

State-dependent Trotter bounds

Alexander Hahn

Phys. Rev. A 107, L040201 (2023)
Burgarth, Facchi, Hahn, Johnsson, Yuasa, in preparation (2023)

MPQT 2023 workshop at ICMS, 25/05/2023 in Edinburgh

Quantum Control

Implement a target dynamics by only using some accessible dynamics

Given operators A, B, implement the dynamics under the sum $A+B$
Trotter product formula: $\quad\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N}=\mathrm{e}^{-\mathrm{i} t(A+B)}+\mathcal{O}\left(\frac{t^{2}}{N}\right)$

Dynamical Decoupling

Decouple system dynamics from bath dynamics

$$
\mathscr{H}=\mathscr{H}_{\mathrm{s}} \otimes \mathscr{H}_{\mathrm{b}} \quad H=H_{\mathrm{s}} \otimes \mathbb{1}_{\mathrm{b}}+\mathbb{1}_{\mathrm{s}} \otimes H_{\mathrm{b}}+\sum_{i} h_{\mathrm{s}}^{(i)} \otimes h_{\mathrm{b}}^{(i)}
$$

Intersperse Hamiltonian dynamics with action of finite unitary group V that acts irreducibly, i.e., via

$$
\operatorname{Ad}_{g}(A)=g A g^{\dagger}, g \in V, A \in \mathscr{H}_{\mathrm{s}}
$$

$$
\left(Z \mathrm{e}^{-\mathrm{i} \frac{t}{4 N} H} Z Y \mathrm{e}^{-\mathrm{i} \frac{t}{4 N} H} Y X \mathrm{e}^{-\mathrm{i} \frac{t}{4 N} H} X \mathbb{1} \mathrm{e}^{-\mathrm{i} \frac{t}{4 N} H} \mathbb{1}\right)^{N}
$$

$$
\begin{aligned}
\tilde{H} & =\frac{1}{4}(Z H Z+Y H Y+X H X+H) \\
& =\mathbb{1}_{\mathrm{s}} \otimes H_{\mathrm{b}}
\end{aligned}
$$

Standard way

$$
\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N}-\mathrm{e}^{-\mathrm{i} t(A+B)}\right\|_{\infty} \leq \frac{t^{2}}{2 N}\|[A, B]\|_{\infty} \quad\|A\|_{\infty}=\sup _{\|\psi\|=1}\|A \psi\|
$$

- $A=p^{2}, B=x^{3}$
- $p^{2}+x^{3}$ is not self-adjoint
- Trotter does not converge
- $A=p, B=x^{k}, k \geq 2$

$$
\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N}-\mathrm{e}^{-\mathrm{i} t(A+B)}\right\|_{\infty}=2
$$

- Norm difference becomes maximal
- Trotter does not converge

$$
\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N} \psi-\mathrm{e}^{-\mathrm{i} t(A+B)} \psi\right\|
$$

$$
\begin{aligned}
& \operatorname{dim}(\mathscr{H})<\infty \\
& A=A^{\dagger}, B=B^{\dagger} \\
& (A+B) \varphi=h \varphi
\end{aligned}
$$

$$
\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N} \varphi-\mathrm{e}^{-\mathrm{i} t(A+B)} \varphi\right\| \leq \frac{t^{2}}{2 N}\left(\left\|\left[A-\frac{h}{2}\right]^{2} \varphi\right\|+\left\|\left[B-\frac{h}{2}\right]^{2} \varphi\right\|\right)
$$

Generator of Trotterized evolution: $\quad H_{1}(s)=\left\{\begin{array}{ll}A, & s \in\left[0, \frac{t}{N}\right) \\ B, & s \in\left[\frac{t}{N}, \frac{2 t}{N}\right)\end{array} \quad\right.$ extended periodically $H_{1}\left(s+\frac{2 t}{N}\right)=H_{1}(s)$

Generator of target evolution: $\quad H_{2}(s)=\frac{A+B}{2} \quad$ (time-independent average Hamiltonian)

Lemma 1 of Quantum 6, 737 (2022)

$$
\begin{gathered}
U_{2}(2 t)-U_{1}(2 t)=-\mathrm{i} S_{2}(2 t)-\int_{0}^{2 t} U_{1}(2 t) U_{1}(s)^{\dagger}\left[H_{1}(s) S_{21}(s)-S_{21}(s) H_{2}(s)\right] U_{2}(s) \mathrm{d} s \\
\text { where } \quad S_{21}(t)=\int_{0}^{t}\left[H_{2}(s)-H_{1}(s)\right] \mathrm{d} s \quad \text { (integral action) }
\end{gathered}
$$

The integral action vanishes after a full Trotter cycle, so that the first summand is zero. It follows:

$$
\left\|\left[U_{2}(2 t)-U_{1}(2 t)\right] \varphi\right\| \leq \int_{0}^{2 t}\left\|\left[H_{1}(s)-\frac{h}{2}\right] S_{21}(s) \varphi\right\| \mathrm{d} s
$$

Computing the integral gives the bound

Truncate Hilbert space at finite level d and project all operators and states onto the finite-dimensional subspace $V_{d}=\operatorname{span}(|0\rangle, \ldots,|d-1\rangle)$ with $P=\sum_{i=1}^{d}|i\rangle\langle i|$

$$
A=p^{2}, B=q^{3}
$$

Define $\quad b_{d}^{(N)}(\psi ; t) \equiv\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A_{d}} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B_{d}}\right)^{N} \psi_{d}-\mathrm{e}^{-\mathrm{i} t\left(A_{d}+B_{d}\right)} \psi_{d}\right\|$

$$
b^{(N)}(\psi ; t) \equiv \limsup _{d \rightarrow \infty} b_{d}^{(N)}(\psi ; t)
$$

Theorem:
$\operatorname{silim}_{N \rightarrow \infty}\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N}=\mathrm{e}^{-\mathrm{i} t(A+B)}$
if (i) A and B can be simultaneously approximated by the same truncation scheme, i.e. $\mathcal{V}=\bigcup_{d} V_{d}$ is a common core,
(ii) for all $t \in \mathbb{R}, \lim _{N \rightarrow \infty} b^{(N)}(\psi ; t)=0$.

Show that $\mathrm{e}^{-\mathrm{i} t\left(A_{d}+B_{d}\right)} \psi$ has a well-defined limit $\phi(t)$ as $d \rightarrow \infty$
$\lim _{N \rightarrow \infty}\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A_{d}} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B_{d}}\right)^{N} \psi=\mathrm{e}^{-\mathrm{i} t\left(A_{d}+B_{d}\right)} \psi$
$\lim _{N \rightarrow \infty}\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N} \psi=\phi(t)$
$\phi(t)=U(t) \psi$ and the generator of the unitary $U(t)$ agrees with $A+B$ wherever both are defined

Trotter-Kato approximation theorems I \& II

Finite-dimensional Trotter product
assumption $\lim _{N \rightarrow \infty} b^{(N)}(\psi ; t)=0$

Properties of one-parameter semigroups, see Engel \& Nagel

In practice, we only need to consider basis vectors:
If $\psi \in \mathcal{V}$, there exists a truncation dimension d, such that $\psi=\sum_{i=0}^{d-1}\langle i \mid \psi\rangle|i\rangle$
Thus, by triangle inequality

$$
b^{(N)}(\psi ; t) \leq\left(\sum_{i=0}^{d-1}|\langle i \mid \psi\rangle|^{2} b^{(N)}(|i\rangle ; t)^{2}\right)^{1 / 2}
$$

Immediately obtain Trotter bound for infinite-dimensional case

Naturally generalizes to more than two operators

Harmonic oscillator: $A=\frac{1}{2} q^{2}, B=\frac{1}{2} p^{2}$

$$
b_{d}^{(N)}(|m\rangle ; t) \leq \frac{t^{2}}{4 N} \sqrt{\frac{3}{8}\left[m(m+1)\left(m^{2}+m+14\right)+10\right]}
$$

$$
\left.\begin{array}{cc}
H^{(1)}, H^{(2)} \\
\begin{array}{c}
\text { mathematically hard } \\
\text { continuous } \\
\text { Hamiltonians }
\end{array} \\
\text { not digitally simulable }
\end{array}\right) H=H^{(1)}+H^{(2)}
$$

A self-adjoint on $\mathcal{D}(A)$ and B self-adjoint on $\mathcal{D}(B)$
$\varphi \in \mathcal{D}\left(A^{2}\right) \cap \mathcal{D}\left(B^{2}\right)$
$(A+B) \varphi=h \varphi$

Then for all $g \in \mathbb{R}$

$$
\xi_{N}(t ; \varphi) \equiv\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B}\right)^{N} \varphi-\mathrm{e}^{-\mathrm{i} t h} \varphi\right\| \leq \frac{t^{2}}{2 N}\left(\left\|[A-g]^{2} \varphi\right\|+\left\|[B-h+g]^{2} \varphi\right\|\right)
$$

In particular, the Trotter product formula converges on φ
(Notice difference $\xi_{N}(t ; \varphi) \neq b^{(N)}(\varphi ; t)$)

For superposition states

$$
\psi=\sum_{i} c_{i} \varphi_{i}
$$

$$
\xi_{N}(t ; \psi) \leq \sum_{i} \frac{t^{2}}{2 N}\left|c_{i}\right|\left(\left\|[A-g]^{2} \varphi_{i}\right\|+\left\|[B-h+g]^{2} \varphi_{i}\right\|\right)
$$

(RHS defined as ∞ if not converging)

Split-step method: Trotterize between kinetic and potential energy

$$
A=-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \Delta \quad B=-\frac{\hbar^{2}}{m_{\mathrm{e}} a_{0}} \frac{1}{r}
$$

$H^{\text {hydro }}=A+B \quad$ has eigenvalues $\quad E_{n}=-\frac{\hbar^{2}}{m_{\mathrm{e}} a_{0}^{2}} \frac{1}{2 n^{2}} \quad$ corresponding to its radial eigenfunctions

$$
R_{n \ell}(r)=\left(\frac{2}{a_{0} n}\right)^{3 / 2} \sqrt{\frac{(n-\ell-1)!}{2 n(n+\ell)!}} \mathrm{e}^{-r / a_{0} n}\left(2 r / a_{0} n\right)^{\ell} L_{n-\ell-1}^{(2 \ell+1)}\left(2 r / a_{0} n\right)
$$

where

$$
L_{n}^{(\alpha)}(x)=\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\binom{n+\alpha}{n-i} x^{i}
$$

Azimuthal quantum number ℓ	Scaling of bound for Trotter error $\xi_{N}\left(t ; R_{n \ell}\right)$
$\ell=0$ (s-orbitals)	$\mathcal{O}\left(\frac{t^{2}}{n^{3} / \frac{1}{N^{1 / 4}}}\right)$
$\ell=1$ (p-orbitals)	$\mathcal{O}\left(\frac{t^{2}}{n^{3 / 2}} \frac{1}{N^{3 / 4}}\right)$
$\ell \geq 2$ (d-orbitals and higher)	$\mathcal{O}\left(\frac{t^{2}}{n^{3 / 2}} \frac{1}{N}\right)$

$$
\xi_{N}(t ; \varphi) \leq N\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} A}-1+\mathrm{i} \frac{t}{N} A\right) \varphi\right\|+N\left\|\left(\mathrm{e}^{-\mathrm{i} \frac{t}{N} B}-1+\mathrm{i} \frac{t}{N} B\right) \varphi\right\|
$$

$$
\begin{array}{r}
\square n=1, \ell=0-n=2, \ell=0 \longleftarrow n=3, \ell=0 \\
-n=3, \ell=2-n=4, \ell=0-n=4, \ell=2
\end{array}
$$

$$
\begin{aligned}
& \mathcal{S}_{2}(t, N)=\left(\mathrm{e}^{-\mathrm{i} \frac{t}{2 N} A} \mathrm{e}^{-\mathrm{i} \frac{t}{N} B} \mathrm{e}^{-\mathrm{i} \frac{t}{2 N} A}\right)^{N} \\
& \mathcal{S}_{4}(t, N)=\left[\mathcal{S}_{2}\left(s_{2} t, N\right)\right]^{2} \mathcal{S}_{2}\left(\left[1-4 s_{2}\right] t, N\right)\left[\mathcal{S}_{2}\left(s_{2} t, N\right)\right]^{2}, \quad s_{2}=1 /\left(4-4^{1 / 3}\right) \\
& \left\|\mathcal{S}_{p}(t, N)-\mathrm{e}^{-\mathrm{i} t(A+B)}\right\|_{\infty}=\mathcal{O}\left(\frac{t^{p+1}}{N^{p}}\right)
\end{aligned}
$$

State-dependent Trotter error bound for finite-dimensional systems

Lifting this bound to infinite-dimensions and show Trotter convergence

Trotter error for low energy input states in quantum chemistry scales slower

Higher order Trotter hierarchy seems to break down for low energy input states in quantum chemistry

Bounds for generic states (not only eigenstates) \rightarrow even finite-dimensional

Generalized eigenfunctions (rigged Hilbert space)

Case study of more complicated atoms and molecules (bounds for generic states needed)

