by its spectral projections E,
and consider instead

<iH1,...,iHm,iE1,iE2,...>Lie (**)

Thus, checking controllability boils down to verifying

<1H1 g ,iHm,iE1,iE2, e >Lie = u(H) .
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First results in infinite dimensions: Theorem B

Non-degeneracy and connectivity assumptions ND + C:

@ All eigenvalues of Hy are non-degenerate.
@ The connectivity graph I'(Hy, Hs, . .., Hy) defined below is connected.

Connectivity graph:
(k,l)isanedge of [(Hy,...,Hn) <= 3je{1,...,m} st (bx,Hb) #0

where by, k € N denotes “the” complete eigenbasis of Hp.
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Non-degeneracy and connectivity assumptions ND + C:

@ All eigenvalues of Hy are non-degenerate.
@ The connectivity graph I'(Hy, Hs, . .., Hy) defined below is connected.

Connectivity graph:
(k,l)isanedge of [(Hy,...,Hn) <= 3je{1,...,m} st (bx,Hb) #0

where by, k € N denotes “the” complete eigenbasis of Hp.

Theorem B (M. Keyl)

Let Hy, ..., Hy satisfy assumptions A, PS, NR and ND+C. Then (S..) is
strongly approximately controllable.
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First results in infinite dimensions: Theorem B

Theorem B (M. Keyl)

Let Ho, ..., Hn satisfy assumptions A, PS, NR and ND+C. Then (S..) is
strongly approximately controllable.

Comments on the proof:

@ Combining Theorem A and Condition ND we conclude that g contains all
rank-one projections

ibn) (bn|
where b, is a complete eigenbasis of Hp.

@ Now taking commutators (and allowing for complex linear combinations)
yields
(bx, Hibi) |bx) (bi| € g®

@ Finally, Condition C guarantees that all |bx) (b| belong to g© and thus the
strong closure of g© coincides with the set of all bounded operators on H.

@ Hence g = u(H) which implies strong approximate controllability of (S..).
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Genericity for co-dimensional systems: Theorem C

Spectral assumption DPS:

The Hamiltonian Hy has discrete pure point spectrum (no accumulation points).

Theorem C (Dirr/Keyl in preparation)

Let Hp satisfy assumptions A, ND and DPS. Then for m > 1 Eq. (S..) is
generically strongly approximately controllable, i.e. the set of (iH;, . ..,iHny)
such that (S.) is strongly approximately controllable is a generic subset of
u(H) x - -+ x u(H).

Sketch of proof: ...
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Open Problems

@ Extend Thm. C to Hamiltonians Hp with degenerate eigenvalues;

@ Extend Thm. C to Hamiltonians H, with finitely many accumulation points;
@ Extend Thm. B to Hamiltonian Hy with continuous spectrum;

@ Pass to more than one unbounded Hamiltonian;
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@ M. Keyl, Quantum control in infinite dimensions and Banach-Lie algebras:
Pure point spectrum, arXiv: 1812.09211.

@ More on finite dimensional control theory and QC: Sussmann, Jurdjevic,
Brockett, Kupka, Khaneja, Altafini, Albertini, D’Alessandro,
Schulte-Herbriiggen, Schirmer, DH, ...

@ In the literature, there are several quite similar results available, e.g. by
U. Boscain, M. Sigalotti, M. Caponigro, T. Chambrion, P. Rouchon, etc.

@ Some recent findings by M. Sigalotti and M. Caponigro go beyond the
results presented in this talk.

@ Applications to the Jaynes-Cummings model by M. Keyl.
@ Further application see the group of U.Boscain and his collaborators.
o ..
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That’s it!

Thanks for your attention and patience!
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