LIE ALGEBRAS ASSOCIATED TO HYPERPLANE ARRANGEMENTS

Alexandru Suciu

Northeastern University

Workshop: Various Guises of Reflection Arrangements

International Centre for Mathematical Sciences, Edinburgh, UK March 14, 2023

LOWER CENTRAL SERIES

- Let G be a group. The *lower central series* {γ_k(G)}_{k≥1} is defined inductively by γ₁(G) = G and γ_{k+1}(G) = [G, γ_k(G)].
- ▶ Here, if H, K < G, then [H, K] is the subgroup of *G* generated by $\{[a, b] := aba^{-1}b^{-1} \mid a \in H, b \in K\}$. If $H, K \lhd G$, then $[H, K] \lhd G$.
- The subgroups γ_k(G) are, in fact, characteristic subgroups of G. Moreover, [γ_k(G), γ_ℓ(G)] ⊆ γ_{k+ℓ}(G), ∀k, ℓ ≥ 1.
- ▶ In particular, it is a *central* series, i.e., $[G, \gamma_k(G)] \subseteq \gamma_{k+1}(G)$.
- In fact, it is the fastest descending central series for G.
- ► It is also a *normal* series, i.e., $\gamma_k(G) \lhd G$. Each quotient, $gr_k(G) := \gamma_k(G)/\gamma_{k+1}(G)$

lies in the center of $G/\gamma_{k+1}(G)$, and thus is an abelian group.

ALEX SUCIU (NORTHEASTERN)

Associated graded Lie Algebra

- ▶ For a coefficient ring \Bbbk , we let $gr(G; \Bbbk) = \bigoplus_{k \ge 1} gr_k(G) \otimes \Bbbk$.
- This is a graded Lie algebra, with addition induced by the group multiplication and with Lie bracket [,]: gr_k × gr_ℓ → gr_{k+ℓ} induced by the group commutator.
- The construction is functorial. Write $gr(G) = gr(G; \mathbb{Z})$.
- ► Example: if *F_n* is the free group of rank *n*, then
 o gr(*F_n*) is the free Lie algebra Lie(Zⁿ).

• $\operatorname{gr}_k(F_n)$ is free abelian, of rank $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$.

- $G/\gamma_k(G)$ is the maximal (k-1)-step nilpotent quotient of G.
- $G/\gamma_2(G) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G; \mathbb{Z})$.

CHEN LIE ALGEBRAS

- Let $G^{(i)}$ be the *derived series* of *G*, starting at $G^{(1)} = G'$, $G^{(2)} = G''$, and defined inductively by $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.
- ► The quotient groups, $G/G^{(i)}$, are solvable; $G/G' = G_{ab}$, while G/G'' is the maximal metabelian quotient of G.
- The *i*-th Chen Lie algebra of G is defined as $gr(G/G^{(i)}; \Bbbk)$.
- The projection q_i: G → G/G⁽ⁱ⁾, induces a surjection gr_k(G; k) → gr_k(G/G⁽ⁱ⁾; k), which is an iso for k ≤ 2ⁱ − 1.
- Assuming G is finitely generated, write θ_k(G) = rank gr_k(G/G") for the Chen ranks. We have φ_k(G) ≥ θ_k(G), with equality for k ≤ 3.
- Example (K.-T. Chen 1951): $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}$, for $k \ge 2$.

HOLONOMY LIE ALGEBRA

► A quadratic approximation of the Lie algebra gr(G; k), where k is a field, is the *holonomy Lie algebra* of G, defined as

 $\mathfrak{h}(\boldsymbol{G}; \Bbbk) := \operatorname{Lie}(\boldsymbol{H}_1(\boldsymbol{G}; \Bbbk)) / \langle \operatorname{im}(\boldsymbol{\mu}_{\boldsymbol{G}}^{\vee}) \rangle,$

where

- L = Lie(V) the free Lie algebra on the k-vector space $V = H_1(G; \Bbbk)$, with $L_1 = V$ and $L_2 = V \land V$;
- ∘ μ_G^{\vee} : $H_2(G; \Bbbk) \to V \land V$ is the dual of the cup product map μ_G : $H^1(G; \Bbbk) \land H^1(G; \Bbbk) \to H^2(G; \Bbbk)$.
- ► There is natural epimorphism of graded Lie algebras, h(G; k) → gr(G; k), which restricts to isos in degrees 1 and 2.
- ► For each $i \ge 2$, this morphism factors through epimorphisms $\mathfrak{h}(G; \Bbbk)/\mathfrak{h}(G; \Bbbk)^{(i)} \twoheadrightarrow \operatorname{gr}(G/G^{(i)}; \Bbbk).$

MALCEV LIE ALGEBRA

- Let k be a field of characteristic 0. Then kG is a Hopf algebra, with comultiplication Δ(g) = g ⊗ g and counit ε: kG → k.
- ► Let $J = \ker \varepsilon$. The *J*-adic completion $\widehat{\Bbbk G} = \lim_{k \to \infty} \underline{\Bbbk G} / J^k$ is a filtered, complete Hopf algebra.
- An element $x \in \widehat{\Bbbk G}$ is called *primitive* if $\widehat{\Delta}x = x \widehat{\otimes}1 + 1 \widehat{\otimes}x$. The set $\mathfrak{m}(G; \Bbbk) = \operatorname{Prim}(\widehat{\Bbbk G})$ of all such elements, with bracket [x, y] = xy yx, is the *Malcev Lie algebra* of *G*.
- If *G* is finitely generated, then $gr(\mathfrak{m}(G; \Bbbk)) \cong gr(G; \Bbbk)$.
- G is *filtered-formal* (over k), if there is an isomorphism of filtered Lie algebras, m(G; k) ≅ gr(G; k).
- ► *G* is 1-formal (over \Bbbk) if it is filtered formal and the projection $\mathfrak{h}(G; \Bbbk) \twoheadrightarrow \mathfrak{gr}(G; \Bbbk)$ is an isomorphism; that is, $\mathfrak{m}(G; \Bbbk) \cong \widehat{\mathfrak{h}}(G; \Bbbk)$.
- ▶ (Papadima–S. 2004) If *G* is 1-formal, then the maps $\mathfrak{h}(G; \Bbbk)/\mathfrak{h}(G; \Bbbk)^{(i)} \twoheadrightarrow \operatorname{gr}(G/G^{(i)}; \Bbbk)$ are isomorphisms.

ALEX SUCIU (NORTHEASTERN)

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection A of codimension 1 linear (or affine) subspaces in C^d.
- ► For each $H \in A$ let α_H be a linear form with ker $(\alpha_H) = H$; set $f = \prod_{H \in A} \alpha_H$.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.

• Complement: $M(\mathcal{A}) = \mathbb{C}^d \setminus \bigcup_{H \in \mathcal{A}} H$. It is a smooth, quasiprojective variety and also a Stein manifold. It has the homotopy type of a finite, connected, *d*-dimensional CW-complex.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE (THE BOOLEAN ARRANGEMENT)

- \mathfrak{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
- $L(\mathfrak{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
- $M(\mathfrak{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n \simeq K(\mathbb{Z}^n, 1)$.

EXAMPLE (THE BRAID ARRANGEMENT)

- A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
- ► L(A_n): lattice of partitions of [n] := {1,...,n}, ordered by refinement.
- $M(A_n)$: the (ordered) configuration space of *n* distinct points in \mathbb{C} ; it is a classifying space $K(P_n, 1)$ for the pure braid group on *n* strands, P_n .

COHOMOLOGY RINGS OF ARRANGEMENTS

- The space M(A) admits a minimal cell structure.
- ▶ The groups $H_q(M(\mathcal{A}); \mathbb{Z})$ are finitely generated and torsion-free, with ranks given by $\sum_{q=0}^{\ell} b_q(M(\mathcal{A})) t^q = \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}$, where $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ is defined by $\mu(\mathbb{C}^d) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.
- ► Let *E* be the \mathbb{Z} -exterior algebra on degree 1 cohomology classes $e_H = \frac{1}{2\pi i} [d \log(\alpha_H)]$ dual to the meridians x_H around $H \in \mathcal{A}$.
- ► Let ∂ : $E^* \to E^{*-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_X = \prod_{H \supseteq X} e_H$ for each $X \in \mathcal{L}(A)$.
- ▶ Arnold, Brieskorn, Orlik–Solomon showed: $H^*(M(A); \mathbb{Z}) \cong E/I$, where $I = \langle \partial e_X : \operatorname{rank}(X) < |X| \rangle$.
- M. Kim and B. Shapiro: The quasi-projective variety *M* admits a pure mixed Hodge structure.
- ▶ Thus, *M* is \mathbb{Q} -formal (albeit not \mathbb{Z}_p -formal, in general).

ALEX SUCIU (NORTHEASTERN)

FUNDAMENTAL GROUPS OF ARRANGEMENTS

- ▶ Let $\mathcal{A}' = \{H \cap \mathbb{C}^2\}_{H \in \mathcal{A}}$ be a generic planar section of \mathcal{A} . Then the arrangement group, $G(\mathcal{A}) = \pi_1(M(\mathcal{A}))$, is isomorphic to $\pi_1(M(\mathcal{A}'))$.
- So let A be an arrangement of n affine lines in C². Taking a generic projection C² → C yields the braid monodromy α = (α₁,..., α_s), where s = #{multiple points} and the braids α_r ∈ P_n can be read off an associated braided wiring diagram,

► The group G(A) has a presentation with meridional generators x_1, \ldots, x_n and commutator relators $x_i \alpha_i (x_i)^{-1}$.

HOLONOMY AND ASSOCIATED GRADED LIE ALGEBRAS

• The holonomy Lie algebra of G = G(A) is determined by $L_{\leq 2}(A)$,

$$\mathfrak{h}(G) = \operatorname{Lie}(x_H : H \in \mathcal{A}) / \operatorname{ideal} \left\{ \left[x_H, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_K \right] : \begin{array}{c} H \in \mathcal{A}, Y \in L_2(\mathcal{A}) \\ H \supset Y \end{array} \right\}.$$

- Since *M* is formal, the group *G* is 1-formal. Hence, gr(*G*) ⊗ Q is determined by H^{≤2}(M, Q), and thus, by L_{≤2}(A).
- ▶ In fact, the surjection $\mathfrak{h}(G) \to \mathfrak{gr}(G)$ induces an isomorphism, $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q}$.
- (Papadima−S. 2004) The Chen ranks θ_k(G) are also determined by L_{≤2}(A).
- ► Explicit combinatorial formulas for the LCS ranks φ_k(G) are known in some cases, but not in general.

- U(𝔥(G) ⊗ ℚ) = Ext¹_A(ℚ, ℚ) = Ā[!], the quadratic dual of the quadratic closure of A = H^{*}(M, ℚ).
- (Falk–Randell 1985) If \mathcal{A} is *supersolvable* with exponents d_1, \ldots, d_ℓ , then $\phi_k(G) = \sum_{i=1}^{\ell} \phi_k(F_{d_i})$. (Also follows from Koszulity of $H^*(M, \mathbb{Q})$ and Koszul duality.)
- (Porter–S. 2020) The map h₃(G) → gr₃(G) is an isomorphism, but it is not known whether h₃(G) is torsion-free.
- ▶ (S. 2002) The groups $gr_k(G)$ may have non-zero torsion for $k \gg 0$. E.g., if G = G(MacLane), then $gr_5(G) = \mathbb{Z}^{87} \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_3$.
- (S. 2002): Is the torsion in gr(G) combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!
- ▶ There are two arrangements of 13 lines, \mathcal{A}^{\pm} , each one with 11 triple points and 2 quintuple points, such that $\operatorname{gr}_k(G^+) \cong \operatorname{gr}_k(G^-)$ for $k \leq 3$, yet $\operatorname{gr}_4(G^+) = \mathbb{Z}^{211} \oplus \mathbb{Z}_2$ and $\operatorname{gr}_4(G^-) = \mathbb{Z}^{211}$.

NILPOTENT QUOTIENTS

The quotient G/γ₃(G) is determined by L_{≤2}(A). Indeed, in the central extension,

 $0 \, \longrightarrow \, {\rm gr}_2({\it G}) \, \longrightarrow \, {\it G}/\gamma_3({\it G}) \, \longrightarrow \, {\it G}_{\rm ab} \, \longrightarrow \, 0,$

we have $\operatorname{gr}_2(G) = (I^2)^{\vee}$ and the *k*-invariant $H_2(G_{ab}) \to \operatorname{gr}_2(G)$ is dual of the inclusion $I^2 \hookrightarrow E^2 = \bigwedge^2 G_{ab}$.

- (G. Rybnikov 1994): $G/\gamma_4(G)$ is not always determined by $L_{\leq 2}(\mathcal{A})$.
- There are two arrangements of 13 lines, A[±], each one with 15 triple points, such that L(A⁺) ≅ L(A⁻), and therefore G⁺/γ₃(G⁺) ≅ G⁻/γ₃(G⁻) and gr₃(G⁺) ≅ gr₃(G⁻), but G⁺/γ₄(G⁺) ≇ G⁻/γ₄(G⁻).
- ► The difference can be explained in terms of (generalized) Massey triple products over Z₃.

DECOMPOSABLE ARRANGEMENTS

- For each flat X ∈ L(A), let A_X := {H ∈ A | H ⊃ X} be the localization of A at X.
- ▶ The inclusions $A_X \subset A$ give rise to maps $M(A) \hookrightarrow M(A_X)$. Restricting to rank 2 flats yields a map

 $j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} M(\mathcal{A}_X).$

► The induced homomorphism on fundamental groups, j_#, defines a morphism of graded Lie algebras,

 $\mathfrak{h}(j_{\sharp}) \colon \mathfrak{h}(G) \longrightarrow \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}(G_X).$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_k(j_{\sharp})$ is a surjection for each $k \ge 3$ and an iso for k = 2.

DEFINITION

 \mathcal{A} is *decomposable* if the map $\mathfrak{h}_3(j_{\sharp})$ is an isomorphism.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE

Let $\mathcal{A}(\Gamma) = \{z_i - z_j = 0 : (i, j) \in \mathsf{E}(\Gamma)\} \subset \mathcal{A}_n$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_4 subgraph.

THEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, and let $G = G(\mathcal{A})$. Then

- The map h'(j_↓): h'(G) → ∏_{X∈L₂(A)} h'(G_X) is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism
- ► For each $k \ge 2$, the group $\operatorname{gr}_k(G)$ is free abelian of rank $\phi_k(G) = \sum_{X \in L_2(A)} \phi_k(F_{\mu(X)}).$

THEOREM (PORTER-S. 2020)

Let \mathcal{A} and \mathfrak{B} be decomposable arrangements with $L_{\leq 2}(\mathcal{A}) \cong L_{\leq 2}(\mathfrak{B})$. Then, for each $k \ge 2$,

$$G(\mathcal{A})/\gamma_k(G(\mathcal{A})) \cong G(\mathfrak{B})/\gamma_k(G(\mathfrak{B})).$$

ALEX SUCIU (NORTHEASTERN)

THE MILNOR FIBRATION

- ▶ The defining polynomial map $f: \mathbb{C}^d \to \mathbb{C}$ restricts to a smooth fibration, $f: M \to \mathbb{C}^*$, called the *Milnor fibration* of \mathcal{A} .
- ► The *Milnor fiber* is $F(A) := f^{-1}(1)$. The monodromy, $h: F \to F$, is given by $h(z) = e^{2\pi i/n}z$, where n = |A|.
- ► F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension d - 1 (connected if d > 1).
- ► (Zuber 2010) MHS on *F* may not be pure and π₁(*F*) may be non-1-formal.

ALEX SUCIU (NORTHEASTERN)

- ► *F* is the regular, \mathbb{Z}_n -cover of $U = \mathbb{P}(M)$, classified by the epimorphism $\pi_1(U) \twoheadrightarrow \mathbb{Z}_n$, $x_H \mapsto 1$.
- Let $\iota: F \hookrightarrow M$ be the inclusion. Induced maps on π_1 :

- b₁(F) ≥ n − 1, and may be computed from the characteristic varieties V¹_s(U). Combinatorial formulas are known in some cases, e.g., if P(A) has only double or triple points (Papadima–S. 2017).
- ► (Denham–S. 2016) H_{*}(F; Z) may have torsion. (Yoshinaga 2020): in fact, H₁(F; Z) may have torsion.

ALEX SUCIU (NORTHEASTERN)

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose $h_*: H_1(F; \mathbb{Z}) \to H_1(F; \mathbb{Z})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \cong \operatorname{gr}_{\geq 2}(G).$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \cong \operatorname{gr}_{\geq 2}(G/G'').$

THEOREM (S. 2021)

Suppose $h_*: H_1(F, \mathbb{Q}) \to H_1(F, \mathbb{Q})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G) \otimes \mathbb{Q}.$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G/G'') \otimes \mathbb{Q}.$

• $\phi_k(\pi_1(F)) = \phi_k(G)$ and $\theta_k(\pi_1(F)) = \theta_k(G)$ for all $k \ge 2$.

FALK'S PAIR OF ARRANGEMENTS

- ▶ Both \mathcal{A} and \mathcal{A}' have 2 triple points and 9 double points, yet $L(\mathcal{A}) \cong L(\mathcal{A}')$. Nevertheless, $M(\mathcal{A}) \simeq M(\mathcal{A}')$.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- (S. 2017) $\pi_1(F) \ncong \pi_1(F')$.
- The difference is picked by the depth-2 characteristic varieties: V₂(F) ≅ Z₃, yet V₂(F') = {1}

YOSHINAGA'S ICOSIDODECAHEDRAL ARRANGEMENT

- ► The icosidodecahedron is the convex hull of 30 vertices given by the even permutations of $(0, 0, \pm 1)$ and $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$, where $\phi = (1 + \sqrt{5})/2$.
- It gives rise to an arrangement of 16 hyperplanes in ℝ³, whose complexification is the icosidodecahedral arrangement A in C³.
- $M(\mathcal{A})$ is a K(G, 1).
- *H*₁(*F*; Z) = Z¹⁵ ⊕ Z₂. Thus, the algebraic monodromy of the Milnor fibration is trivial over Q and Z_p (*p* > 2), but not over Z.
- Hence, $gr(\pi_1(F)) \cong gr(\pi_1(U))$, away from the prime 2. Moreover,

$$\circ \operatorname{gr}_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$$

$$\circ \ \operatorname{gr}_2(\pi_1(F)) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$$

- $\circ \ \operatorname{gr}_3(\pi_1(F)) = \mathbb{Z}^{250} \oplus \mathbb{Z}_2^{43}$
- $\circ \ \text{gr}_4(\pi_1(\textbf{\textit{F}})) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^? \ \text{ and } \ \mathfrak{h}_4(\pi_1(\textbf{\textit{F}})) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^{20}.$

REFERENCES

- Richard D. Porter and Alexander I. Suciu, *Homology, lower central series, and hyperplane arrangements*, European Journal of Mathematics 6 (2020), nr. 3, 1039–1072.
- Alexander I. Suciu, *Lower central series and split extensions*, arXiv:2105.14129.
- Alexander I. Suciu, Alexander invariants and cohomology jump loci in group extensions, Annali della Scuola Normale Superiore di Pisa (to appear), doi:10.2422/2036-2145.202112_005, arXiv:2107.05148.