Are infinite-dimensional closed quantum systems generically controllable?

Gunther Dirr¹ and Michael Keyl²

¹ Institute of Mathematics University of Würzburg, Germany

² Dahlem Center for Complex Quantum Systems Free University of Berlin, Germany

Further collaborators

F. vom Ende (FU Berlin), E. Malvetti, Th. Schulte-Herbrüggen (TU Munich)

Mathematical Physics in QT: From Finite to Infinite Dimensions Edinbrugh 2023

- Goal: generic controllability from finite to infinite dimensions
- 2 The finite dimensional case
- First results in infinite dimensions
 - Genericity for infinite dimensional systems

What's known?

Let $\mathbb{H} \cong \mathbb{C}^n$ be "the" *n*-dimensional Hilbert space and U_n its unitary group.

Given a controlled Schrödinger Equation (lifted form)

$$\dot{U}(t) = -\mathrm{i}H(t)U(t), \quad U(0) = I_n \in \mathrm{U}_n,$$
 (S_n)

where the control Hamiltonian H(t) is given by

$$H(t) = H_0 + \sum_{j=1}^m v_j(t)H_j$$

with real-valued (piecewise constant) controls $v_1(t), \ldots, v_m(t) \in \mathbb{R}$.

Then ...

Theorem (Jurdjevic, Kupka, ...)

Then (S_n) is generically controllable, i.e. for all $m \ge 1$ the set of (m + 1)-tuples $(iH_0, iH_1, ..., iH_m)$ such that (S_n) is controllable on U_n is a generic subset of $\mathfrak{u}_n \times \cdots \times \mathfrak{u}_n$.

Corollary (m = 1)

For a generic pair (H_0, H_1) of Hamiltonians the Schrödinger Equation (S_n) is controllable on U_n .

Remark

• The same result holds for SU_n and \mathfrak{su}_n .

Recall:

• Controllability of (S_n) means that the reachable set of (S_n) , i.e.

 $\mathcal{R}(I_n) := \{ U(t) : t \ge 0, U(\cdot) \text{ solves } (S_n) \text{ for some controls } v_i(\cdot) \}$

coincides with U_n .

What is the precise meaning of generic? - There are different definitions:

- (MT): generic = complement has measure zero;
- (TOP): generic = complement is meager (i.e. the complement is contained in a countable union of nowhere dense subsets);
- A useful simplification:

```
G open and dense \implies G (top)-generic
```

In the following, we will work with the topological notion of genericity.

Goal:

Let $\mathbb H$ denote "the" $\infty\text{-dim.}$ separable Hilbert space and $\mathrm U(\mathbb H)$ its unitary group.

Given a controlled Schrödinger Equation

$$\dot{U}(t) = -\mathrm{i}H(t)U(t), \quad U(0) = \mathrm{I}_{\mathbb{H}} \in \mathrm{U}(\mathbb{H}),$$
 (S_{\infty})

where the control Hamiltonian H(t) is given by

$$H(t) = H_0 + \sum_{j=1}^m v_j(t)H_j$$

with real-valued piecewise constant controls $v_1(t), \ldots, v_m(t) \in \mathbb{R}$, bounded control Hamiltonians H_1, \ldots, H_m and possibly unbounded drift H_0 .

Then ...

Goal

Under some suitable assumption on H_0 Eq. (S_{∞}) is generically controllable in the following sense, for all $m \ge 1$ the set of m tuples (iH_1, \ldots, iH_m) such that (S_{∞}) is controllable on $U(\mathbb{H})$ is a generic subset of $\mathfrak{u}(\mathbb{H}) \times \cdots \times \mathfrak{u}(\mathbb{H})$.

Remark

• Due to technical reasons, we have fixed *H*₀ in contrast to the finite dimensional case.

The finite dimensional case - a brief overview

Consider again the controlled Schrödinger Equation

$$\dot{U}(t) = -i\left(H_0 + \sum_{j=1}^m v_j(t)H_j\right)U(t), \quad U(0) = I_n \in U_n \tag{S}_n$$

with real-valued (piecewise) controls $v_1(t), \ldots, v_m(t)$.

Fundamental controllability result [Jurdjevic, Sussmann, Brockett, ...]

 (S_n) is controllable on U_n if and only if the *system Lie algebra* given by $\mathfrak{g} := \langle iH_0, iH_1 \dots, iH_m \rangle_{LA}$ coincides with \mathfrak{u}_n . The same holds for SU_n and \mathfrak{su}_n .

Recall:

• $\langle iH_0, iH_1, ..., iH_m \rangle_{LA}$ denotes the Lie algebra generated by $iH_0, iH_1, ...$..., iH_m , i.e. the linear span of $iH_0, iH_1, ..., iH_m$ and all their commutators.

Sketch of proof:

• The closure to the *systems group* G, i.e. the group generated by all unitaries of the form

$$\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^m v_jH_j)}, \quad t\in\mathbb{R}, \quad (v_1,\ldots,v_m)\in\mathbb{R}^m \tag{(*)}$$

contains all one-parameter groups e^{itH_j} , $t \in \mathbb{R}$, j = 0, 1, ..., m.

• If the Lie-algebra-rank-condition, i.e.

$$\mathfrak{g} = \mathfrak{u}_n \quad \text{or} \quad \mathfrak{g} = \mathfrak{su}_n \tag{LARC}$$

is satisfied then the closure of G coincides with U_n (or SU_n).

Due to compactness of U_n (and SU_n) we conclude (S_n) is (exactly) controllable, i.e. R(I_n) = G = U_n (or R(I_n) = G = U_n).

The finite dimensional case - a brief overview

How to prove generic controllability in finite dimensions:

- First note that one can restrict to the case m = 1.
- Then the following observation is essential:

Given a pair (H_0, H_1) such that the ad_{iH_0} -invariant subspace

$$ext{span}\left\{ ext{ad}_{ ext{i}\mathcal{H}_0}^k(ext{i}\mathcal{H}_1) \; : \; k \in \mathbb{N}
ight\}$$
 (G)

has dimension $n^2 - n$. Then

$$\langle iH_0, iH_1 \rangle_{LA} = \begin{cases} \mathfrak{su}_n & \text{if tr } H_0 = \mathrm{tr} \ H_1 = 0, \\ \mathfrak{u}_n & \text{else.} \end{cases}$$

Hence it suffices to show that the set of pairs (H₀, H₁) ∈ su_n × su_n which satisfy condition (G) are generic in su_n × su_n.

The finite dimensional case - a brief overview

How to prove generic controllability in finite dimensions:

• To this end consider the maps

$$(H_0,H_1)\mapsto {\it P_I}(H_0,H_1):= \det \left(\mathsf{ad}_{iH_0}(iH_1)\quad \cdots \quad \mathsf{ad}_{iH_0}^{n^2-n}(iH_1)\right)_I,$$

where $I = (k_1, \ldots, k_{n^2-n})$ is a fixed multi-index of the from

$$1 \le k_1 < k_2 \cdots < k_{n^2 - n} \le n^2 - 1$$
.

Finally, set

$$P(H_0,H_1):=\left(P_I(H_0.H_1)\right)_{I\in\mathcal{I}},$$

where $\ensuremath{\mathcal{I}}$ denotes the set of multi-indices of the above from.

Then one has the equivalence

$$(H_0, H_1)$$
 satisfies (G) $\iff P(H_0, H_1) \neq 0$

• Since *P* is polynomial (and not identical zero) we conclude that the set $P \neq 0$ is open and dense and thus we conclude generic controllability.

Key issues:

What is the "right" setup for an operator-theoretic approach?

In particular,

- What is the "right" topology on $U(\mathbb{H})$?
- How to generalized/adapt LARC.

Recall: There are at least three commonly used topologies on $U(\mathbb{H})$: the uniform (= norm) topology, the strong and the weak operator topology.

Here we favor the strong operator topology for several reasons:

Key issues:

What is the "right" setup for an operator-theoretic approach?

In particular,

- What is the "right" topology on U(𝔅)?
- How to generalized/adapt LARC.

Recall: There are at least three commonly used topologies on $U(\mathbb{H})$: the uniform (= norm) topology, the strong and the weak operator topology.

Here we favor the strong operator topology for several reasons:

- If some of the Hamiltonians e.g. *H*₀ is unbounded, then the corresponding one-parameter group e^{itH₀} is only strongly (but not uniformly) continuous.
- For dim $\mathbb{H} = \infty$ the set $U(\mathbb{H})$ is non-separable with respect to the uniform topology; thus (S_{∞}) is **never** (uniformly) **approximately controllable**.
- U(Ⅲ) is still a topological/metric group with respect to the strong operator topology.

Consider over again the controlled Schrödinger Equation:

$$\dot{U}(t) = -i \underbrace{\left(H_0 + \sum_{j=1}^m v_j(t)H_j\right)}_{=:H(t)} U(t), \quad U(0) = I_{\mathbb{H}} \in U(\mathbb{H}). \tag{S}_{\infty}$$

Assumption A:

- **O** Drift Hamiltonian H_0 : (possibly unbounded) self-adjoint operator;
- 2 Control Hamiltonians H_1, \ldots, H_m : bounded self-adjoint operators;
- Solution Admissible controls $v_1(t), \ldots, v_m(t)$: real-valued and piecewise constant;

Consider over again the controlled Schrödinger Equation:

$$\dot{U}(t) = -i \underbrace{\left(H_0 + \sum_{j=1}^m v_j(t)H_j\right)}_{=:H(t)} U(t), \quad U(0) = I_{\mathbb{H}} \in U(\mathbb{H}).$$
(S_{\infty})

Assumption A:

- **O** Drift Hamiltonian H_0 : (possibly unbounded) self-adjoint operator;
- ② Control Hamiltonians H_1, \ldots, H_m : bounded self-adjoint operators;
- Solution Admissible controls $v_1(t), \ldots, v_m(t)$: real-valued and piecewise constant;

Solution concept: The above assumptions guarantee the for all admissible controls $v_1(t), \ldots, v_n(t)$ there exists of a unitary evolution family U(t, s) which satisfies (S_{∞}) in the strong sense, i.e.

- $(t, s) \rightarrow U(t, s) \in U(\mathbb{H})$ is strongly continuous.
- U(t, s)U(s, r) = U(t, r) for all $t, s \in \mathbb{R}$
- There exists a dense subset $\mathbb{D} \subset \mathbb{H}$ s.t. $\partial_t^+ U(t, s) \psi \Big|_{t=s} = iH(t)\psi$ for all ψ .

Let H_0, \ldots, H_m be as above.

• The strongly reachable set $\mathcal{R}(I_{\mathbb{H}})$ of (S_{∞}) is the smallest strongly closed subsemigroup of $U(\mathbb{H})$ which contains all exponentials of the form

$$\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^m v_jH_j)}, \quad t\geq 0, \quad (v_1,\ldots,v_m)\in \mathbb{R}^m.$$

Let H_0, \ldots, H_m be as above.

• The strongly reachable set $\mathcal{R}(I_{\mathbb{H}})$ of (S_{∞}) is the smallest strongly closed subsemigroup of $U(\mathbb{H})$ which contains all exponentials of the form

 $\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^m v_jH_j)},\quad t\geq 0,\quad (v_1,\ldots,v_m)\in\mathbb{R}^m.$

⁽²⁾ The system group \mathcal{G} of (S_{∞}) is the smallest strongly closed subgroup of $U(\mathbb{H})$ which contains all exponentials of the form

$$\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^N v_jH_j)}, \quad t\in\mathbb{R}, \quad (v_1,\ldots,v_m)\in\mathbb{R}^m$$

Let H_0, \ldots, H_m be as above.

• The strongly reachable set $\mathcal{R}(I_{\mathbb{H}})$ of (S_{∞}) is the smallest strongly closed subsemigroup of $U(\mathbb{H})$ which contains all exponentials of the form

 $\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^m v_jH_j)},\quad t\geq 0,\quad (v_1,\ldots,v_m)\in\mathbb{R}^m.$

⁽²⁾ The system group \mathcal{G} of (S_{∞}) is the smallest strongly closed subgroup of $U(\mathbb{H})$ which contains all exponentials of the form

$$\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^N v_jH_j)}, \quad t\in\mathbb{R}, \quad (v_1,\ldots,v_m)\in\mathbb{R}^m$$

(S_{∞}) is called *strongly approximately controllable* if $\mathcal{R}(I_{\mathbb{H}}) = U(\mathbb{H})$.

Let H_0, \ldots, H_m be as above.

• The strongly reachable set $\mathcal{R}(I_{\mathbb{H}})$ of (S_{∞}) is the smallest strongly closed subsemigroup of $U(\mathbb{H})$ which contains all exponentials of the form

 $\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^m v_jH_j)},\quad t\geq 0,\quad (v_1,\ldots,v_m)\in\mathbb{R}^m.$

⁽²⁾ The system group \mathcal{G} of (S_{∞}) is the smallest strongly closed subgroup of $U(\mathbb{H})$ which contains all exponentials of the form

$$\mathrm{e}^{\mathrm{i}t(H_0+\sum_{j=1}^N v_jH_j)}, \quad t\in\mathbb{R}, \quad (v_1,\ldots,v_m)\in\mathbb{R}^m$$

(S_{∞}) is called *strongly approximately controllable* if $\mathcal{R}(I_{\mathbb{H}}) = U(\mathbb{H})$.

• The system Lie algebra \mathfrak{g} of (S_{∞}) is defined as

$$\mathfrak{g} := \{\Omega \in \mathfrak{u}(\mathbb{H}) \ : \ \mathrm{e}^{t\Omega} \in \mathcal{G} \quad ext{ for all } t \in \mathbb{R}\}\,,$$

where $\mathfrak{u}(\mathbb{H})$ denotes the Lie algebra of all bounded skew-adjoint operators.

Note: So far, \mathfrak{g} could collapse to $\{0\}$.

Proposition A (M. Keyl)

Let H_0, \ldots, H_m satisfy assumption **A**.

(a) The dynamical group \mathcal{G} coincides with the smallest strongly closed subgroup of $U(\mathbb{H})$ generated by the one-parameter groups e^{itH_j} , $t \in \mathbb{R}$ and $j = 0, \ldots, m$.

(b) The dynamical Lie algebra \mathfrak{g} is a strongly closed Lie subalgebra of $\mathfrak{u}(\mathbb{H}).$

Proposition A (M. Keyl)

Let H_0, \ldots, H_m satisfy assumption **A**.

- (a) The dynamical group \mathcal{G} coincides with the smallest strongly closed subgroup of U(\mathbb{H}) generated by the one-parameter groups e^{itH_j} , $t \in \mathbb{R}$ and j = 0, ..., m.
- (b) The dynamical Lie algebra \mathfrak{g} is a strongly closed Lie subalgebra of $\mathfrak{u}(\mathbb{H}).$

Comments on the proof:

Both results follow – similar to the finite dimensional case – by:

- continuity of the exponential map (with respect to the strong topology)
- the Trotter formula (RS for A being unbounded)

$$e^{A+B} = \lim_{n \to \infty} \left(e^{\frac{A}{n}} e^{\frac{B}{n}} \right)^n$$
 and $e^{[A,B]} = \lim_{n \to \infty} \left(e^{\frac{A}{n}} e^{\frac{B}{n}} e^{\frac{-A}{n}} e^{\frac{-B}{n}} \right)^{n^2}$

• and the trivial observations $H_j = (H_0 + H_j) - H_0$ for j = 1, ..., m

First results in infinite dimensions: some preparations

Spectral assumption PS:

The drift Hamiltonian H_0 has pure point spectrum (not necessarily isolated).

Proposition B (M. Keyl)

Let H_0, \ldots, H_m satisfy assumption **A** and **PS**.

(a) The reachable set $\mathcal{R}(I_{\mathbb{H}})$ contains the backward evolution one parameter group generated by iH_0 , i.e. $e^{-itH_0} \in \mathcal{R}(I_{\mathbb{H}})$ for all $t \ge 0$.

(b) and thus

$$\mathcal{R}(\mathrm{I}_{\mathbb{H}})=\mathcal{G}$$
 .

First results in infinite dimensions: some preparations

Spectral assumption PS:

The drift Hamiltonian H_0 has pure point spectrum (not necessarily isolated).

Proposition B (M. Keyl)

Let H_0, \ldots, H_m satisfy assumption **A** and **PS**.

(a) The reachable set $\mathcal{R}(I_{\mathbb{H}})$ contains the backward evolution one parameter group generated by iH_0 , i.e. $e^{-itH_0} \in \mathcal{R}(I_{\mathbb{H}})$ for all $t \ge 0$.

(b) and thus

$$\mathcal{R}(\mathrm{I}_{\mathbb{H}}) = \mathcal{G}$$
 .

Comments on the proof:

- Part (a) follows by a straightforward truncation argument combined with the corresponding finite dimensional result.
- Part (b) is an immediate consequence of part (a).

First results in infinite dimensions: some preparations

Next goal: improve part (a) of Prop. B.

Definition: Let H_0 satisfy assumption **A** and **PS**. Then H_0 allows the spectral decomposition

$$H_0 = \sum_{n=1}^{\infty} \lambda_n E_n$$

and let $\mathcal{E}(H_0)$ denote the smallest strongly closed complex subspace which contains all spectral projections E_n . Then

- $\mathcal{T}(H_0) := \mathcal{E}(H_0) \cap U(\mathbb{H})$ is called the maximal torus of H_0 .
- and $\mathfrak{t}(H_0) := \mathcal{E}(H_0) \cap \mathfrak{u}(\mathbb{H})$ its maximal torus algebra.

Remark:

• $\mathcal{E}(H_0)$ is an abelian von Neumann algebra with alternative description:

$$\mathcal{E}(H_0) = \{ \mathrm{e}^{\mathrm{i} t H_0} \mid t \in \mathbb{R} \}'' \,.$$

First results in infinite dimensions: Theorem A

Non-rationality assumption NR:

The eigenvalues of the drift Hamiltonian H_0 are rationally independent.

Theorem A (M. Keyl)

Let H_0, \ldots, H_m satisfy assumptions **A**, **PS**, and **NR**. Then the strong closure of $\{e^{itH_0} \mid t \in \mathbb{R}\}$ in $U(\mathbb{H})$ coincides with $\mathcal{T}(H_0)$.

Comments on the proof:

- The inclusion $\{e^{itH_0} \mid t \in \mathbb{R}\} \subset \mathcal{T}(H_0)$ is straightforward.
- The converse inclusion is based on the classification of abelian von Neumann algebras and the non-rationality condition.
- In principle, there are three different types of abelian von Neumann.
- Here we are faced with the case $I_{\infty}(\mathbb{N})$.

First results in infinite dimensions: Theorem A

What is Theorem A good for?

Formally, the finite dimensional LARC suggests to consider the "Lie algebra"

$$\langle iH_0, iH_1, \dots, iH_n \rangle_{Lie}$$
 (*)

BUT (*) is in general not well-defined when iH_0 , is unbounded.

Theorem A tells us that we can replace H_0 in (*) by its spectral projections E_n and consider instead

$$\langle iH_1, \dots, iH_m, iE_1, iE_2, \dots \rangle_{Lie}$$
 (**)

First results in infinite dimensions: Theorem A

What is Theorem A good for?

Formally, the finite dimensional LARC suggests to consider the "Lie algebra"

$$\langle iH_0, iH_1, \dots, iH_n \rangle_{Lie}$$
 (*)

BUT (*) is in general not well-defined when iH_0 , is unbounded.

Theorem A tells us that we can replace H_0 in (*) by its spectral projections E_n and consider instead

$$\langle iH_1, \ldots, iH_m, iE_1, iE_2, \ldots \rangle_{Lie}$$
 (**)

Thus, checking controllability boils down to verifying

$$\langle iH_1,\ldots,iH_m,iE_1,iE_2,\ldots\rangle_{Lie} = \mathfrak{u}(\mathbb{H}).$$

First results in infinite dimensions: Theorem B

Non-degeneracy and connectivity assumptions ND + C:

- All eigenvalues of H_0 are non-degenerate.
- The connectivity graph $\Gamma(H_0, H_1, \ldots, H_m)$ defined below is connected.

Connectivity graph:

(k, l) is an edge of $\Gamma(H_0, \ldots, H_m) :\iff \exists j \in \{1, \ldots, m\}$ s.t. $\langle b_k, H_j b_l \rangle \neq 0$

where b_k , $k \in \mathbb{N}$ denotes "the" complete eigenbasis of H_0 .

First results in infinite dimensions: Theorem B

Non-degeneracy and connectivity assumptions ND + C:

- All eigenvalues of H_0 are non-degenerate.
- The connectivity graph $\Gamma(H_0, H_1, \ldots, H_m)$ defined below is connected.

Connectivity graph:

(k, l) is an edge of $\Gamma(H_0, \ldots, H_m) :\iff \exists j \in \{1, \ldots, m\} \text{ s.t. } \langle b_k, H_j b_l \rangle \neq 0$

where b_k , $k \in \mathbb{N}$ denotes "the" complete eigenbasis of H_0 .

Theorem B (M. Keyl)

Let H_0, \ldots, H_m satisfy assumptions **A**, **PS**, **NR** and **ND+C**. Then (S_{∞}) is strongly approximately controllable.

First results in infinite dimensions: Theorem B

Theorem B (M. Keyl)

Let H_0, \ldots, H_m satisfy assumptions **A**, **PS**, **NR** and **ND+C**. Then (S_{∞}) is strongly approximately controllable.

Comments on the proof:

 Combining Theorem A and Condition ND we conclude that g contains all rank-one projections

$$\mathrm{i}\left|b_{n}
ight
angle\left\langle b_{n}
ight|$$

where b_n is a complete eigenbasis of H_0 .

 Now taking commutators (and allowing for complex linear combinations) yields

$$egin{array}{l} \left< b_k, H_j b_l
ight> \left| b_k
ight> \left< b_l
ight| \in \mathfrak{g}^{\mathbb{C}} \end{array}$$

- Finally, Condition C guarantees that all |*b_k*⟩ ⟨*b_l*| belong to g^C and thus the strong closure of g^C coincides with the set of all bounded operators on ℍ.
- Hence $\mathfrak{g} = \mathfrak{u}(\mathbb{H})$ which implies strong approximate controllability of (S_{∞}) .

Spectral assumption DPS:

The Hamiltonian H_0 has discrete pure point spectrum (no accumulation points).

Theorem C (Dirr/Keyl in preparation)

Let H_0 satisfy assumptions **A**, **ND** and **DPS**. Then for $m \ge 1$ Eq. (S_{∞}) is generically strongly approximately controllable, i.e. the set of (iH_1, \ldots, iH_m) such that (S_{∞}) is strongly approximately controllable is a generic subset of $\mathfrak{u}(\mathbb{H}) \times \cdots \times \mathfrak{u}(\mathbb{H})$.

Sketch of proof: ...

- Extend Thm. C to Hamiltonians H₀ with degenerate eigenvalues;
- Extend Thm. C to Hamiltonians H₀ with finitely many accumulation points;
- Extend Thm. B to Hamiltonian H₀ with continuous spectrum;
- Pass to more than one unbounded Hamiltonian;

- M. Keyl, Quantum control in infinite dimensions and Banach-Lie algebras: Pure point spectrum, arXiv: 1812.09211.
- More on finite dimensional control theory and QC: Sussmann, Jurdjevic, Brockett, Kupka, Khaneja, Altafini, Albertini, D'Alessandro, Schulte-Herbrüggen, Schirmer, DH, ...
- In the literature, there are several quite similar results available, e.g. by U. Boscain, M. Sigalotti, M. Caponigro, T. Chambrion, P. Rouchon, etc.
- Some recent findings by M. Sigalotti and M. Caponigro go beyond the results presented in this talk.
- Applications to the Jaynes-Cummings model by M. Keyl.
- Further application see the group of U.Boscain and his collaborators.

• ...

That's it!

Thanks for your attention and patience!