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Motivation

In 1983, Orlik and Solomon computed χ(A (W )X , t) of every restriction

A (W )X of each Coxeter arrangement A (W ) to some intersection X of

reflecting hyperplanes of A (W ) in long and intricate computations. They

showed that each χ(A (W )X , t) factors over Z. They observed that for

each 1 ≤ d ≤ ℓ, where ℓ is the dimension of the reflection representation

of W , there exists such a restriction A (W )X such that the roots of

χ(A (W )X , t) are the first d exponents of A (W ) when ordered by size.

In view of Terao’s factorization theorem, it is natural to pose:

Conjecture (Orlik-Solomon-Terao 1987)

For every Coxeter arrangement A (W ) the first d exponents of A (W )

when ordered by size are realized as the exponents of some free

restriction A (W )X of A (W ) for every 1 ≤ d ≤ ℓ.

Proof: long case-by-case studies by Orlik-Terao (1992, 1993).

Goal: Find a uniform proof at least for Weyl arrangements.
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Arrangements

V an ℓ-dimensional, complex vector space;

A a (central) hyperplane arrangement in V ;

L(A ) the intersection lattice of A .

for X in L(A ) consider the localization AX of A at X :

AX := {H ∈ A | H ⊃ X} ⊆ A .

for X in L(A ) consider the restriction A X of A to X :

A X := {H ∩ X | H ∈ A \ AX} is a hyperplane arrangement in X .

Let S = S(V ∗) be the symmetric algebra of the dual space V ∗ of V .

The defining polynomial Q(A ) of A is given by

Q(A ) :=
∏
H∈A

αH ∈ S ,

where αH ∈ V ∗ satisfies H = ker(αH).
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Free Arrangements

Let Der(S) be the S-module of C-derivations of S . It is a free S-module

with basis ∂/∂x1, . . . , ∂/∂xℓ.

From the grading of S , we obtain a Z-grading Der(S) =
⊕

p∈Z Der(S)p.

Definition (K. Saito 1975/1981)

The module of A -derivations of A is defined by

D(A ) := {θ ∈ Der(S) | θ(Q(A )) ∈ Q(A )S}.

We say that A is free if D(A ) is a free S-module.

If A is a free arrangement we may choose a homogeneous basis

θ1, . . . , θℓ of D(A ). The degrees of the θi are called the exponents of A .

They are uniquely determined by A . In that case we write

exp(A ) := (e1, e2, . . . , eℓ)

for the exponents of A .
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Free Arrangements, II

If A is free, so is any localization AX .

In general the restriction A X of a free arrangement A need not be

free (Edelman-Reiner 1991).

Every reflection arrangement A (G ) is free, for G a complex

reflection group (Arnold/Saito (case of Coxeter groups); Terao

(general case) 1980).

For A (G ) the reflection arrangement of a complex reflection group

G , every restriction A (G )X of A (G ) is free.

(Orlik-Terao 1992, 1993: Coxeter, in complex case up to dimX = 3,

Hoge-R 2013: G33, G34 and dimX = 4, 5).
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Free Arrangements: Addition-Deletion

Fix H ∈ A , denote A ′ := A \ {H} and A ′′ := A H . Call (A ,A ′,A ′′)

the triple with respect to the hyperplane H ∈ A .

Theorem (Addition-Deletion Theorem (Terao 1980))

Let A be a non-empty arrangement and let H ∈ A . Then two of the

following statements imply the third:

(i) A is free with exp(A ) = (e1, . . . , eℓ−1, eℓ).

(ii) A ′ is free with exp(A ′) = (e1, . . . , eℓ−1, eℓ − 1).

(iii) A ′′ is free with exp(A ′′) = (e1, . . . , eℓ−1).

Moreover, all three assertions hold if A and A ′ are both free.
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Inductive Freeness

Terao’s Theorem above motivates the following concept.

Definition (Orlik-Terao 1992)

The class IF of inductively free arrangements is the smallest class of

arrangements which satisfies

(i) the empty arrangement ∅ℓ is in IF for ℓ ≥ 0,

(ii) if there exists H ∈ A such that A ′′ ∈ IF , A ′ ∈ IF , and

exp(A ′′) ⊆ exp(A ′), then A ∈ IF .

Inductive freeness is a combinatorial property (Cuntz-Hoge 2015).

Example: Coxeter arrangements are inductively free; in fact they are

hereditarily inductivley free (every restriction is inductivley free)

(Barakat-Cuntz 2012).
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Accuracy

Definition (Mücksch-R 2021; Mücksch-R-Tran 2023)

Suppose A is free with exponents exp(A ) = (e1, e2, . . . , eℓ)≤.

1 A is accurate provided for each 1 ≤ d ≤ ℓ there exists a flat Xd in

L(A ) of dimension d such that the restriction A Xd of A to Xd is

free with exp(A Xd ) = (e1, e2, . . . , ed)≤.

The tuple (X1,X2, . . . ,Xℓ) is a witness for the accuracy of A .

2 A is flag-accurate provided there is a witness (X1,X2, . . . ,Xℓ) for

the accuracy of A such that X1 ⊂ X2 ⊂ . . . ⊂ Xℓ is a flag in L(A ).

3 A is ind-flag-accurate if A is both inductively free and

flag-accurate, and there is a witness (X1,X2, . . . ,Xℓ) for the

flag-accuracy of A such that A Xd is inductively free for every

1 ≤ d ≤ ℓ. In that case (X1,X2, . . . ,Xℓ) is a witness for the

ind-flag-accuracy of A .
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Examples among reflection arrangements

Example

Let G = G (1, 1, ℓ) be the symmetric group.

Then A (G ) is free with expA (G ) = {1, 2, . . . , ℓ− 1}.
Let Xd := {x1 = . . . = xℓ−d+1} for 1 ≤ d ≤ ℓ− 1.

Then A (G )Xd ∼= A (G (1, 1, d)).

So the latter is free with expA (G ) = {1, 2, . . . , d − 1}.
Since braid arrangements are inductively free and the flats Xd form a flag

in L(A (G )), the braid arrangement A (G ) is ind-flag-accurate.

Rephrase motivating conjecture:

Conjecture (Orlik-Solomon-Terao 1987)

Every Coxeter arrangement is accurate.

Proof: intricate and long case-by-case studies (Orlik-Terao 1992, 1993).

Uniform proof for Weyl arrangements [Mücksch-R 2021] (MAT-freeness).

Are Coxeter arrangements even flag-accurate, or ind-flag-accurate?
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Divisional Freeness

Definition/Theorem (Abe 2016)

An ℓ-arrangement A is divisionally free if there is a flag

X1 ⊆ X2 ⊆ · · · ⊆ Xℓ−1 ⊆ Xℓ = V

with dim(Xi ) = i for 1 ≤ i ≤ ℓ and χ(A Xi , t) | χ(A Xi+1 , t) for each

1 ≤ i ≤ ℓ− 1. Such a flag is called a divisional flag. Such A are free.

Remarks

(i). If A is flag-accurate, then it is both accurate and divisionally free,

since any witness for the flag-accuracy is a divisional flag and a witness

for accuracy. The converse is false (ex. ideal Shi arrangement in type F4).

(ii). Flag-accuracy only depends on L(A ) and thus is combinatorial, ditto

for ind-flag-accuracy. Likewise, divisional freeness is also combinatorial.

But it is not known whether this is also the case for accuracy itself.
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Accurate Reflection Arrangements

Theorem (Mücksch-R 2021; Mücksch-R-Tran 2023)

Let G be a complex reflection group with reflection arrangement

A = A (G ). Then A is flag-accurate if and only if it is divisionally free.

This is the case if and only if G has no irreducible factor isomorphic to

one of the monomial groups G (r , r , ℓ), r > 2, ℓ > 2, or

G24,G27,G29,G33,G34.

Proof uses classification of divisionally free reflection arrangements due to

Abe (2016). [Mücksch-R 2021]: accuracy and divisional freeness coincide

for reflection arrangements. Proof extends to flag-accuracy.

Corollary

Coxeter arrangements are ind-flag-accurate.

Proof uses hereditary inductive freeness of Coxeter arrangements

(Barakat-Cuntz 2012).
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Accurate Reflection Arrangements

Theorem (Mücksch-R-Tran 2023)

Let G be an irreducible complex reflection group with reflection

arrangement A = A (G ). Suppose G ̸= G31. TFAE:

(i) A is accurate;

(ii) A is flag-accurate;

(iii) A is ind-flag-accurate;

(iv) A is divisionally free;

(v) A is inductively free.

Proof uses theorem above and classification of inductively free reflection

arrangements (Hoge-R 2015).

G31 is excluded, as A (G31) itself is not inductively free, but A (G31) does

satisfy the properties in parts (i), (ii), and (iv) of the theorem. In

particular, A (G31) is flag-accurate, but not ind-flag-accurate.
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A useful lemma

The following is very helpful in inductive arguments:

Lemma

Let A be (inductively) free with exponents exp(A ) = (e1, . . . , eℓ)≤.

Then A is (ind-)flag-accurate if and only if there exist k linearly

independent hyperplanes H1, . . . ,Hk ∈ A for some 1 ≤ k ≤ ℓ such that

A Xi is (inductively) free with exp(A Xi ) = (e1, . . . , eℓ−i )≤ for each

1 ≤ i ≤ k where Xi :=
⋂i

j=1 Hj and that A Xk is (ind-)flag-accurate.

In particular, A is (ind-)flag-accurate if and only if there exists an H in

A such that A H is (ind-)flag-accurate with exp(A H) = (e1, . . . , eℓ−1)≤.

Reverse implication of last statement also applies for accuracy, but not

forward implication: there are examples where A is accurate, but A H is

not accurate for any H.
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MAT-freeness

In 2020, Cuntz-Mücksch introduced the notion of MAT-freeness to

investigate arrangements whose freeness can be derived using an iterative

application of the Multiple Addition Theorem (due to Abe et al 2016).

Theorem (Mücksch-R 2021)

MAT-free arrangements are accurate.

MAT-freeness is a combinatorial property only relying on L(A ).

As ideal subarrangements of Weyl arrangements are MAT-free, due to

Abe-Barakat-Cuntz-Hoge-Terao 2016, we get:

Theorem (Mücksch-R 2021)

Ideal arrangements are accurate.

Theorem (Mücksch-R-Tran 2023)

Ideal arrangements of rank at most 8 are flag-accurate.
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Extended Shi and extended Catalan arrangements

Theorem (Mücksch-R 2021)

Extended Shi arrangements Shik , ideal-Shi arrangements ShikI and

extended Catalan arrangements Catk are accurate.

Theorem (Mücksch-R-Tran 2023)

Extended Shi arrangements Shim are flag-accurate. Extended Catalan

arrangements Catm of Dynkin type A,B, or C are flag-accurate.

Conjecture

Extended Catalan arrangements are flag-accurate.
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Multi-Addition-Theorem (MAT-Theorem)

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Let A ′ = (A ′,V ) be a free arrangement with exp(A ′) = (e1, . . . , eℓ)≤

and let 1 ≤ p ≤ ℓ be the multiplicity of the highest exponent, i.e.

eℓ−p < eℓ−p+1 = · · · = eℓ =: e.
Let H1, . . . ,Hq be hyperplanes in V with Hi ̸∈ A ′ for i = 1, . . . , q. Let

A ′′
j := (A ′ ∪ {Hj})Hj = {H ∩ Hj | H ∈ A ′}, for j = 1, . . . , q.

Assume that the following conditions are satisfied:

(1) X := H1 ∩ · · · ∩ Hq is q-codimensional.

(2) X ̸⊆
⋃

H∈A ′ H.

(3) |A ′| − |A ′′
j | = e for 1 ≤ j ≤ q.

Then q ≤ p and A := A ′ ∪ {H1, . . . ,Hq} is free with

exp(A ) = (e1, . . . , eℓ−q, e + 1, . . . , e + 1)≤.
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MAT-freeness

Definition

Let A ′ and {H1, . . . ,Hq} be as in MAT-Theorem such that conditions

(1)–(3) are satisfied. Then the addition of {H1, . . . ,Hq} to A ′ resulting

in A = A ′ ∪ {H1, . . . ,Hq} is called an MAT-step.

An iterative application of the MAT-Theorem motivates the concept of

MAT-freeness.
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MAT-freeness

Definition (Cuntz-Mücksch 2019)

An arrangement A is called MAT-free if there exists an ordered partition

π = (π1| · · · |πn)

of A such that the following hold. Set A0 := ∅ℓ and

Ak :=
k⋃

i=1

πi for 1 ≤ k ≤ n.

Then for every 0 ≤ k ≤ n − 1 suppose that

(1) rk(πk+1) = |πk+1|,

(2) ∩H∈πk+1
H ⊈

⋃
H′∈Ak

H ′,

(3) |Ak | − |(Ak ∪ {H})H | = k for each H ∈ πk+1,

i.e. Ak+1 = Ak ∪ πk+1 is an MAT-step.
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MAT-free Reflection arrangements

Theorem (Cuntz-Mücksch 2020)

Let G be an irreducible complex reflection group with reflection

arrangement A = A (G ). Suppose G ̸= G32. Then A is MAT-free if and

only if it is inductively free.

This is the case if and only if G has no irreducible factor isomorphic to

one of the monomial groups G (r , r , ℓ), r > 2, ℓ > 2, or

G24,G27,G29,G31,G33,G34.

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Ideal subarrangements of Weyl arrangements are MAT-free.
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