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HOMFLYPT Polynomial

A knot is an embedding of S* into R3. A link is a disjoint collection of knots.

Definition (Hoste Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki, Traczyk)

Received by the editors January 14, 1985.

1980 Mathematics Subject Classification. Primary 5TM25.

1 Editor’s Note. The editors received, virtually within a period of a few days in late
September and early October 1984, four research announcements, each describing the same
result—the existence and properties of a new polynomial invariant for knots and links.
There was variation in the approaches taken by the four groups and variation in corollaries
and elaboration. These were: A new tnvariant for knots and links by Peter Freyd and David
Yetter; A polynomial invariant of knots and kinks by Jim Hoste; Topological invariants of knots and
links, by W. B. R. Lickorish and Kenneth C. Millett, and A polynomial invariant for knots: A
combinatorial and an algebraic approach, by A. Ocneanu.

It was evident from the circumstances that the four groups arrived at their results
completely independently of each other, although all were inspired by the work of Jones
(cf. [10], and also (8, 9]). The degree of simultaneity was such that, by common consent,
it was unproductive to try to assess priority. Indeed it would seem that there is enough
credit for all to share in.

Each of these papers was refereed, and we would have happily published any one of
them, had it been the only one under consideration. Because the alternatives of publication
of all four or of none were both unsatisfying, all have agreed to the compromise embodied
here of a paper carrying all six names as coauthors, consisting of an introductory section
describing the basics written by a disinterested party, and followed by four sections, one

written by each of the four groups, briefly describing the highlights of their own approach
and elaboration.



HOMFLYPT Polynomial

A knot is an embedding of S into R3. A link is a disjoint collection of knots.

Definition (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki, Traczyk)
The HOMFLYPT polynomial P(L) associated to a link L is defined by skein relations:

X)- /\ e

=1 and

N=

Specializations of a and g recover the Jones and Alexander polynomials.



Torus Knots

Definition
Fix n and p coprime. Thinking of a torus as St x S, the (n, p)-torus knot T, , winds
n times around one S; and p times around the other S

Example
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HOMFLYPT of a Torus Knot

bor p>hel, the
anr!mm fhwb::s q’n‘F‘Vl.c'Fr oft assovahed ren

Theorem (Jones, see also Gorsky) (seo Rainer = Shaylor -Sommss [)
Up to (predictable) sign and a power of q,

C(p—1)(n—1)— 1 [n—1| [n+p—k-1
coeff of a~(P~D(n=1)=2k1p(T 'y — [ } [ ] .
[ ] (”7P) [p]q k n :

Also—Fom Thaols dalk

1 2n
[top coeff of a]P(T,,J,H)‘@q:1 P ( ) Cat(n).

As a very special case,



Combinatorial Motivation

Somehow, torus knots T, 11 seem to “know" about Catalan numbers.

[top coefficient of a]P( T,,7,,+1)‘©q:1 = Cat(n).

» Find Catalan objects hidden in the knot T, ,41.
» Find “rational” Catalan objects hidden in the knot T, .
> Generalize. (Her Yypes, ey biils ) o5. )
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Braid Groups

Definition (Artin)
The braid group B, has presentation

B, = <51

,Sn—1 * SiSj+1Sj = Sj4+18/S;+1,SiSj =

36 n}‘ﬁul
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Oriented Links from Braids

Observe that a braid o closes to an oriented link a.

Example
/\/ - (/

> Alexander: every oriented link arises as a braid closure. T, , ~ (s1S2---Sp—1)P.
» Markov moves: any two braid closures representing the same oriented link are
connected by moves of the form

—

&ﬁwﬁa and asy ~ a for o € B,
0



Traces

Write K = Q(g*/?).
» Any K-linear link invariant tr : K[B,] — K(a) must be a trace:

tr(aB) = tr(Ba). ECE\

» A trace is called Markov if also

tr(asp) = atr(a) for a € By, /_’ %

Idea: look for trace invariants that factor through the Hecke algebra.




Hecke Algebras

Definition
Write K = Q(g*'/?). The Hecke algebra H,:
> is a quotient of the group algebra K[B,] with presentation

Hn = K[Bal/(s7 = (= 1)si + q),

(write T; for the image of s; under this quotient);
» has a basis T, as an K-algebra indexed by elements of the symmetric group S;;
» is a deformation of the group algebra of S, (¢ — 1); and
» has “the same” representation theory as S, (x € Irrs, <> xq € Irrp,).




Markov Traces

Theorem (Ocneanu, Jones)

HOMEFLYPT is the unique Markov trace from H, to K(a).
—

Theorem
Up to (predictable) sign and power of q, for any positive braid 3 € B,

(_11)”_1[top coeff in alHOMFLY(3) = [7'1]7'51 =:tr(Tg).
aq T Vot Maorkoy

1
Coekf a*f’

Mh‘t



Markov Traces

Theorem (Trinh W. (2023+))
Up to (predictable) sign and power of q, for any positive braid 3 € B,

]. —top—2k —(w -
(o yleoefof am W P(T, ) = >, T Ma(TuTaTsh.
WES,
deSR(W):{S].’sZ"“)skfl}

The trace can be computed directly using the relations in the Hecke algebra, or
by using the fact that H,, decomposes as a (weighted) direct sum over irreps:

tr = Z qu.

Xq€Irr(Hp) S(Xq)



Example

Fix n =2. Recall that T2 = (¢ —1)Ts+qand T, = g }(Ts — (9 — 1)).
Example
Compute the top coefficient in a of HOMFLY(sss) = —a~* + a=2g %(g? + 1) as

[T1]Tes =[] 75> = [Ta]a>(Ts — (¢ - 1))°

= q [T (T2 =3(g— T2 +3(q - 1)°Ts — (¢ - 1)°)

=q [T (¢ -T2 +qTs =3(¢ — 1)((¢ - 1)Ts + ) +3(g — 1)*Ts — (¢ - 1)°)
=q°[T] (g q—l)T +9)+qTs — [Ba(g—1) + (g - 1)%])

=q [Tl ((q —Balg—1)+(a—1)* - q(g - 1)])

=—q°(3(q- 1)q + ( - 1)3 —q(g—1))

=—q (g - 1)(¢° +1).



Combinatorial Motivation

Write ¢ = s152---s,_1 € B, so that the torus knot T, , ~ ch.
The braid ¢"*1 seems to “know” about Catalan numbers:

((q_ll)n—ltr(Tc”“)> }@qzl = Cat(n).

@HXXX

» Find Catalan objects hidden in the braid ¢"*1.
» Find “rational” Catalan objects hidden in the braid c”.

» Generalize.
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Flags

» the Borel subgroup B = B, = B (FFq) of upper triangular matrices:

P 2

B~ [0C (a1) C (er,e) C--- CFg;

L

> the flag variety:

G/B ~ { Vo C V4 C - C V] with dim(V;) = f}.

Definition
For B',B" € G/B, we say B' is in relative position s; to B" (written B’ = B")
if B’ and B” differ exactly in their ith and (i + 1)st subspaces.




Relative position

Definition
For B, B” € G/B, we say B is in relative position s; to B" (written B’ N B")
if B’ and B” differ exactly in their ith and (i + 1)st subspaces.

Example
For G = SLy(F,) we have |G/B| =g+ 1and S, = {1,s}: ® B
10722

G/B={By=B4,B1,B,...,B4=B_}
S
with relative positions given by B; = B;j and B; = Bj for i # j.

B



Braid Varieties

Definition
Let B = B,0, -3, € B, be a positive braid (with each 3; = s, for some k).
The braid variety corresponding to (3 is the closed subvariety of (G/B)™*!:

Ra(Fq) = {B =860 ™ B 2 ™ B, & B_: B € G/B)}

We can also “twist” braid varieties by an element w € W:

182 Bm WWo

R[(aw)(lﬁ‘q):{W-B:Bo&&%---—MBm%B—3Bi€G/B}~



For G = SLy(Fg) we have |G/B| =g+ 1: 1
S
G/B={By=B4,B1,B,,...,B4=B_} \
B

with relative positions given by B; 5 Bjand B; > Bj for i # j. +
Example

(BB 5B 5 B < B.) for 1 <i<q—1and k50w
Rsss(]Fq)— (B;B_i}Bii)BjéB_) for 0 <i,j < gq—1with i # ],

(BB >B_-%B<B) forl<i<g-1land0<j<qg-1



Point Counts

Theorem
Up to (predictable) sign and a power of q, for any positive braid 3 € B,

1 L -~
(=11 [top coefficient in alHOMFLY (B) = tr(Tg) = |Ra(Fq)|-

- c - [yuz]
I



Point Counts

Theorem (Tran, W. (2023+))
Up to (predictable) sign and a power of q, for any positive braid 3 € B,

1 —top—2k 2\ —0(w) -1
W[coeff of a "PT** |[HOMFLY(B3) = Z q tr(Tw T, T,B )

wEeS,
deSR(W):{sl ,52,-”,5}(71}

= L RYI(E,))| -

WESy
dESR(W):{Sl,SQ,...,Sk_l}

@ - XOXX - [y

yar N



Combinatorial Motivation

The braid variety Ren1(Fq) seems to “know” about Catalan numbers:

<(q_]i)nl‘ch+1(Fq)|> ‘@qzl — Cat(n).

@HXXXH

» Find Catalan objects hidden in the braid variety Req1(Fy).
» Find “rational” Catalan objects hidden in the braid variety Re»(Fq).

» Generalize.
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Deodhar decomposition

Definition (Deodhar)

Fix a positive braid 8 = 3,8, -3,
» A subword of 3 is a word u = ujuy - - - u,, with
> each u; equal to either 1 or 3; (write e, = #{u; = 1});
> ujup - upm =1 (the product is in Sp).

» u is distinguished if when vy - - - ujfi11 < uj, then ujy1 = B; ;. (Set of: Dg).

» uis maximal distinguished if it has as many u; = 3; as possible. (Set of: Mg).

Example
Dsss = {111,ss1,1ss} and Mg = {ssl, 1ss}.

NoT sls



Deodhar decomposition 34

Theorem
The braid variety decomposes as

where Ry 5(Fq) = {B N N N Ny Sy B LN
each Ry g(Fq) ~ (FX)® x Fd.

Example

Rsss(Fq) = Rssl,sss(IFq) U Rlss,sss(Fq) U Rlll,sss(Fq)
~((F)? x Fu(F)? x Fu(F;))
|Ress(Fg)l =(g—1) g+ (q—1) g+ (q—1)*=(q—1)(¢° + 1).

¢s | Lss 0\

Feel (Haoo Ehngot)



Combinatorial objects and the Deodhar decomposition

IRa(Fq)l = > |Rup(Fq)l = > ‘(Fj)e“ xFd = > (g—1)%q%.

UEDﬁ UEDB UEDg

At g = 1, Mg gives combinatorial objects:

1 -m
( _1)m|Rﬁ(Fq)|:Z(q—1)e" g% = qu”-i—(q_l).(...)
q UEDB UEM,B
1
lim ——|Rg(F = |Mg].
qlnl (q _ ]_)m| ﬁ( q)| | ﬁ|
Example
'\,H I 1 ssl (g5 1" ésslll:r}
S i gy IRl = Jim (9 + (9= 10) =2= M)

also fed.
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NoNCRosSIG- PARTITIONS = M,
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WEYL GROUPS (@)
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CLASSIF(CATION © WEYL GROUPS (@)

12"'_/1_4 The list of irredveble Wu)l Jrovps (s °

comcted Dyalon dagram

REF Coxeter, “The m?leh enwmeration of Gaite grevps of the orm r;z =(n r;,)ki =1." 192



CoXeTER. GRoUPS ( ﬂk)

DEF A Coceler Sd&km CW,S) s a grovp W witl
P-fcsen“hh‘m W= <$l/ 52,150 ' (s )hu = 'J>

MeNm}
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Bred group Bw "™ (me%‘l)
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Rek Hiller. “Gtonﬁg of Coxeler groups !
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Bjomar & Breat:, Combirbiics of Coneder Groogs”



CLASSIF(CATION] : CoXETER GROVPS (ﬂ’\)
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CompLex RerLection GRrovps (C)
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CLASSIF(CATION © Complex RerLectioy GRrovps (C)
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IMVANANT THEORY AND NUMEROLIGY
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R-TYPE H(sTORY oF NONCRISSNG PARTITIONS

1971 - Krewerat . Sor les parbbms nen croisées dn eyele -
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1995 - Rener. Nen- crussing pactitions e classical refecton Jrovurs
199%F - Dirman ko, lee . A new q”m«l, e Ha word problem in the bwd 9roups

(20012 - Bm&‘,w.# : K(n/l)'s fr Arbn grovps o ﬁnih.‘lj’w
‘) 2002 ~ Picantin. Explia‘f- pvtmhh'ms fr the dyal braid mane ds

\7005"303:\. The dva | brad wonsid
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Generalized Noncrossing Partitions and
Combinatorics of Coxeter Groups

Drew Armstrong

Author address:

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK
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Current address: School of Mathematics, University of Minnesota, Minneapolis,
Minnesota 55455
E-mail address: armstron@math.umn.edu
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Noncrossing braid varieties

®

Theorem (Galashin, Lam, Trinh, W. (ﬁﬁiform))
Fix p coprime to h. Then

R ()| = (g — 1 [] 22
i=1

[iq

Theorem (Galashin, Lam, Trinh, W. (uniform))

The Deodhar decomposition of Rexi1(Fq) ‘gives’noncrossing partitions.

Easily generalizes to Armstrong's Fuss-Catalan noncrossing partitions.
So the maximal distinguished subwords of c are the long-desired construction of
rational noncrossing partitions.
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Rational noncrossing 'quyc, funvchows”™

Theorem (Galashin, Lam, Trinh, W. (uniform))

|| RE(F)| =

weW

= (g9 —1)"[plg-

Theorem (Galashin, Lam, Trinh, W. (uniform))

The Deodhar decomposition of | |,,c\y, Rc(,','i)l (Fq) gives Armstrong-Rhoades-Reiner’s
noncrossing parking functions.




Parkive Fuwenons™

v S1 S92 S1 So S1 S92 S1 S92 it
e (12) (23) s S ‘ 1 89 81 se || (123)
e s1 (13) s S s1 (12) | s Sg (13)
e 81 so | (23) s 1 sa | (13) sy (23)
e (12)  s9 S1 S $1 S S1 (23) (12)
e 81 89 81 So 81 S (12) (23) (e)
S1 S1 (13) (12) So ‘ S1 S92 81 S2 (13)
81 $1 s2 | (23) s $1 s2 | (13) s (23)
s1 $1 S s1 (12) s S s1 (23) e
S92 (12) S2 S1 S92 ‘ (23) S92 S1 S92 (12)
S92 S1 (13) S1 S92 S1 (12) S1 S92 (13)
S $1 S $1 So s1 (23)  (13)  s2 e
8981 S1 S92 (23) (13) ‘ S1 89 S1 S92 (23)
8281 81 89 s1 (12) | s S s1 (23) e
8182 (12) S2 S1 So ‘ (23) 82 S1 S9 (12)
8189 81 S $1 ss  (13) (12) | s 8o e
818281 $1 S $1 (12) ‘ (23) S $1 S e




EXAMPLE 2 ¢ AFFINE BRAID VARIETIES



Affine symmetric group

Theorem (Opdam)
Z1)2 gk—q—
Let [k]g = %%. For X € QT,

oo Ti2) =g 5 ]

(aa)EK(N) acdt
aa>0

Theorem (Galashin, Lam, W.)

Fix the extended affine Weyl group 3,,, and let v = t(m_1)x, and W = tm(n—1)+1)A,_: -
Then the number of F 4-points in the braid variety R, ., (Fq) is given by

n—2
m(n—1)+1 _ q
—(n_1)200-1) (9
Ro(F)| = (g = 1) ( S ) |
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Bijections?

Very hard, general open problem in general:

Problem
Find bijections between maximal distinguished subwords and existing combinatorial
objects.

Special cases:
» noncrossing vs. nonnesting;
» Galashin and Lam'’s positroid braid varieties and rational Dyck paths;
» affine braid variety and parking functions;

T (hundsy , S/fGkoi-Py) *
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Mixed Hodge?

Even harder open problem in general:

Problem
Compute the mixed Hodge decomposition of Rer(C).

Expect to get g, t-Catalan numbers, g, t-parking numbers, etc.




Graphical models

Problem

Find reasonable graphical models for rational noncrossing Catalan objects.




Periodic elements?

There might be a uniform formula for braid varieties built from periodic elements,
generalizing the usual Coxeter—Catalan numbers. What is the combinatorics?

Example
For type D4 with d = 4 and w = s15753515254, we have that

|Rew2(Fq)] = a78(q— 1)*(1+ ¢* +3¢" + 4¢° + 4¢° + 3¢ + ¢"% + ¢**),
At g = 1 and for p odd, we appear to have

((p+1)(p+3))?
32

lim (g — 1)_4 |Rewr (Fq)| =
q—1

Note that the order d of w is 4, and that the eigenvalues of w in the ref rep are it and
i® (each with multiplicity 2).



Complex reflection groups?

Theorem (W. Miller (undergraduate!))

Let W be a spetsial imprimitive complex reflection group and p coprime to h. Then
(up to a power of q)

x(Te) = (4 1) H["+[3]Vp)],

where the ej(VP) are the fake degrees of the p-th Galois twist of the reflection
representation and the trace is taken in the Hecke algebra Hy .

Example

The complex reflection group G has rank r = 2, Coxeter number h = 6. lIts reflection
representation has fake degrees 3 and 5. We compute using GAP3 that

5 [7 + 3][7 + 5]

tr(TC7) = (q_1)2(q12+q8+q6+q4+1) = (q_]-) [4][6]



Complex reflection groups?

The Deodhar decomposition gives a combinatorial model of braid varieties for general
Coxeter groups—but we lose the obvious notion of distinguished for complex reflection
groups.

Problem

Find a combinatorial description of the Deodhar decomposition for spetsial complex
reflection groups.

For the case p = h + 1, this should recover noncrossing partitions.
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