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Conic symplectic singularities

Definition

An affine variety X/C is a conic symplectic singularity if

(i) X is normal.

(ii) Xreg has a symplectic form.

(iii) If π : Y → X is a resolution of singularities then π∗ω is a
regular 2-form on Y .

(iv) C[X ] is N-graded, C[X ]0 = C and ω has weight ` > 0.

We say that π : Y → X is a symplectic resolution if π∗ω is a
symplectic form on Y .
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The Cartan space

Example

If Γ ⊂ SL(2,C) then C2/Γ is a conic symplectic singularity and the

minimal resolution C̃2/Γ→ C2/Γ is a symplectic resolution.

Assume π : Y → X is a (projective) symplectic resolution (or more
generally a Q-factorial terminalization).

Let h∗ = H2(Y ,R) and h∗Q = H2(Y ,Q).
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The resolutions

Theorem (Birkar-Cascini-Hacon-McKernan)

(a) X admits finitely many projective symplectic resolutions
Y = Y1, . . . ,YN .

(b) There exist convex polyhedral cones Mov(Y ),Amp(Yi ) in h∗

such that

Mov(Y ) =
N⋃
i=1

Amp(Yi ).
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The Namikawa Weyl group

Theorem (Namikawa)

There exists a finite hyperplane arrangement A ⊂ h∗Q, with Coxeter
subarrangement B ⊂ A such that:

(a) Mov(Y ) is a fundamental domain for the action of
W = 〈sH |H ∈ B〉.

(b) W acts on A.

(c)
⋃k

i=1 Amp(Yi ) = Mov(Y ) \
(⋃

H∈AH
)
.

We call W the Namikawa Weyl group (it is always a Weyl group).
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Counting

Corollary

N = 1
|W | dimH∗(M(A),C).

Goal in examples - describe all projective symplectic
resolutions.

First we must compute how many there are.
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If X = C2/Γ then (W , h) given via the McKay
correspondence and A = B is Coxeter arrangement of WΓ.

If X = N (g∗) is the nil-cone of a simple Lie algebra then
Springer resolution T ∗(G/B)→ N (g∗) is symplectic
resolution and again (W , h) usual Weyl group with A = B the
Coxeter arrangement.

As a consequence, we see in both these examples there is a unique
projective symplectic resolution.
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Complex reflection groups

If (Γ,V ) is a complex reflection group with reflections S then

(a) X = (V × V ∗)/Γ is a conic symplectic singularity.

(b) h∗ = {c : S/Γ→ R} (Ito-Reid).

(c) W =
∏

[H]∈H/Γ S`H (B-Schedler-Thiel).

A 6= B in general, but known in many examples.

G4

Here W = S3 acting on h∗ = {(κ0, κ1, κ2) |, κ0 + κ1 + κ2 = 0}
with arrangement:

κ1, κ2, κ1 + κ2, κ1 − 2κ2, κ1 − κ2, 2κ1 − κ2 = 0.

Then dimH∗(M(A),C) = 12 so N = 2.
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Other exceptional groups (B-Schedler-Thiel)

Group |A| Weyl group N

G4 6 S3 2
G5 33 S3 ×S3 92
G6 16 S2 ×S3 12
G7 61 S2 ×S3 ×S3 3296
G8 25 S4 14
G9 54 S2 ×S4 2
G10 111 S3 ×S4 15476
G11 196 S2 ×S3 ×S4 2851133
G13 6 S2 ×S2 3
G14 22 S2 ×S3 23
G15 65 S2 ×S3 ×S2 2596
G20 12 S3 4
G25 12 S3 4
G26 37 S2 ×S3 62

F4 = G28 8 S2 ×S2 4
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Wreath products (B-Craw)

If Γ ⊂ SL(2,C) and Γn = Γn oSn then X = C2n/Γn.

(B-Craw)

(a) h = R⊕ hΓ

(b) W = S2 ×WΓ

(c) A is the (n − 1)-extended Catalan arrangement

(d) N =
∏r

i=1
(n−1)h+di

di
, d1, . . . , dr degrees of WΓ (Athanasiadis)

All projective symplectic resolutions given explicitly by Nakajima
quiver varieties.
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Example

One final quotient singularity:

X = (C2 ⊗ C2)/(Q8 ×Z2 D8).

(B-Schedler)

(a) h = C5

(b) W = S5
2

(c) A = {xi = 0} ∪ {
∑

i∈I xi =
∑

j /∈I xj}.
(d) N = 81

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities



General theory
Examples
Questions

Hyperpolygon spaces
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Hyperpolygon spaces

Let V be space of representations of the star shaped quiver
with n legs and dimension vector (2, 1, . . . , 1).

Xn = µ−1(0)//G is Hamiltonian reduction of V × V ∗ by
G = GL(2)× (C×)n.

Example of Nakajima quiver variety with dimXn = 2(n − 3).

(B-Craw-Rayan-Schedler-Weiss)

(C2 ⊗ C2)/(Q8 ×Z2 D8) ∼= X5.
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Hyperpolygon spaces

Theorem (B-Craw-Rayan-Schedler-Weiss)

(a) h = Cn

(b) W = Sn
2 (for n ≥ 5)

(c) A = {xi = 0} ∪ {
∑

i∈I xi =
∑

j /∈I xj}.
(d) N4 = 1, N5 = 81, N6 = 1684

(Hubbard, King)

For n ≥ 5,

Nn : 1, 2, 4, 12, 81, 1684, 122921, 33207256, 3444822538 . . .

is the sequence counting the ”number of self-dual threshold
functions of n + 1 variables”.
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Nakajima Quiver Varieties

Let Q = (Q0,Q1) be a finite quiver and α ∈ ZQ0 a dimension
vector for Q.

Gives rise to (affine) Nakajima quiver variety M0(α).

Also have (generally infinite) root system R ⊂ ZQ0 .

Theorem (B-Craw-Schedler)

Assume α ∈ Σ.

(a) h∗ = {θ ∈ RQ0 | θ(α) = 0}
(b) A = {β ∈ R+ |α− β ∈ R+} .

Partial results by Wu on W .
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Hypertoric varieties

For 0 < r < n, fix a unimodular r × n matrix A and choose B
such that

0→ Zn−1 B→ Zn A→ Zr → 0

exact.

Gives action of T = (C×)r on V = Cn.

Hypertoric variety X (A) is the Hamiltonian reduction
µ−1(0)//T of V × V ∗.
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Hypertoric varieties

(Nagaoka)

Order BT = [b1, . . . , bn] such that
b1 = · · · = b`1 , b`1+1 = · · · = b`1+`2 , . . . and assume bi 6= −bj .
(a) h = Rr

(b) W = S`1 ×S`2 × · · ·
(c) A = {H ⊂ Rr | 〈ai1 , . . . , air−1〉 = H, dimH = r − 1}.
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Questions

(1) If we choose an arbitrary pair (A ⊃ B) can we always find a
conic symplectic singularity realizing it?

(2) Is there an effective way to compute N for a large class of
examples?

(3) W acts on H∗(M(A),C). What is this graded representation?
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