Conbinatorlcs \& Beaid Varetetes

\mathscr{B}

$$
x a x-\frac{19 m!}{x}
$$

ORIENTED LINkS

the Gordian knot
A knot is an embedding of S^{1} into \mathbb{R}^{3}.

REIDEMEISTER MOVES

Fig. 1.

Fig. 3.

Elementare Begründung der Knotentheorie ${ }^{1}$).
Von KURT REIDEMEISTER in Königsberg.

Fig. 2.

$$
\frac{0}{000} \text { B }
$$

HOMFLYPT Polynomial

A knot is an embedding of S^{1} into \mathbb{R}^{3}. A link is a disjoint collection of knots.

Definition (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki, Traczyk)

Received by the editors January 14, 1985.
1980 Mathematics Subject Classification. Primary 57M25.
${ }^{1}$ Editor's Note. The editors received, virtually within a period of a few days in late September and early October 1984, four research announcements, each describing the same result-the existence and properties of a new polynomial invariant for knots and links. There was variation in the approaches taken by the four groups and variation in corollaries and elaboration. These were: A new invariant for knots and links by Peter Freyd and David Yetter; A polynomial invariant of knots and links by Jim Hoste; Topological invariants of knots and links, by W. B. R. Lickorish and Kenneth C. Millett, and A polynomial invariant for knots: A combinatorial and an algebraic approach, by A. Ocneanu.

It was evident from the circumstances that the four groups arrived at their results completely independently of each other, although all were inspired by the work of Jones (cf. [10], and also [8, 9]). The degree of simultaneity was such that, by common consent, it was unproductive to try to assess priority. Indeed it would seem that there is enough credit for all to share in.

Each of these papers was refereed, and we would have happily published any one of them, had it been the only one under consideration. Because the alternatives of publication of all four or of none were both unsatisfying, all have agreed to the compromise embodied here of a paper carrying all six names as coauthors, consisting of an introductory section describing the basics written by a disinterested party, and followed by four sections, one written by each of the four groups, briefly describing the highlights of their own approach and elaboration.

HOMFLYPT Polynomial

A knot is an embedding of S^{1} into \mathbb{R}^{3}. A link is a disjoint collection of knots.
Definition (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki, Traczyk)
The HOMFLYPT polynomial $P(L)$ associated to a link L is defined by skein relations:

Specializations of a and q recover the Jones and Alexander polynomials.

Torus Knots

Definition

Fix n and p coprime. Thinking of a torus as $S^{1} \times S^{1}$, the (n, p)-torus knot $T_{n, p}$ winds n times around one S_{1} and p times around the other S^{1}.

Example

HOMFLYPT of $T_{1,2}$ and $T_{2,3}$

WHAT ABOOT $T_{3,4}, T_{4,5}, \ldots, T_{n, n+1}$?

DEF The Catalan numbers are the integers

$$
\operatorname{Gat}(n)=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

Ex $1,2,5,14,42,132, \ldots$

Cat $\left.C_{n}\right)$ counts: moncrossing partitions, triangulations, Dock paths, etc, etc, etc, ate, att, ...
"THM" (Folklore)
Just about every combinatorial object is Catalan.

HOMFLYPT of a Torus Knot

Theorem (Jones, see also Gorsky) Up to (predictable) sign and a power of q,

$$
\left[\text { coeff of } a^{-(p-1)(n-1)-2 k}\right] P\left(T_{n, p}\right)=\frac{1}{[p]_{q}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
n+p-k-1 \\
n
\end{array}\right]_{q} .
$$

As a very special case,

$$
\left.[\text { top coeff of } a] P\left(T_{n, n+1}\right)\right|_{@_{q=1}}=\frac{1}{n+1}\binom{2 n}{n}=\operatorname{Cat}(n) \text {. }
$$

Combinatorial Motivation

Somehow, torus knots $T_{n, n+1}$ seem to "know" about Catalan numbers.

$$
\left.[\text { top coefficient of } a] P\left(T_{n, n+1}\right)\right|_{@ q=1}=\operatorname{Cat}(n) .
$$

- Find Catalan objects hidden in the knot $T_{n, n+1}$.
- Find "rational" Catalan objects hidden in the $\operatorname{knot} T_{n, p}$.
- Generalize. (other types, other braids, etr.)

BRADS

Braid Groups

Definition（Artin）
The braid group B_{n} has presentation

$$
B_{n}=\left\langle\mathbf{s}_{1}, \ldots, \mathbf{s}_{n-1}: \mathbf{s}_{i} \mathbf{s}_{i+1} \mathbf{s}_{i}=\mathbf{s}_{i+1} \mathbf{s}_{i} \mathbf{s}_{i+1}, \mathbf{s}_{i} \mathbf{s}_{j}=\mathbf{s}_{j} \mathbf{s}_{i}\right\rangle
$$

sorry theo！

Theorie der Zopfe．
Voa Emil ARTIN is hamborg．

Oriented Links from Braids

Observe that a braid α closes to an oriented link $\widehat{\alpha}$.

Example

- Alexander: every oriented link arises as a braid closure. $T_{n, p} \sim\left(\mathbf{s}_{1} \mathbf{s}_{2} \cdots \mathbf{s}_{n-1}\right)^{p}$.
- Markov moves: any two braid closures representing the same oriented link are connected by moves of the form

$$
\widehat{\boldsymbol{\alpha \boldsymbol { \beta }} \sim \widehat{\boldsymbol{\beta} \boldsymbol{\alpha}} \quad \text { and } \quad \widehat{\boldsymbol{\alpha} \mathbf{s}_{n}^{ \pm}} \sim \widehat{\boldsymbol{\alpha}} \text { for } \boldsymbol{\alpha} \in B_{n} . ~ . ~ . ~}
$$

Traces

Write $K=\mathbb{Q}\left(q^{ \pm 1 / 2}\right)$.

- Any K-linear link invariant $\operatorname{tr}: K\left[B_{n}\right] \rightarrow K(a)$ must be a trace:

$$
\operatorname{tr}(\boldsymbol{\alpha} \boldsymbol{\beta})=\operatorname{tr}(\boldsymbol{\beta} \boldsymbol{\alpha}) .
$$

- A trace is called Markov if also

$$
\operatorname{tr}\left(\boldsymbol{\alpha} \mathbf{s}_{n}\right)=\operatorname{atr}(\boldsymbol{\alpha}) \text { for } \boldsymbol{\alpha} \in B_{n}
$$

$$
1+p
$$

Idea: look for trace invariants that factor through the Hecke algebra.

Hecke Algebras

Definition

Write $K=\mathbb{Q}\left(q^{ \pm 1 / 2}\right)$ ．The Hecke algebra H_{n} ：
－is a quotient of the group algebra $K\left[B_{n}\right]$ with presentation

$$
H_{n}=K\left[B_{n}\right] /\left\langle\mathbf{s}_{i}^{2}=(q-1) \mathbf{s}_{i}+q\right\rangle,
$$

（write T_{i} for the image of \mathbf{s}_{i} under this quotient）；
－has a basis T_{w} as an K－algebra indexed by elements of the symmetric group S_{n} ；
－is a deformation of the group algebra of $S_{n}(q \rightarrow 1)$ ；and
－has＂the same＂representation theory as $S_{n}\left(\chi \in \operatorname{Irr}_{S_{n}} \leftrightarrow \chi_{q} \in \operatorname{Irr}_{H_{n}}\right)$ ．

Markov Traces

Theorem (Ocneanu, Jones)
HOMFLYPT is the unique Markov trace from H_{n} to $K(a)$.
Theorem
Up to (predictable) sign and power of q, for any positive braid $\beta \in B_{n}$

$$
\frac{1}{(q-1)^{n-1}}[\text { top coeff in a }] \operatorname{HOMFLY}(\widehat{\boldsymbol{\beta}})=\left[T_{1}\right] T_{\boldsymbol{\beta}}^{-1}=: \underset{\left.\mu_{0}+M_{\boldsymbol{\beta}}\right)}{\operatorname{tr}\left(T_{\boldsymbol{k}}\right) .}
$$

coeff of
identity

Markov Traces

Theorem (Trinh,W. (2023+))

Up to (predictable) sign and power of q, for any positive braid $\beta \in B_{n}$

$$
\frac{1}{(q-1)^{n-1}}\left[\text { coeff of } a^{- \text {top }-2 k}\right] P\left(T_{n, p}\right)=\sum_{\substack{w \in S_{n} \\ \operatorname{des}_{R}(w)=\left\{s_{1}, s_{2}, \ldots, s_{k-1}\right\}}} q^{-\ell(w)} \operatorname{tr}\left(T_{w} T_{w^{-1}} T_{\boldsymbol{\beta}}^{-1}\right) .
$$

The trace can be computed directly using the relations in the Hecke algebra, or by using the fact that H_{n} decomposes as a (weighted) direct sum over irreps:

$$
\operatorname{tr}=\sum_{\chi_{q} \in \operatorname{Irr}\left(H_{n}\right)} \frac{1}{s\left(\chi_{q}\right)} \chi_{q} .
$$

Example

Fix $n=2$. Recall that $T_{s}^{2}=(q-1) T_{s}+q$ and $T_{s}^{-1}=q^{-1}\left(T_{s}-(q-1)\right)$.

Example

Compute the top coefficient in a of $\operatorname{HOMFLY}(\widehat{\mathbf{s s s}})=-a^{-4}+a^{-2} q^{-1}\left(q^{2}+1\right)$ as

$$
\begin{aligned}
& {\left[T_{1}\right] T_{\text {ss }}^{-1}=\left[T_{1}\right] T_{s}^{-3}=\left[T_{1}\right] q^{-3}\left(T_{s}-(q-1)\right)^{3}} \\
& =q^{-3}\left[T_{1}\right]\left(T_{s}^{3}-3(q-1) T_{s}^{2}+3(q-1)^{2} T_{s}-(q-1)^{3}\right) \\
& =q^{-3}\left[T_{1}\right]\left((q-1) T_{s}^{2}+q T_{s}-3(q-1)\left((q-1) T_{s}+q\right)+3(q-1)^{2} T_{s}-(q-1)^{3}\right) \\
& =q^{-3}\left[T_{1}\right]\left((q-1)\left((q-1) T_{s}+q\right)+q T_{s}-\left[3 q(q-1)+(q-1)^{3}\right]\right) \\
& =q^{-3}\left[T_{1}\right]\left(\left(q+(q-1)^{2}\right) T_{s}-\left[3 q(q-1)+(q-1)^{3}-q(q-1)\right]\right) \\
& =-q^{-3}\left(3(q-1) q+(q-1)^{3}-q(q-1)\right) \\
& =-q^{-3}(q-1)\left(q^{2}+1\right) .
\end{aligned}
$$

Combinatorial Motivation

Write $\mathbf{c}=\mathbf{s}_{1} \mathbf{s}_{2} \cdots \mathbf{s}_{n-1} \in B_{n}$ so that the torus knot $T_{n, p} \sim \widehat{\mathbf{c}^{p}}$. The braid \mathbf{c}^{n+1} seems to "know" about Catalan numbers:

$$
\left.\left(\frac{1}{(q-1)^{n-1}} \operatorname{tr}\left(T_{\mathbf{c}^{n+1}}\right)\right)\right|_{\varrho_{q=1}}=\operatorname{Cat}(n)
$$

- Find Catalan objects hidden in the braid \mathbf{c}^{n+1}.
- Find "rational" Catalan objects hidden in the braid \mathbf{c}^{p}.
- Generalize.

BRAID VARIETIES

$$
\ln 2501
$$

- Lie group $S L_{4}\left(\mathbb{F}_{b}\right)$
- Braid group

$$
B_{n}
$$

- Hecke algebra \mathscr{H}_{n}
- Affine symmetric group \widetilde{G}_{n}

Flags

- the Borel subgroup $B=B_{+}=B_{+}\left(\mathbb{F}_{q}\right)$ of upper triangular matrices:

$$
B \simeq\left[0 \subseteq\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset \mathbb{F}_{q}^{n}\right] ;
$$

- the flag variety:

$$
G / B \simeq\left\{\left[V_{0} \subset V_{1} \subset \cdots \subset V_{n}\right] \text { with } \operatorname{dim}\left(V_{i}\right)=i\right\} .
$$

Definition

For $B^{\prime}, B^{\prime \prime} \in G / B$, we say B^{\prime} is in relative position s_{i} to $B^{\prime \prime}\left(\right.$ written $\left.B^{\prime} \xrightarrow{s_{i}} B^{\prime \prime}\right)$ if B^{\prime} and $B^{\prime \prime}$ differ exactly in their i th and $(i+1)$ st subspaces.

Relative position

Definition

For $B^{\prime}, B^{\prime \prime} \in G / B$, we say B^{\prime} is in relative position s_{i} to $B^{\prime \prime}$ (written $B^{\prime} \xrightarrow{s_{i}} B^{\prime \prime}$) if B^{\prime} and $B^{\prime \prime}$ differ exactly in their i th and ($i+1$)st subspaces.

Example

For $G=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ we have $|G / B|=q+1$ and $S_{2}=\{1, s\}$:

$$
G / B=\left\{B_{0}=B_{+}, B_{1}, B_{2}, \ldots, B_{q}=B_{-}\right\}
$$

with relative positions given by $B_{i} \xrightarrow{e} B_{i}$ and $B_{i} \xrightarrow{s} B_{j}$ for $i \neq j$.

Braid Varieties

Definition

Let $\boldsymbol{\beta}=\boldsymbol{\beta}_{2} \boldsymbol{\beta}_{2} \cdots \boldsymbol{\beta}_{m} \in B_{n}$ be a positive braid (with each $\boldsymbol{\beta}_{i}=\mathbf{s}_{k}$ for some k). The braid variety corresponding to $\boldsymbol{\beta}$ is the closed subvariety of $(G / B)^{m+1}$:

$$
R_{\boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)=\left\{B=B_{0} \xrightarrow{\beta_{1}} B_{1} \xrightarrow{\beta_{2}} \cdots \xrightarrow{\beta_{m}} B_{m} \stackrel{w_{o}}{\longleftrightarrow} B_{-}: B_{i} \in G / B\right\}
$$

We can also "twist" braid varieties by an element $w \in W$:

$$
R_{\boldsymbol{\beta}}^{(w)}\left(\mathbb{F}_{q}\right)=\left\{w \cdot B=B_{0} \xrightarrow{\beta_{1}} B_{1} \xrightarrow{\beta_{2}} \cdots \xrightarrow{\beta_{m}} B_{m} \stackrel{w w_{o}}{\leftarrow} B_{-}: B_{i} \in G / B\right\} .
$$

For $G=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ we have $|G / B|=q+1$:

$$
G / B=\left\{B_{0}=B_{+}, B_{1}, B_{2}, \ldots, B_{q}=B_{-}\right\}
$$

with relative positions given by $B_{i} \xrightarrow{e} B_{i}$ and $B_{i} \xrightarrow{s} B_{j}$ for $i \neq j$.

Example

$$
R_{\mathrm{sss}}\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{ll}
\left(B \xrightarrow{s} B_{i} \xrightarrow{s} B_{j} \stackrel{s}{\rightarrow} B_{k} \stackrel{s}{\leftarrow} B_{-}\right) & \text {for } 1 \leq i \leq q-1 \text { and } 0 \leq j, k \leq q-1 \text { with } \\
i \neq j \neq k \\
\left(B \xrightarrow{s} B_{-} \xrightarrow{s} B_{i} \xrightarrow{s} B_{j} \stackrel{s}{\leftarrow} B_{-}\right) & \text {for } 0 \leq i, j \leq q-1 \text { with } i \neq j, \\
\left(B \xrightarrow[\rightarrow]{\rightarrow} B_{i} \xrightarrow[\rightarrow]{\rightarrow} B_{-} \xrightarrow{s} B_{j} \stackrel{s}{\leftarrow} B_{-}\right) & \text {for } 1 \leq i \leq q-1 \text { and } 0 \leq j \leq q-1
\end{array}\right\} .
$$

Point Counts

Theorem

Up to (predictable) sign and a power of q, for any positive braid $\boldsymbol{\beta} \in B_{n}$

$$
\frac{1}{(q-1)^{n-1}}\left[\text { top coefficient in a]HOMFLY }(\widehat{\boldsymbol{\beta}})=\operatorname{tr}\left(T_{\beta}\right)=\left|R_{\beta}\left(\mathbb{F}_{q}\right)\right|\right. \text {. }
$$

Point Counts

Theorem (Tran, W. (2023+))
Up to (predictable) sign and a power of q, for any positive braid $\boldsymbol{\beta} \in B_{n}$

$$
\begin{aligned}
\frac{1}{(q-1)^{n-1}}\left[\text { coeff of } a^{-\operatorname{top}-2 k}\right] \operatorname{HOMFLY}(\widehat{\boldsymbol{\beta}}) & =\sum_{\substack{w \in s_{n} \\
\operatorname{des}_{R}(w)=\left\{s_{1}, s_{2}, \ldots, s_{k-1}\right\}}} q^{-\ell(w)} \operatorname{tr}\left(T_{w} T_{w^{-1}} T_{\boldsymbol{\beta}}^{-1}\right) \\
& =\left|\bigsqcup_{\substack{w \in S_{n} \\
\operatorname{des}_{R}(w)=\left\{S_{1}, s_{2}, \ldots, s_{k-1}\right\}}} R_{\beta}^{(w)}\left(\mathbb{F}_{q}\right)\right| .
\end{aligned}
$$

Combinatorial Motivation

The braid variety $R_{\mathbf{c}^{n+1}}\left(\mathbb{F}_{q}\right)$ seems to "know" about Catalan numbers:

$$
\left.\left(\frac{1}{(q-1)^{n-1}}\left|R_{\mathbf{c}^{n+1}}\left(\mathbb{F}_{q}\right)\right|\right)\right|_{@_{q=1}}=\operatorname{Cat}(n) .
$$

- Find Catalan objects hidden in the braid variety $R_{\mathrm{c}^{n+1}}\left(\mathbb{F}_{q}\right)$.
- Find "rational" Catalan objects hidden in the braid variety $R_{\mathrm{c}^{p}}\left(\mathbb{F}_{q}\right)$.
- Generalize.

COMBNATORICS

Deodhar decomposition

Definition (Deodhar)

Fix a positive braid $\boldsymbol{\beta}=\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{2} \cdots \boldsymbol{\beta}_{\boldsymbol{m}}$.

- A subword of $\boldsymbol{\beta}$ is a word $\mathbf{u}=\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{m}$ with
- each \mathbf{u}_{i} equal to either $\mathbf{1}$ or $\boldsymbol{\beta}_{i}\left(\right.$ write $\left.e_{\mathbf{u}}=\#\left\{\mathbf{u}_{i}=\mathbf{1}\right\}\right)$;
- $u_{1} u_{2} \cdots u_{m}=1$ (the product is in S_{n}).
$\checkmark \mathbf{u}$ is distinguished if when $u_{1} \cdots u_{i} \beta_{i+1}<u_{i}$, then $\mathbf{u}_{i+1}=\boldsymbol{\beta}_{i+1}$. (Set of: D_{β}).
- \mathbf{u} is maximal distinguished if it has as many $\mathbf{u}_{i}=\boldsymbol{\beta}_{\boldsymbol{i}}$ as possible. (Set of: $M_{\boldsymbol{\beta}}$).

Example

$$
D_{\mathrm{sss}}=\{\mathbf{1 1 1}, \mathbf{s s} \mathbf{1}, \mathbf{1} \mathbf{s s}\} \text { and } M_{\mathbf{s s s}}=\{\mathbf{s s} \mathbf{1}, \mathbf{1} \mathbf{s s}\}
$$

Not sls

Deodhar decomposition

Theorem

The braid variety decomposes as

$$
R_{\boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)=\bigsqcup_{\mathbf{u} \in D_{\boldsymbol{\beta}}} R_{\mathbf{u}, \boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)
$$

where $R_{\mathbf{u}, \boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)=\left\{B=B_{0} \xrightarrow{\beta_{1}} B_{1} \xrightarrow{\beta_{2}} \cdots \xrightarrow{\beta_{m}} B_{m}: B_{-} \xrightarrow{u_{(i)} w_{o}} B_{i}\right\}$ and each $R_{\mathbf{u}, \boldsymbol{\beta}}\left(\mathbb{F}_{q}\right) \simeq\left(\mathbb{F}_{q}^{\times}\right)^{e_{\mathbf{u}}} \times \mathbb{F}_{q}^{d_{u}}$.

Example

$$
\begin{aligned}
R_{\mathrm{sss}}\left(\mathbb{F}_{q}\right) & =R_{\mathrm{ss} 1, \mathrm{sss}}\left(\mathbb{F}_{q}\right) \sqcup R_{\mathbf{1 s s}, \mathbf{s s}}\left(\mathbb{F}_{q}\right) \sqcup R_{\mathbf{1 1 1 , \mathbf { s s s }}}\left(\mathbb{F}_{q}\right) \\
& \simeq\left(\left(\mathbb{F}_{q}^{\times}\right)^{2} \times \mathbb{F}_{q}\right) \sqcup\left(\left(\mathbb{F}_{q}^{\times}\right)^{2} \times \mathbb{F}_{q}\right) \sqcup\left(\left(\mathbb{F}_{q}^{\times}\right)^{3}\right) . \\
\left|R_{\mathrm{sss}}\left(\mathbb{F}_{q}\right)\right| & =(q-1) q+(q-1) q+(q-1)^{3}=(q-1)\left(q^{2}+1\right) .
\end{aligned}
$$

Combinatorial objects and the Deodhar decomposition

$$
\left|R_{\boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)\right|=\sum_{\mathbf{u} \in D_{\beta}}\left|R_{\mathbf{u}, \boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)\right|=\sum_{\mathbf{u} \in D_{\beta}}\left|\left(\mathbb{F}_{q}^{\times}\right)^{e_{\mathbf{u}}} \times \mathbb{F}_{q}^{d_{\mathbf{u}}}\right|=\sum_{\mathbf{u} \in D_{\beta}}(q-1)^{e_{\mathbf{u}}} q^{d_{\mathbf{u}}}
$$

At $q=1, M_{\boldsymbol{\beta}}$ gives combinatorial objects:

$$
\begin{aligned}
\frac{1}{(q-1)^{m}}\left|R_{\boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)\right|=\sum_{\mathbf{u} \in D_{\boldsymbol{\beta}}}(q-1)^{e_{u}-m} q^{d_{\mathbf{u}}} & =\sum_{\mathbf{u} \in M_{\boldsymbol{\beta}}} q^{d_{\mathbf{u}}}+(q-1) \cdot(\cdots) \\
\lim _{q \rightarrow 1} \frac{1}{(q-1)^{m}}\left|R_{\boldsymbol{\beta}}\left(\mathbb{F}_{q}\right)\right| &
\end{aligned}
$$

Example

also fiend.

Noncrossing partitions
DEf $N C(n)=$ noncrossing (set) partitions ordered by refinement.

NONCROSSING PARTITONS $=M_{c^{f}}$
THM (Galashin, lar, Trimh , w.)
There is an "easy" bijection between M_{c+1} and $N C(n)$.
Ex

e
(12)

(12)
e

$$
\text { NONCROSSING- PARTITONS }=\mu_{\mathrm{c}}
$$

$$
\begin{aligned}
& (12)(24) \\
& 1234567812345678123456781234567812345678 \\
& 1234567812345678123456781234567812345678 \\
& (78)
\end{aligned}
$$

$(12)(24)(49)(78)$
$(23)(45)(56)(68)$

$$
S \rightarrow \lambda a x-\operatorname{lin} x
$$

Evangeusm : True reflection GROUPS

WEYL GROUPS (Q)

- connected reductive group G
over F_{3}, Frobenivs F
- Weal group
- Braid group

$$
B_{w}=\pi_{1}\left(V^{\mathrm{rg}} / w\right)
$$

- Heck algebra

$$
H_{w}=\text { quotient of } \mathbb{C}\left[B_{w}\right]
$$

- Affine Weyl group

$$
\tilde{w}=w \propto Q^{v}
$$

CLASSIFICATION: WEYL GROUPS (Q)

TH +M The list of irreducible Wal grows is:

$B_{n} \not A_{0} \ldots$

$G_{2} \neq 0$
$C_{n} \nrightarrow \cdots \rightarrow E_{8}$

$D_{n}>\infty \rightarrow$

COXETER GROUPS (\mathbb{R})
DEF A Coreter system (w, s) is a group W with presentation $W=\left\langle s_{1}, s_{2}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=i d\right\rangle$
S is the set of simple reftectoms mijf

- Brad group

$$
B_{w}=\pi_{1}\left(V^{\mathrm{rgg}} / w\right)
$$

- Hecke algebra

$$
H_{w}=\text { quotiont of } \mathbb{C}\left[B_{w}\right]
$$

- Affire Weyl group

CLASSIFICATION: COXETER GROUPS (\mathbb{R})

TH +M The list of finite irreducible Coxeter groups is: (Coxeter)

REF Coxeter, "The complete enumeration of finite groups of the form $r_{i}^{2}=\left(r_{i} r_{j}\right)^{k_{i}}=1$." 1935

COMPLEX Reflection Groups (©)
DEF A complex reflection grave is a gap $W \subseteq G L_{n}(C)$ generates by complex reflections.

CLASSIFICATION: COMPLEX REFLECTION GROUPS (C)

TH +M The list of finite irreducible complex reflection groups is:

$$
\begin{array}{cc}
\text { (Shophar, Tod } \ell) & \cdot G(m, p, n) \\
& \cdot G_{4} \\
& G_{5} \\
\vdots \\
& G_{37}=E_{8}
\end{array}
$$

Ex

G_{13}

(3)

$$
G_{25}
$$

REF Broué, Tale, Renquin,"On Complex reflection Groups and their Assoialtid Braid Groups." 1994 Brave, Male, Rouquier:" "Complex reflection gaps, brad gives, Hate algebras. 1998 Shepherd, Todd. "Finite Unitary Reflection Groups. 1953

INVARANT THEORY AND NUMEROLOGY
W acts on $\mathbb{C}^{n}=\operatorname{span}_{\mathbb{C}}\left\{x_{1}, \ldots, x_{n}\right\}$, hence on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
THM (Chevalley) Let $W \subseteq G L_{n}(\mathbb{C})$. Then
W is a complex reflection group iff $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{W}\left[f_{1}, \ldots, f_{n}\right]$

EX $G_{n} \cup \mathbb{C}^{n-1}$ has invariant polys power sum, elementary, homogeneous, but alweys deg $f_{i}=i+1$. Schur, monomial, forgotten, …

THE GOLD STANDARD
$\Phi(\mathbb{R} / \mathbb{C}$-UNIFORM definitions \& proofs for reflection groups. "does not appeal to the $Q / \mathbb{R} / C$-classification"

Ex $|w|=\prod_{i=1}^{n} d_{i}$
(i) $H_{i} \left\lvert\, b\left(C\left[x_{1}, \ldots, w_{n}\right]^{W}\right)=\prod_{i=1}^{n} \frac{1}{1-t^{T_{i}}}=\frac{1}{|w|} \sum_{w \in W} \frac{1}{\operatorname{dtt}(1-t w)}\right.$
(ii) multiply by $(1-t)^{n}: \prod_{i=1}^{n} \frac{1}{[d i d}=\frac{1}{|w|}(1+(1-t) *)$
(iii) set $t \rightarrow 1$

EXAMPLE I : NONCROSSING
 CATALAN COMBINATORICS

DEF The Coxeter-Catalan members are the integers

$$
C+(w)=\prod_{i=1}^{n} \frac{h+1+e_{i}}{d_{i}} .
$$

Ex $\quad \operatorname{Cat}(n)=\operatorname{Cat}\left(G_{n}\right)=\prod_{i=1}^{n-1} \frac{(n+1)+i}{i+1}$
\mathbb{R}-NONCROSSING PARTITIONS
DEF The noncrossing partition lattice is the interval $N C_{c}(\omega)=[e, c]_{T}$ in the oriented Coyly graph of (ω, T). Called absolute order, denoted \leq_{T} EX $N C_{(1, \ldots n)}\left(G_{n}\right) \cong N C(n) \operatorname{vian}_{(1,33)}$ cycles.

Non-crossing partitions for classical reflection groups ${ }^{1}$ Victor Reiner* Received 9 March 1995; revised 2 April 1996

REF Bessis. The dual braid monoid River. Noncrossing partitions for classical reflection groups.

R-NONCROSSNG PARTITIONS

$$
\frac{T H M}{\binom{\text { Reiner }}{\text { Bessis }}}\left|N C_{c}(w)\right|=\operatorname{Ca}+(W)=\prod_{i=1}^{n} \frac{h_{+1}^{\downarrow}+e_{i}^{\ell}}{d_{i}}
$$

Proof was NOT UNIFORM: combinatorial models + computer checks (classical types) (exceptional types)
ely Two Garetr-Ctalen objects
In paritiwlar, the number of closet
finite a cluster algebra of
was NOT UNIFORMLY proven to be counted by Cat C finite type was NOT UNIFORMLY proven to be counted by $\operatorname{Cat}(\omega)$.)

Type vs. Parameter

R-TYPE HISTORY OF NON CROSSING PARTITIONS
1971 - Kreweras. Sur les partitions non croisées d'un cycle.
1993-Montenegro. The fixed point ren-crossing partition lattices
1995 - Reiner. Non-crossing partitions for classical reflection groups
1997 - Birman, ko, lee. A new approach to the word problem in the braid groups
$\begin{cases}2002 \text { - Brady, watt. } & K(\pi, 1) \text { 's for Actin groups of finite type } \\ 2002 \text { - Picantin. Explicit presentations for the dual braid manoids } \\ 2003 \text { - Bersis. } & \text { The dual braid monoid }\end{cases}$

R-PARAMETER HISTORY OF NON CROSSING PARTITIONS
1971 - Kreweras. Sur les partitions non croisées d'un cycle.
1980-Edelman. Chain enumeration and non-crossing partitions.
2007-Armstrang. Generalized nencrossing partitions and combinatorics of Coxater groups

Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups

Drew Armstrong
\qquad
\qquad
14853
Current address: School of Mathematics, University of Minnesota, Minneapolis,
Minnesota 55455
Minnesota 55455
E-mail address: armstron@math.umn.edu

BUT... $\prod_{i=1}^{n} \frac{p+e_{i}^{t}}{d_{i}}$ is ALWAYS an integer for $\operatorname{gcd}(\rho, h)=1$.
PROBLEM (D. Armstrong, ~2012):
WHAT NC OBJECT IS COUNTED BY $\prod_{i=1}^{n} \frac{p+e_{i}}{d_{i}}$???
fractional multichains? support conditions? subwords?

THE BIG PROBLEMS IN CATALAND (cina 2022)
(1) uniform enumeration of $N C_{c}(\omega)$
(2) construction of rational noncrossing objects
(3) bijection betuseen NC \& NN

Noncrossing braid varieties

Theorem (Galashin, Lam, Trinh, W. (Uniform))
Fix p coprime to h. Then

$$
\left|R_{\mathbf{c}^{p}}\left(\mathbb{F}_{q}\right)\right|=(q-1)^{r} \prod_{i=1}^{r} \frac{\left[p+e_{i}\right]_{q}}{\left[d_{i}\right]_{q}} .
$$

Theorem (Galashin, Lam, Trinh, W. (uniform))
The Deodhar decomposition of $R_{\mathbf{c}^{h+1}}\left(\mathbb{F}_{q}\right)$ "gives" noncrossing partitions.
Easily generalizes to Armstrong's Fuss-Catalan noncrossing partitions.
So the maximal distinguished subwords of \mathbf{c}^{p} are the long-desired construction of rational noncrossing partitions.
(1) What the hecke?

PROOF METHOD

Gordon, Griffith (iii) Connection it rational Cheredn'k algebra
Stump, Thomas, w. (iv) noncrossing combinatori's \} why the Fuss?

$$
\sum_{\chi \in \operatorname{Irr}(W)} q^{-\frac{p}{n} c(\chi)} \operatorname{Feg}_{\chi}\left(e^{\frac{2 \pi i t}{h}}\right) \operatorname{Deg}_{\chi}(q)=\sum_{\chi \in \operatorname{Irr}(W)} q^{-\frac{p}{n} c(\chi)} \operatorname{Feg}_{\chi}(q) \operatorname{Deg}_{\chi}\left(e^{\frac{2 \pi i v}{h}}\right),
$$

REF Gordon, Griffith, Catalan numbers for complex reflection groups.
(2)

WHY THE FUSS?
THM The subwords of $c \omega_{0}^{m}(c)$ that start ate
$5(23){ }^{\omega_{0}}(12) t$ (Svamp,themev,w.) with n stays and end at $w_{0}^{0}=\sum_{e}^{s i n} s t$ ts are in bijection with $N C_{c}^{m}(w)$. $\quad t(13) \quad(13) \uparrow_{s}$

Rational noncrossing PARKING functows ${ }^{\text {m }}$

Theorem (Galashin, Lam, Trinh, W. (uniform))

$$
\left|\bigsqcup_{w \in W} R_{\mathrm{c}^{p}}^{(w)}\left(\mathbb{F}_{q}\right)\right|=(q-1)^{r}[p]_{q}^{r}
$$

Theorem (Galashin, Lam, Trinh, W. (uniform))
The Deodhar decomposition of $\bigsqcup_{w \in W} R_{c^{h+1}}^{(w)}\left(\mathbb{F}_{q}\right)$ gives Armstrong-Rhoades-Reiner's noncrossing parking functions.

Parking functoons ${ }^{m}$

v	s_{1}	s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	π_{1}
e	(12)	(23)	s_{1}	s_{2}	s_{1}	S_{2}	s_{1}	s_{2}	(123)
e	s_{1}	(13)	s_{1}	s_{2}	s_{1}	(12)	s_{1}	S_{2}	(13)
e	s_{1}	s_{2}	(23)	s_{2}	s_{1}	s_{2}	(13)	s_{2}	(23)
e	(12)	s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	s_{1}	(23)	(12)
e	s_{1}	s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	(12)	(23)	(e)
s_{1}	s_{1}	(13)	$(\ddot{12})$	s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	(13)
s_{1}	s_{1}	s_{2}	(23)	s_{2}	s_{1}	s_{2}	(13)	s_{2}	(23)
s_{1}	s_{1}	s_{2}	s_{1}	(12)	s_{1}	s_{2}	s_{1}	(23)	e
s_{2}	(12)	s_{2}	s_{1}	s_{2}	(23)	s_{2}	s_{1}	s_{2}	(12)
s_{2}	s_{1}	(13)	s_{1}	s_{2}	s_{1}	(12)	s_{1}	s_{2}	(13)
s_{2}	s_{1}	s_{2}	s_{1}	s_{2}	s_{1}	(23)	(13)	s_{2}	e
$s_{2} s_{1}$	s_{1}	s_{2}	(23)	(13)	s_{1}	s_{2}	s_{1}	s_{2}	(23)
$s_{2} s_{1}$	s_{1}	s_{2}	s_{1}	(12)	s_{1}	s_{2}	s_{1}	(23)	e
$s_{1} s_{2}$	(12)	s_{2}	s_{1}	s_{2}	(23)	s_{2}	s_{1}	s_{2}	(12)
$s_{1} s_{2}$	s_{1}	s_{2}	s_{1}	s_{2}	(13)	$(\ddot{12})$	s_{1}	s_{2}	e
$s_{1} s_{2} s_{1}$	s_{1}	s_{2}	s_{1}	$(\ddot{12})$	$(\ddot{23})$	s_{2}	s_{1}	s_{2}	e

Example 2 : Affine braid varieties

Affine symmetric group

Theorem (Opdam)
Let $[k]_{q}=\frac{(q-1)^{2}}{q} \frac{q^{k}-q^{-k}}{q-q^{-1}}$. For $\lambda \in Q^{+}$,

$$
\operatorname{tr}\left(T_{t_{\lambda_{-}}} T_{t_{\lambda_{+}}}^{-1}\right)=q^{\left(\ell\left(t_{\lambda_{-}}\right)-\ell\left(t_{\lambda_{+}}\right)\right) / 2} \sum_{\left(a_{\alpha}\right) \in K(\lambda)} \prod_{\substack{\alpha \in \Phi^{+} \\ a_{\alpha}>0}}\left[a_{\alpha}\right]_{q}
$$

Theorem (Galashin, Lam, W.)
Fix the extended affine Weyl group \widehat{S}_{n}, and let $v=t_{(m-1) \lambda_{1}}$ and $w=t_{(m(n-1)+1) \lambda_{n-1}}$. Then the number of \mathbb{F}_{q}-points in the braid variety $R_{v, w}\left(\mathbb{F}_{q}\right)$ is given by

$$
\left|R_{v, w}\left(\mathbb{F}_{q}\right)\right|=(q-1)^{2(n-1)}\left(\frac{q^{m(n-1)+1}-1}{q-1}\right)^{n-2}
$$

Furve Directions

$$
S-2 a x-!+m!
$$

Bijections?

Very hard, general open problem in general:

Problem

Find bijections between maximal distinguished subwords and existing combinatorial objects. Special cases:

- noncrossing vs. nonnesting;
- Galashin and Lam's positroid braid varieties and rational Dyck paths;
- affine braid variety and parking functions;
- etc.

Mixed Hodge?

Even harder open problem in general:
Problem
Compute the mixed Hodge decomposition of $R_{\mathbf{c}^{p}}(\mathbb{C})$.

Expect to get q, t-Catalan numbers, q, t-parking numbers, etc.

```
(1) nomutum
```



```
M,
**
```


Graphical models

Problem
Find reasonable graphical models for rational noncrossing Catalan objects.

Periodic elements?

There might be a uniform formula for braid varieties built from periodic elements, generalizing the usual Coxeter-Catalan numbers. What is the combinatorics?

Example

For type D_{4} with $d=4$ and $\mathbf{w}=\mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{3} \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{4}$, we have that

$$
\left|R_{e, \mathbf{w}^{3}}\left(\mathbb{F}_{q}\right)\right|=q^{-18}(q-1)^{4}\left(1+q^{2}+3 q^{4}+4 q^{6}+4 q^{8}+3 q^{10}+q^{12}+q^{14}\right)
$$

At $q=1$ and for p odd, we appear to have

$$
\lim _{q \rightarrow 1}(q-1)^{-4}\left|R_{e, \mathbf{w}^{p}}\left(\mathbb{F}_{q}\right)\right|=\frac{((p+1)(p+3))^{2}}{32}
$$

Note that the order d of w is 4, and that the eigenvalues of w in the ref rep are i^{1} and i^{3} (each with multiplicity 2).

Complex reflection groups?

Theorem (W. Miller (undergraduate!))

Let W be a spetsial imprimitive complex reflection group and p coprime to h. Then (up to a power of q)

$$
\operatorname{tr}\left(T_{\mathbf{c}^{p}}\right)=(q-1)^{r} \prod_{i=1}^{r} \frac{\left[p+e_{i}\left(V^{p}\right)\right]}{\left[d_{i}\right]}
$$

where the $e_{i}\left(V^{p}\right)$ are the fake degrees of the p-th Galois twist of the reflection representation and the trace is taken in the Hecke algebra H_{W}.

Example

The complex reflection group G_{4} has rank $r=2$, Coxeter number $h=6$. Its reflection representation has fake degrees 3 and 5 . We compute using GAP3 that

$$
\operatorname{tr}\left(T_{\mathbf{c}^{7}}\right)=(q-1)^{2}\left(q^{12}+q^{8}+q^{6}+q^{4}+1\right)=(q-1)^{2} \frac{[7+3][7+5]}{[4][6]}
$$

Complex reflection groups?

The Deodhar decomposition gives a combinatorial model of braid varieties for general Coxeter groups-but we lose the obvious notion of distinguished for complex reflection groups.

Problem

Find a combinatorial description of the Deodhar decomposition for spetsial complex reflection groups.

For the case $p=h+1$, this should recover noncrossing partitions.

WHY THE FUSS?
Ex $\begin{aligned} & W=\sigma_{3}, p=4 \quad \begin{array}{l}\text { elements of } D\left(c^{4}, e\right) \text { with } 2 \\ c \\ c\end{array}=s t a y s \\ & \text { start } e \text { end at } e, \text { no odd colors }\end{aligned}$

(v)) st(2)tst

$$
\frac{1}{(12)(3) s t s t s t}
$$

