From Extended Affine Weyl Groups to duVal singularities via hyperplane arrangements

Ian Strachan
University of Glasgow

ICMS, 13th March 2023

The Dubrovin Connection and the WDVV equations

Let \circ be an associative/commutative product with $\eta(a \circ b, c)=\eta(a, b \circ c)$.

Dubrovin connection/Lax pair:

${ }^{(\lambda)} \nabla_{X} Y=\nabla_{X} Y+\lambda X \circ Y$ flat for all λ.
The WDVV equations are the conditions for the vanishing of the
curvature and torsion of this connection

In flat coordinates for ∇

$$
\partial_{i} \circ \partial_{j}=F_{i j r} \eta^{r s} \partial_{s}
$$

and F satisfies the WDVV-equations.

The Dubrovin Connection and the WDVV equations

Let \circ be an associative/commutative product with $\eta(a \circ b, c)=\eta(a, b \circ c)$.

Dubrovin connection/Lax pair:

${ }^{(\lambda)} \nabla_{X} Y=\nabla_{X} Y+\lambda X \circ Y$ flat for all λ.
The WDVV equations are the conditions for the vanishing of the
curvature and torsion of this connection.

In flat coordinates for ∇

$$
\partial_{i} \circ \partial_{j}=F_{i j r} \eta^{r s} \partial_{s} .
$$

and F satisfies the WDVV-equations.

The Dubrovin Connection and the WDVV equations

Let \circ be an associative/commutative product with $\eta(a \circ b, c)=\eta(a, b \circ c)$.

Dubrovin connection/Lax pair:

${ }^{(\lambda)} \nabla_{X} Y=\nabla_{X} Y+\lambda X \circ Y$ flat for all λ.
The WDVV equations are the conditions for the vanishing of the curvature and torsion of this connection.

In flat coordinates for ∇

$$
\partial_{i} \circ \partial_{j}=F_{i j r} \eta^{r s} \partial_{s}
$$

and F satisfies the WDVV-equations.

Generalized Legendre Transformations

Assume we have a unity element e, so $e \circ X=X$. Let δ be an invertible vector field (so there exists δ^{-1} so that $\delta^{-1} \circ \delta=e$). Conjugate the Dubrovin connection:

[^0]
Generalized Legendre Transformations

Assume we have a unity element e, so $e \circ X=X$. Let δ be an invertible vector field (so there exists δ^{-1} so that $\delta^{-1} \circ \delta=e$). Conjugate the Dubrovin connection:

$$
{ }^{(\lambda)} \widetilde{\nabla}_{X} Y=\delta^{-1} \circ\left({ }^{(\lambda)} \nabla_{X}\right)(\delta \circ Y)
$$

Question:

When does ${ }^{(\lambda)} \widetilde{\nabla}$ have the same properties as ${ }^{(\lambda)} \nabla$?

Definition

An invertible vector field δ is a generalised Legendre field if:

$$
X \circ \nabla_{Y} \delta=Y \circ \nabla_{X} \delta
$$

(This is equivalent to $\nabla \times \delta=X \circ \nabla_{e} \delta$, so definition not over-determined) The field δ is a Legendre field if $\nabla x \delta=0$.

With this ${ }^{(\lambda)} \widetilde{\nabla}$ has the same properties as ${ }^{(\lambda)} \nabla$ and hence if one has zero curvature ($\equiv \mathrm{WDVV}$) then the other has zero curvature Hence:

$$
F \stackrel{\delta}{\longleftrightarrow} \mathcal{L}_{\delta} F
$$

Definition

An invertible vector field δ is a generalised Legendre field if:

$$
X \circ \nabla_{Y} \delta=Y \circ \nabla_{X} \delta
$$

(This is equivalent to $\nabla_{X} \delta=X \circ \nabla_{e} \delta$, so definition not over-determined) The field δ is a Legendre field if $\nabla \times \delta=0$.

With this ${ }^{(\lambda)} \widetilde{\nabla}$ has the same properties as ${ }^{(\lambda)} \nabla$ and hence if one has zero curvature ($\equiv \mathrm{WDVV}$) then the other has zero curvature Hence:

$$
F \stackrel{\delta}{\longleftrightarrow} \mathcal{L}_{\delta} F
$$

Definition

An invertible vector field δ is a generalised Legendre field if:

$$
X \circ \nabla_{Y} \delta=Y \circ \nabla_{X} \delta
$$

(This is equivalent to $\nabla_{X} \delta=X \circ \nabla_{e} \delta$, so definition not over-determined) The field δ is a Legendre field if $\nabla_{X} \delta=0$.

With this ${ }^{(\lambda)} \widetilde{\nabla}$ has the same properties as ${ }^{(\lambda)} \nabla$ and hence if one has zero curvature ($\equiv \mathrm{WDVV}$) then the other has zero curvature Hence:

$$
F \stackrel{\delta}{\longleftrightarrow} \mathcal{L}_{\delta} F
$$

From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(iv) There exists a dual prepotential F^{*} which satisfies WDVV in the flat conrdinates of $<>$ Thus we oet a man $F \longleftrightarrow F^{\star}$

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E} \circ=0$.

Interchange roles - almost-duality:

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E}{ }^{\circ}=0$.

Interchange roles - almost-duality:

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E}{ }^{\circ}=0$.

Interchange roles - almost-duality:

From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E} \circ=0$.

Interchange roles - almost-duality:
(c) $X \star Y=E^{-1} \circ X \circ Y \quad$ where $E^{-1} \circ E=e$;
(d) $<X, Y\rangle=\left(X \circ Y, E^{-1}\right)$
flat (intersection form);
(iv) There exists a dual prepotential F^{*} which satisfies WDVV in the flat coordinates of

From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E^{\circ}}=0$.

Interchange roles - almost-duality:
(c) $X \star Y=E^{-1} \circ X \circ Y \quad$ where $E^{-1} \circ E=e$;
(d) $\langle X, Y\rangle=\left(X \circ Y, E^{-1}\right)$.

Dubrovin [2004]

> flat (intersection form);
> * associative, commutative with identity E (but in general new unity field not constant $<,>\nabla E \neq 0$)
> (iv) There exists a dual prepotential F^{*} which satisfies WDVV in the flat coordinates of $<,>$. Thus we get a map $F \longleftrightarrow F^{\star}$

From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E}{ }^{\circ}=0$.

Interchange roles - almost-duality:
(c) $X \star Y=E^{-1} \circ X \circ Y \quad$ where $E^{-1} \circ E=e$;
(d) $\langle X, Y\rangle=\left(X \circ Y, E^{-1}\right)$.

Dubrovin [2004]

(i) $<,>$ flat (intersection form);
(ii) \star associative, commutative with identity E (but in general new unity field not constant $<,>\nabla E \neq 0$);
(iii) $<X \star Y, Z>=<X, Y \star Z>$;

There exists a dual prepotential F^{\star} which satisfies WDVV in the flat coordinates of

From WDVV to Frobenius Manifolds

Frobenius Manifolds - extra structure:
(a) identity field e such that $e \circ X=X$ and $\nabla e=0$;
(b) Euler field $\mathcal{L}_{E}{ }^{\circ}=0$.

Interchange roles - almost-duality:
(c) $X \star Y=E^{-1} \circ X \circ Y \quad$ where $E^{-1} \circ E=e$;
(d) $\langle X, Y\rangle=\left(X \circ Y, E^{-1}\right)$.

Dubrovin [2004]

(i) $<,>$ flat (intersection form);
(ii) \star associative, commutative with identity E (but in general new unity field not constant $<,>\nabla E \neq 0$);
(iii) $<X \star Y, Z>=<X, Y \star Z>$;
(iv) There exists a dual prepotential F^{\star} which satisfies WDVV in the flat coordinates of $<,>$. Thus we get a map $F \longleftrightarrow F^{\star}$.

Interplay between Legendre transformations and almost-duality

Let δ be a Legendre field. Then the following diagram commutes:

$$
\begin{array}{ccc}
F & \stackrel{\delta}{\longleftrightarrow} & \mathcal{L}_{\delta} F \\
\uparrow & & \downarrow \\
F^{\star} & \stackrel{E \circ \delta}{\longleftrightarrow} & \left(\mathcal{L}_{E \circ \delta}\right) F^{\star}=\left(\mathcal{L}_{\delta} F\right)^{\star}
\end{array}
$$

In particular, $E \circ \delta$ is a generalized Legendre field.
In certain cases (which will hold for the remainder of the talk), this
is a Legendre field (this result depends on the spectrum of E)

Interplay between Legendre transformations and almost-duality

Let δ be a Legendre field. Then the following diagram commutes:

$$
\begin{array}{ccc}
F & \stackrel{\delta}{\longleftrightarrow} & \mathcal{L}_{\delta} F \\
\uparrow & & \downarrow \\
F^{\star} & \stackrel{E \circ \delta}{\longleftrightarrow} & \left(\mathcal{L}_{E \circ \delta}\right) F^{\star}=\left(\mathcal{L}_{\delta} F\right)^{\star}
\end{array}
$$

In particular, $E \circ \delta$ is a generalized Legendre field.
In certain cases (which will hold for the remainder of the talk), this is a Legendre field (this result depends on the spectrum of E).

Examples in 3 dimensions

$$
F=\left\{\begin{array}{c}
\frac{1}{6} u_{2}^{3}+u_{1} u_{2} u_{3} \\
+\frac{1}{2} u_{1}^{3} u_{3}+u_{3}^{2} \log u_{3}
\end{array}\right\}
$$

Examples in 3 dimensions

$$
F=\left\{\begin{array}{c}
\frac{1}{6} u_{2}^{3}+u_{1} u_{2} u_{3} \\
+\frac{1}{2} u_{1}^{3} u_{3}+u_{3}^{2} \log u_{3}
\end{array}\right\} \stackrel{\delta}{\longleftrightarrow} \quad \mathcal{L}_{\delta} F=\left\{\begin{array}{c}
\frac{1}{2} t_{1}^{2} t_{3}+\frac{1}{4} t_{1} t_{2}^{2} \\
-\frac{1}{96} t_{2}^{4}+t_{2} e^{t_{3}}
\end{array}\right\}
$$

Examples in 3 dimensions

$$
\begin{gathered}
F=\left\{\begin{array}{c}
\frac{1}{6} u_{2}^{3}+u_{1} u_{2} u_{3} \\
+\frac{1}{2} u_{1}^{3} u_{3}+u_{3}^{2} \log u_{3}
\end{array}\right\} \stackrel{\delta}{\longleftrightarrow} \quad \mathcal{L}_{\delta} F=\left\{\begin{array}{c}
\frac{1}{2} t_{1}^{2} t_{3}+\frac{1}{4} t_{1} t_{2}^{2} \\
-\frac{1}{96} t_{2}^{4}+t_{2} e^{t_{3}}
\end{array}\right\} \\
\downarrow
\end{gathered}
$$

$$
F^{\star}=\sum_{\alpha \in \mathcal{U}} h_{\alpha} \alpha(z)^{2} \log \alpha(z)
$$

Examples in 3 dimensions

$$
\begin{gathered}
F=\left\{\begin{array}{c}
\frac{1}{6} u_{2}^{3}+u_{1} u_{2} u_{3} \\
+\frac{1}{2} u_{1}^{3} u_{3}+u_{3}^{2} \log u_{3}
\end{array}\right\} \stackrel{\delta}{\longleftrightarrow} \quad \mathcal{L}_{\delta} F=\left\{\begin{array}{c}
\frac{1}{2} t_{1}^{2} t_{3}+\frac{1}{4} t_{1} t_{2}^{2} \\
-\frac{1}{96} t_{2}^{4}+t_{2} e^{t_{3}}
\end{array}\right\} \\
\uparrow \\
\uparrow
\end{gathered} \begin{gathered}
\uparrow \\
F^{\star}=\sum_{\alpha \in \mathcal{U}} h_{\alpha} \alpha(z)^{2} \log \alpha(z) \stackrel{E \circ \delta}{\longleftrightarrow}\left(\mathcal{L}_{\delta} F\right)^{\star}=\left\{\begin{array}{c}
\text { cubic terms } \\
+\sum L L_{3}\left[e^{\alpha(z)}\right]
\end{array}\right\}
\end{gathered}
$$

Examples in 3 dimensions

$\left\{\begin{array}{c}\mathrm{B}_{3} \text { orbit space } \\ \text { [Arsie et al.] }\end{array}\right\}$

Extended affine Weyl orbit space $\mathbb{C}^{3} / A_{2}^{(1)}$ [Dubrovin \& Zhang]

Examples in 3 dimensions

$\left\{\begin{array}{c}\text { Extended affine Weyl } \\ \text { orbit space } \mathbb{C}^{3} / A_{2}^{1)} \\ {[\text { Dubrovin \& Zhang }]}\end{array}\right\}$

Examples in 3 dimensions

$\left\{\begin{array}{c}\mathrm{B}_{3} \text { orbit space } \\ {[\text { Arsie et al. }]}\end{array}\right\} \stackrel{\delta}{\longleftrightarrow}$
$\left\{\begin{array}{c}\text { Extended affine Weyl } \\ \text { orbit space } \mathbb{C}^{3} / A_{2}^{11} \\ {[\text { Dubrovin \& Zhang }]}\end{array}\right\}$

\uparrow
$\left\{\begin{array}{c}\text { V-system } \\ {[\text { Veselov et al. }]}\end{array}\right\}$

Examples in 3 dimensions

$\left\{\begin{array}{c}\mathrm{B}_{3} \text { orbit space } \\ {[\text { Arsie et al. }]}\end{array}\right\} \stackrel{\delta}{\longleftrightarrow}$
$\left\{\begin{array}{c}\text { Extended affine Weyl } \\ \text { orbit space } \mathbb{C}^{3} / A_{2}^{1)} \\ {[\text { Dubrovin \& Zhang }]}\end{array}\right\}$

$\left\{\begin{array}{c}V-\text { system } \\ {[\text { Veselov et al. }]}\end{array}\right\} \stackrel{\text { E०§ }}{\longleftrightarrow}\{$
Trigonometric \bigvee system
GW generating function
for resolution of

[IS \& Riley, Bryan \& Gholampour]
All generalizes to A_{n}, D_{n}. Parts exists for $E_{6,7,8}$

Examples in 3 dimensions

$$
\begin{gathered}
\begin{array}{c}
\left.\begin{array}{c}
\text { B3 orbit space } \\
\text { [Arsie et al. }]
\end{array}\right\}
\end{array} \stackrel{\stackrel{\delta}{\longleftrightarrow}}{1} \\
\left\{\begin{array}{c}
V-\text { system } \\
{[\text { Veselov et al. }]}
\end{array}\right\} \stackrel{\text { Eos }}{\longleftrightarrow}
\end{gathered}
$$

$$
\left\{\begin{array}{c}
\text { Extended affine Weyl } \\
\text { orbit space } \mathbb{C}^{3} / A_{2}^{(1)} \\
{[\text { Dubrovin \& Zhang }]}
\end{array}\right\}
$$

$$
I
$$

All generalizes to A_{n}, D_{n}. Parts exists for $E_{6,7,8}$.

Examples in 3 dimensions

$\left\{\begin{array}{c}\mathrm{B}_{3} \text { orbit space } \\ {[\text { Arsie et al. }]}\end{array}\right\} \stackrel{\delta}{\longleftrightarrow}$
$\left\{\begin{array}{c}\text { Extended affine Weyl } \\ \text { orbit space } \mathbb{C}^{3} / A_{2}^{11} \\ {[\text { Dubrovin \& Zhang }]}\end{array}\right\}$

$$
\uparrow
$$

$$
\left\{\begin{array}{c}
\text { V-system } \\
{[\text { Veselov et al. }]}
\end{array}\right\} \stackrel{\text { Eod }}{\longleftrightarrow}
$$

$$
\left\{\begin{array}{c}
\text { Trigonometric } V \text { system } \\
\text { GW generating function } \\
\text { for resolution of }\left(\begin{array}{c}
Y \\
\downarrow \\
\\
\mathbb{C}^{2} / \mathbb{Z}_{3}
\end{array}\right) \\
\text { [IS \& Riley, Bryan \& Gholampour] }
\end{array}\right.
$$

All generalizes to A_{n}, D_{n}. Parts exists for $E_{6,7,8}$.

V-systems and Hyperplanes

where:
Green vectors: roots of A_{n};
Red vectors: extension into perpendicular of $W\left(w_{1}\right)$.
The Legendre field is the normal to the plane containing in
A_{n}-roots.

V-systems and Hyperplanes

where:
Green vectors: roots of A_{n};
Red vectors: extension into perpendicular of $W\left(w_{1}\right)$.
The Legendre field is the normal to the plane containing in
A_{n}-roots.

V-systems and Hyperplanes

where:
Green vectors: roots of A_{n};
Red vectors: extension into perpendicular of $W\left(w_{1}\right)$.
The Legendre field is the normal to the plane containing in A_{n}-roots.

Hurwitz spaces: (λ, ω)

Landau Ginzburg superpotential:

$$
\lambda(p)=p+\frac{t^{2}}{p-t^{1}}, \quad \omega=d p
$$

Crucial ingredient: ω primitive form/primary differential Direct computation using:

$$
\begin{aligned}
c_{i j k} & =\sum \operatorname{res}\left\{\frac{\partial_{i} \lambda \partial_{j} \lambda \partial_{k} \lambda}{\lambda^{\prime}} \omega\right\} \\
\eta_{i j} & =\sum \operatorname{res}\left\{\frac{\partial_{i} \lambda \partial_{j} \lambda}{\lambda^{\prime}} \omega\right\}
\end{aligned}
$$

gives

$$
F=\frac{1}{2}\left(t^{1}\right)^{2} t^{2}+\frac{1}{2}\left(t^{2}\right)^{2} \log t^{2}
$$

Recent work of Arsie et al. gives the manifold as $\left(\mathbb{C}^{2} / B_{2}\right)_{-}$.

Legendre field: $\delta=\partial_{2}$
Legendre transformation $=$ change in primary differential ω.

$$
d \tilde{p}=\partial_{2} \lambda d p
$$

So new LG potential is

$$
\lambda(\tilde{p})=e^{\tilde{p}}+t^{1}+t^{2} e^{-\tilde{p}}, \quad \text { with } \omega=d \tilde{p}
$$

This gives:

$$
\mathcal{L}_{\delta} F=\frac{1}{2}\left(t^{1}\right)^{2} t^{2}+e^{t^{2}}
$$

This lives on the extended affine Weyl orbit space $\mathbb{C}^{2} / A_{1}^{(1)}$.
All generalizes to $\mathbb{C}^{n} / A_{n-1}^{(k)}$.
$\left\{\begin{array}{c}\text { Extended affine } \\ \text { Weyl orbit space } \\ \mathbb{C}^{n} / A_{n-1}^{(k)}\end{array}\right\} \underset{\text { duality }}{\substack{\text { almost }}}\left\{\begin{array}{c}G W \text { generating function } F_{(n-k, k)} \\ \text { for resolution of }\left(\begin{array}{c}Y \\ \downarrow \\ \mathbb{C}^{2} / \mathbb{Z}_{n}\end{array}\right)\end{array}\right\}$

- GW invariants lie in a ring $\mathbb{C}\left[\tau_{1}, \tau_{2}\right]$. This involves an extension of the original work of Bryan and Gholampour (where $\tau_{1}=\tau_{2}$)
- Using ideas of [DSZZ] the result extends to binary dihedral duVal singularities, via a \mathbb{Z}_{2}-invariant rational LG-superpotential
$\left\{\begin{array}{c}\text { Extended affine } \\ \text { Weyl orbit space } \\ \mathbb{C}^{n} / A_{n-1}^{(k)}\end{array}\right\} \underset{\text { duality }}{\substack{\text { almost }}}\left\{\begin{array}{c}G W \text { generating function } F_{(n-k, k)} \\ \text { for resolution of }\left(\begin{array}{c}Y \\ \downarrow \\ \mathbb{C}^{2} / \mathbb{Z}_{n}\end{array}\right)\end{array}\right.$
- GW invariants lie in a ring $\mathbb{C}\left[\tau_{1}, \tau_{2}\right]$. This involves an extension of the original work of Bryan and Gholampour (where $\tau_{1}=\tau_{2}$);
- Using ideas of [DSZZ] the result extends to binary dihedral
duVal singularities, via a \mathbb{Z}_{2}-invariant rational
LG-superpotential ;
$\left\{\begin{array}{c}\text { Extended affine } \\ \text { Weyl orbit space } \\ \mathbb{C}^{n} / A_{n-1}^{(k)}\end{array}\right\} \underset{\text { duality }}{\substack{\text { almost }}}\left\{\begin{array}{c}G W \text { generating function } F_{(n-k, k)} \\ \text { for resolution of }\left(\begin{array}{c}Y \\ \downarrow \\ \mathbb{C}^{2} / \mathbb{Z}_{n}\end{array}\right)\end{array}\right\}$
- GW invariants lie in a ring $\mathbb{C}\left[\tau_{1}, \tau_{2}\right]$. This involves an extension of the original work of Bryan and Gholampour (where $\tau_{1}=\tau_{2}$);
- Using ideas of [DSZZ] the result extends to binary dihedral duVal singularities, via a \mathbb{Z}_{2}-invariant rational LG-superpotential ;
- For $E_{6,7,8}$ objects on each side known: conjecturally true.

$$
\left\{\begin{array}{c}
\text { Extended affine } \\
\text { Weyl orbit space } \\
\mathbb{C}^{n} / A_{n-1}^{(k)}
\end{array}\right\} \underset{\text { duality }}{\substack{\text { almost }}}\left\{\begin{array}{c}
G W \text { generating function } F_{(n-k, k)} \\
\text { for resolution of }\left(\begin{array}{c}
Y \\
\downarrow \\
\mathbb{C}^{2} / \mathbb{Z}_{n}
\end{array}\right)
\end{array}\right.
$$

- GW invariants lie in a ring $\mathbb{C}\left[\tau_{1}, \tau_{2}\right]$. This involves an extension of the original work of Bryan and Gholampour (where $\tau_{1}=\tau_{2}$);
- Using ideas of [DSZZ] the result extends to binary dihedral duVal singularities, via a \mathbb{Z}_{2}-invariant rational LG-superpotential ;
- For $E_{6,7,8}$ objects on each side known:

- GW invariants lie in a ring $\mathbb{C}\left[\tau_{1}, \tau_{2}\right]$. This involves an extension of the original work of Bryan and Gholampour (where $\tau_{1}=\tau_{2}$);
- Using ideas of [DSZZ] the result extends to binary dihedral duVal singularities, via a \mathbb{Z}_{2}-invariant rational LG-superpotential ;
- For $E_{6,7,8}$ objects on each side known: conjecturally true.

[^0]: Question:
 When does ${ }^{(\lambda)} \nabla$ have the same properties as ${ }^{(\lambda)} \nabla$?

