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The Dubrovin Connection and the WDVV equations

Let ◦ be an associative/commutative product with
η(a ◦ b, c) = η(a, b ◦ c) .

Dubrovin connection/Lax pair:

(λ)∇XY = ∇XY + λX ◦ Y flat for all λ .

The WDVV equations are the conditions for the vanishing of the
curvature and torsion of this connection.

In flat coordinates for ∇

∂i ◦ ∂j = Fijrη
rs∂s .

and F satisfies the WDVV-equations.
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Generalized Legendre Transformations

Assume we have a unity element e, so e ◦ X = X . Let δ be an
invertible vector field (so there exists δ−1 so that δ−1 ◦ δ = e) .

Conjugate the Dubrovin connection:

(λ)∇̃XY = δ−1 ◦
(
(λ)∇X

)
(δ ◦ Y )

Question:

When does (λ)∇̃ have the same properties as (λ)∇?
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Definition

An invertible vector field δ is a generalised Legendre field if:

X ◦ ∇Y δ = Y ◦ ∇X δ .

(This is equivalent to ∇X δ = X ◦ ∇eδ, so definition not
over-determined) The field δ is a Legendre field if ∇X δ = 0 .

With this (λ)∇̃ has the same properties as (λ)∇ and hence if one
has zero curvature (≡ WDVV) then the other has zero curvature

Hence:

F
δ←→ LδF
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From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:

(a) identity field e such that e ◦ X = X and ∇e = 0 ;

(b) Euler field LE◦ = ◦ .

Interchange roles - almost-duality:

(c) X ⋆ Y = E−1 ◦ X ◦ Y where E−1 ◦ E = e;

(d) < X ,Y >= (X ◦ Y ,E−1) .

Dubrovin [2004]

(i) <,> flat (intersection form);

(ii) ⋆ associative, commutative with identity E (but in general
new unity field not constant <,>∇E ̸= 0);

(iii) < X ⋆ Y ,Z >=< X ,Y ⋆ Z > ;

(iv) There exists a dual prepotential F ⋆ which satisfies WDVV in
the flat coordinates of <,> . Thus we get a map F ←→ F ⋆ .
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Interplay between Legendre transformations and
almost-duality

Let δ be a Legendre field. Then the following diagram commutes:

F
δ←→ LδFxy xy

F ⋆ E◦δ←→ (LE◦δ)F
⋆ = (LδF )⋆

In particular, E ◦ δ is a generalized Legendre field.

In certain cases (which will hold for the remainder of the talk), this
is a Legendre field (this result depends on the spectrum of E ).
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Examples in 3 dimensions

F =


1
6u

3
2 + u1u2u3

+1
2u

3
1u3 + u23 log u3

 δ←→ LδF =


1
2 t

2
1 t3 +

1
4 t1t

2
2

− 1
96 t

4
2 + t2e

t3


xy xy

F ⋆ =
∑

α∈U hαα(z)
2 logα(z)

E◦δ←→ (LδF )⋆ =


cubic terms

+
∑

Li3[e
α(z)]
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Examples in 3 dimensions

{
B3 orbit space
[Arsie et al .]

}
δ←→


Extended affine Weyl

orbit space C3/A
(1)
2

[Dubrovin & Zhang ]


xy xy

{ ∨
−system

[Veselov et al .]

}
E◦δ←→



Trigonometric
∨

system
GW generating function

for resolution of

 Y
↓

C2/Z3


[IS & Riley , Bryan & Gholampour ]


All generalizes to An,Dn. Parts exists for E6,7,8 .
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∨
-systems and Hyperplanes

where:
Green vectors: roots of An ;
Red vectors: extension into perpendicular of W (w1) .
The Legendre field is the normal to the plane containing in
An-roots.
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Hurwitz spaces: (λ, ω)

Landau Ginzburg superpotential:

λ(p) = p +
t2

p − t1
, ω = dp .

Crucial ingredient: ω primitive form/primary differential
Direct computation using:

cijk =
∑

res

{
∂iλ∂jλ∂kλ

λ′ ω

}
ηij =

∑
res

{
∂iλ∂jλ

λ′ ω

}
gives

F =
1

2
(t1)2t2 +

1

2
(t2)2 log t2 .

Recent work of Arsie et al. gives the manifold as
(
C2/B2

)
− .
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Legendre field: δ = ∂2

Legendre transformation = change in primary differential ω .

dp̃ = ∂2λ dp

So new LG potential is

λ(p̃) = e p̃ + t1 + t2e−p̃ , with ω = dp̃ .

This gives:

LδF =
1

2
(t1)2t2 + et

2
.

This lives on the extended affine Weyl orbit space C2/A
(1)
1 .

All generalizes to Cn/A
(k)
n−1 .
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From EAW to duVal


Extended affine
Weyl orbit space

Cn/A
(k)
n−1

 almost←→
duality


GW generating function F(n−k,k)

for resolution of

 Y
↓

C2/Zn




• GW invariants lie in a ring C[τ1, τ2] . This involves an
extension of the original work of Bryan and Gholampour
(where τ1 = τ2) ;

• Using ideas of [DSZZ] the result extends to binary dihedral
duVal singularities, via a Z2-invariant rational
LG-superpotential ;

• For E6,7,8 objects on each side known: conjecturally true.
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