Hyperplane arrangements arising from symplectic singularities

Gwyn Bellamy

Thursday, 16th March, 2023

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities

Slogan: Symplectic singularities give rise to MANY examples of hyperplane arrangements.

1 General theory

Conic symplectic singularities

Definition

An affine variety X/\mathbb{C} is a conic symplectic singularity if

- (i) X is normal.
- (ii) $X_{\rm reg}$ has a symplectic form.
- (iii) If $\pi: Y \to X$ is a resolution of singularities then $\pi^* \omega$ is a regular 2-form on Y.
- (iv) $\mathbb{C}[X]$ is \mathbb{N} -graded, $\mathbb{C}[X]_0 = \mathbb{C}$ and ω has weight $\ell > 0$.

イロト イポト イヨト イヨト

Conic symplectic singularities

Definition

An affine variety X/\mathbb{C} is a conic symplectic singularity if

- (i) X is normal.
- (ii) $X_{\rm reg}$ has a symplectic form.
- (iii) If $\pi: Y \to X$ is a resolution of singularities then $\pi^* \omega$ is a regular 2-form on Y.
- (iv) $\mathbb{C}[X]$ is \mathbb{N} -graded, $\mathbb{C}[X]_0 = \mathbb{C}$ and ω has weight $\ell > 0$.

We say that $\pi: Y \to X$ is a symplectic resolution if $\pi^* \omega$ is a symplectic form on Y.

A D D A D D A D D A D D A

The Cartan space

Example

If $\Gamma \subset SL(2,\mathbb{C})$ then \mathbb{C}^2/Γ is a conic symplectic singularity and the minimal resolution $\widetilde{\mathbb{C}^2/\Gamma} \to \mathbb{C}^2/\Gamma$ is a symplectic resolution.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

The Cartan space

Example

If $\Gamma \subset SL(2,\mathbb{C})$ then \mathbb{C}^2/Γ is a conic symplectic singularity and the minimal resolution $\widetilde{\mathbb{C}^2/\Gamma} \to \mathbb{C}^2/\Gamma$ is a symplectic resolution.

Assume $\pi: Y \to X$ is a (projective) symplectic resolution (or more generally a \mathbb{Q} -factorial terminalization).

Let $\mathfrak{h}^* = H^2(Y, \mathbb{R})$ and $\mathfrak{h}^*_{\mathbb{Q}} = H^2(Y, \mathbb{Q})$.

イロト 不得 トイラト イラト 二日

The resolutions

Theorem (Birkar-Cascini-Hacon-McKernan)

- (a) X admits finitely many projective symplectic resolutions $Y = Y_1, \ldots, Y_N$.
- (b) There exist convex polyhedral cones Mov(Y), Amp(Y_i) in h^{*} such that

$$\operatorname{Mov}(Y) = \bigcup_{i=1}^{N} \overline{\operatorname{Amp}(Y_i)}.$$

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities

イロト イヨト イヨト イヨト 三日

The Namikawa Weyl group

Theorem (Namikawa)

There exists a finite hyperplane arrangement $\mathcal{A} \subset \mathfrak{h}^*_{\mathbb{Q}}$, with Coxeter subarrangement $\mathcal{B} \subset \mathcal{A}$ such that:

(a) Mov(Y) is a fundamental domain for the action of $W = \langle s_H | H \in B \rangle$.

(b) W acts on
$$\mathcal{A}$$
.
(c) $\bigcup_{i=1}^{k} \operatorname{Amp}(Y_i) = \operatorname{Mov}(Y) \setminus (\bigcup_{H \in \mathcal{A}} H)$.

・ロト ・四ト ・ヨト ・ヨト

The Namikawa Weyl group

Theorem (Namikawa)

There exists a finite hyperplane arrangement $\mathcal{A} \subset \mathfrak{h}^*_{\mathbb{Q}}$, with Coxeter subarrangement $\mathcal{B} \subset \mathcal{A}$ such that:

(a) Mov(Y) is a fundamental domain for the action of $W = \langle s_H | H \in B \rangle$.

(b) W acts on
$$\mathcal{A}$$
.
(c) $\bigcup_{i=1}^{k} \operatorname{Amp}(Y_i) = \operatorname{Mov}(Y) \setminus (\bigcup_{H \in \mathcal{A}} H)$.

We call W the Namikawa Weyl group (it is always a Weyl group).

イロト 不得 トイラト イラト 二日

Counting

Corollary

$$N=\frac{1}{|W|}\dim H^*(M(\mathcal{A}),\mathbb{C}).$$

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities

・ロト ・回ト ・ヨト ・ヨト

æ

Counting

Corollary

$$N = \frac{1}{|W|} \dim H^*(M(\mathcal{A}), \mathbb{C}).$$

- Goal in examples describe all projective symplectic resolutions.
- First we must compute how many there are.

イロト イヨト イヨト イヨト

Э

- If X = C²/Γ then (W, h) given via the McKay correspondence and A = B is Coxeter arrangement of W_Γ.
- If X = N(g*) is the nil-cone of a simple Lie algebra then Springer resolution T*(G/B) → N(g*) is symplectic resolution and again (W, ħ) usual Weyl group with A = B the Coxeter arrangement.

イロト 不得 トイラト イラト・ラ

- If X = C²/Γ then (W, h) given via the McKay correspondence and A = B is Coxeter arrangement of W_Γ.
- If X = N(g*) is the nil-cone of a simple Lie algebra then Springer resolution T*(G/B) → N(g*) is symplectic resolution and again (W, ħ) usual Weyl group with A = B the Coxeter arrangement.

As a consequence, we see in both these examples there is a unique projective symplectic resolution.

イロト 不得 トイラト イラト・ラ

Complex reflection groups

If
$$(\Gamma, V)$$
 is a complex reflection group with reflections S then
(a) $X = (V \times V^*)/\Gamma$ is a conic symplectic singularity.
(b) $\mathfrak{h}^* = \{c \colon S/\Gamma \to \mathbb{R}\}$ (Ito-Reid).
(c) $W = \prod_{[H] \in \mathcal{H}/\Gamma} \mathfrak{S}_{\ell_H}$ (B-Schedler-Thiel).
 $\mathcal{A} \neq \mathcal{B}$ in general, but known in many examples.

G_4

Here $W = \mathfrak{S}_3$ acting on $\mathfrak{h}^* = \{(\kappa_0, \kappa_1, \kappa_2) |, \kappa_0 + \kappa_1 + \kappa_2 = 0\}$ with arrangement:

$$\kappa_1, \kappa_2, \kappa_1 + \kappa_2, \kappa_1 - 2\kappa_2, \kappa_1 - \kappa_2, 2\kappa_1 - \kappa_2 = 0.$$

Then dim $H^*(M(\mathcal{A}), \mathbb{C}) = 12$ so N = 2.

э

Other exceptional groups (B-Schedler-Thiel)

Group	$ \mathcal{A} $	Weyl group	Ν
G ₄	6	\mathfrak{S}_3	2
G_5	33	$\mathfrak{S}_3\times\mathfrak{S}_3$	92
G_6	16	$\mathfrak{S}_2\times\mathfrak{S}_3$	12
G7	61	$\mathfrak{S}_2\times\mathfrak{S}_3\times\mathfrak{S}_3$	3296
G_8	25	\mathfrak{S}_4	14
G_9	54	$\mathfrak{S}_2\times\mathfrak{S}_4$	2
G_{10}	111	$\mathfrak{S}_3\times\mathfrak{S}_4$	15476
G_{11}	196	$\mathfrak{S}_2\times\mathfrak{S}_3\times\mathfrak{S}_4$	2851133
G ₁₃	6	$\mathfrak{S}_2\times\mathfrak{S}_2$	3
G_{14}	22	$\mathfrak{S}_2\times\mathfrak{S}_3$	23
G_{15}	65	$\mathfrak{S}_2\times\mathfrak{S}_3\times\mathfrak{S}_2$	2596
G_{20}	12	\mathfrak{S}_3	4
G_{25}	12	\mathfrak{S}_3	4
G_{26}	37	$\mathfrak{S}_2\times\mathfrak{S}_3$	62
$F_4 = G_{28}$	8	$\mathfrak{S}_2\times\mathfrak{S}_2$	4

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities

イロン 不同 とくほど 不同 とう

크

Wreath products (B-Craw)

If
$$\Gamma \subset SL(2,\mathbb{C})$$
 and $\Gamma_n = \Gamma^n \rtimes \mathfrak{S}_n$ then $X = \mathbb{C}^{2n}/\Gamma_n$.

(B-Craw)

(a) h = ℝ ⊕ h_Γ
(b) W = 𝔅₂ × W_Γ
(c) A is the (n − 1)-extended Catalan arrangement
(d) N = ∏^r_{i=1} (n-1)h+d_i/d_i, d₁,..., d_r degrees of W_Γ (Athanasiadis)
All projective symplectic resolutions given explicitly by Nakajima quiver varieties.

イロト 不得 トイラト イラト 二日

Example

One final quotient singularity:

$$X=(\mathbb{C}^2\otimes\mathbb{C}^2)/(Q_8 imes_{\mathbb{Z}_2}D_8).$$

イロン 不同 とうほう 不同 とう

3

Hyperpolygon spaces

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Э

Hyperpolygon spaces

- Let V be space of representations of the star shaped quiver with n legs and dimension vector (2, 1, ..., 1).
- $X_n = \mu^{-1}(0)//G$ is Hamiltonian reduction of $V \times V^*$ by $G = GL(2) \times (\mathbb{C}^{\times})^n$.
- Example of Nakajima quiver variety with dim $X_n = 2(n-3)$.

イロト イヨト イヨト イヨト 三日

Hyperpolygon spaces

- Let V be space of representations of the star shaped quiver with n legs and dimension vector (2, 1, ..., 1).
- $X_n = \mu^{-1}(0)//G$ is Hamiltonian reduction of $V \times V^*$ by $G = GL(2) \times (\mathbb{C}^{\times})^n$.
- Example of Nakajima quiver variety with dim $X_n = 2(n-3)$.

(B-Craw-Rayan-Schedler-Weiss)

$$(\mathbb{C}^2\otimes\mathbb{C}^2)/(Q_8 imes_{\mathbb{Z}_2}D_8)\cong X_5.$$

イロト 不得下 イヨト イヨト 二日

Hyperpolygon spaces

Theorem (B-Craw-Rayan-Schedler-Weiss)

(a)
$$\mathfrak{h} = \mathbb{C}^n$$

(b) $W = \mathfrak{S}_2^n$ (for $n \ge 5$)
(c) $\mathcal{A} = \{x_i = 0\} \cup \{\sum_{i \in I} x_i = \sum_{j \notin I} x_j\}.$
(d) $N_4 = 1, N_5 = 81, N_6 = 1684$

イロン イロン イヨン イヨン

臣

Hyperpolygon spaces

Theorem (B-Craw-Rayan-Schedler-Weiss)

(a)
$$\mathfrak{h} = \mathbb{C}^n$$

(b) $W = \mathfrak{S}_2^n$ (for $n \ge 5$)
(c) $\mathcal{A} = \{x_i = 0\} \cup \{\sum_{i \in I} x_i = \sum_{j \notin I} x_j\}$.
(d) $N_4 = 1, N_5 = 81, N_6 = 1684$

(Hubbard, King)

For $n \geq 5$,

 $N_n: 1, 2, 4, 12, 81, 1684, 122921, 33207256, 3444822538...$

is the sequence counting the "number of self-dual threshold functions of n + 1 variables".

Nakajima Quiver Varieties

- Let Q = (Q₀, Q₁) be a finite quiver and α ∈ Z^{Q₀} a dimension vector for Q.
- Gives rise to (affine) Nakajima quiver variety $\mathfrak{M}_0(\alpha)$.
- Also have (generally infinite) root system $R \subset \mathbb{Z}^{Q_0}$.

A D D A D D A D D A D D A

Nakajima Quiver Varieties

- Let Q = (Q₀, Q₁) be a finite quiver and α ∈ Z^{Q₀} a dimension vector for Q.
- Gives rise to (affine) Nakajima quiver variety $\mathfrak{M}_0(\alpha)$.
- Also have (generally infinite) root system $R \subset \mathbb{Z}^{Q_0}$.

Theorem (B-Craw-Schedler)

Assume $\alpha \in \Sigma$. (a) $\mathfrak{h}^* = \{ \theta \in \mathbb{R}^{Q_0} | \theta(\alpha) = 0 \}$ (b) $\mathcal{A} = \{ \beta \in \mathbb{R}^+ | \alpha - \beta \in \mathbb{R}^+ \}$.

イロト イポト イヨト イヨト

Nakajima Quiver Varieties

- Let Q = (Q₀, Q₁) be a finite quiver and α ∈ Z^{Q₀} a dimension vector for Q.
- Gives rise to (affine) Nakajima quiver variety $\mathfrak{M}_0(\alpha)$.
- Also have (generally infinite) root system $R \subset \mathbb{Z}^{Q_0}$.

Theorem (B-Craw-Schedler)

Assume $\alpha \in \Sigma$. (a) $\mathfrak{h}^* = \{ \theta \in \mathbb{R}^{Q_0} | \theta(\alpha) = 0 \}$ (b) $\mathcal{A} = \{ \beta \in \mathbb{R}^+ | \alpha - \beta \in \mathbb{R}^+ \}$.

Partial results by Wu on W.

イロト イポト イヨト イヨト

Hypertoric varieties

For 0 < r < n, fix a unimodular r × n matrix A and choose B such that

$$0 \to \mathbb{Z}^{n-1} \xrightarrow{B} \mathbb{Z}^n \xrightarrow{A} \mathbb{Z}^r \to 0$$

exact.

- Gives action of $T = (\mathbb{C}^{\times})^r$ on $V = \mathbb{C}^n$.
- Hypertoric variety X(A) is the Hamiltonian reduction $\mu^{-1}(0)//T$ of $V \times V^*$.

イロト 不得 トイラト イラト・ラ

Hypertoric varieties

(Nagaoka)

Order
$$B^T = [b_1, \ldots, b_n]$$
 such that
 $b_1 = \cdots = b_{\ell_1}, b_{\ell_1+1} = \cdots = b_{\ell_1+\ell_2}, \ldots$ and assume $b_i \neq -b_j$.
(a) $\mathfrak{h} = \mathbb{R}^r$
(b) $W = \mathfrak{S}_{\ell_1} \times \mathfrak{S}_{\ell_2} \times \cdots$
(c) $\mathcal{A} = \{H \subset \mathbb{R}^r \mid \langle a_{i_1}, \ldots, a_{i_{r-1}} \rangle = H, \dim H = r - 1\}.$

Gwyn Bellamy Hyperplane arrangements arising from symplectic singularities

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Questions

- (1) If we choose an arbitrary pair $(A \supset B)$ can we always find a conic symplectic singularity realizing it?
- (2) Is there an effective way to compute *N* for a large class of examples?
- (3) W acts on $H^*(M(\mathcal{A}), \mathbb{C})$. What is this graded representation?

イロン イヨン イヨン