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Motivation

In 1983, Orlik and Solomon computed x (=7 (W)X, t) of every restriction
o (W)X of each Coxeter arrangement .o/ (W) to some intersection X of
reflecting hyperplanes of .7 (W) in long and intricate computations. They
showed that each x (&7 (W)X, t) factors over Z. They observed that for
each 1 < d </, where £ is the dimension of the reflection representation
of W, there exists such a restriction </ (W)X such that the roots of
x(&/ (W)X, t) are the first d exponents of o7 (W) when ordered by size.
In view of Terao's factorization theorem, it is natural to pose:

Conjecture (Orlik-Solomon-Terao 1987)

For every Coxeter arrangement of (W) the first d exponents of </ (W)
when ordered by size are realized as the exponents of some free
restriction o/ (W)X of o/ (W) for every 1 < d < /.

Proof: long case-by-case studies by Orlik-Terao (1992, 1993).
Goal: Find a uniform proof at least for Weyl arrangements.
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Arrangements

@ V an /-dimensional, complex vector space;
@ o/ a (central) hyperplane arrangement in V;
o L(47) the intersection lattice of <.
e for X in L(&/) consider the localization </x of < at X:
dx ={He o |HD X} C .
e for X in L(.<7) consider the restriction /X of o/ to X:
X ={HNX|HE&c o\ dx} is a hyperplane arrangement in X.

@ Let S = S(V*) be the symmetric algebra of the dual space V* of V.
e The defining polynomial Q(&/) of < is given by

Q)= [] anes,

Heof

where ayy € V* satisfies H = ker(ay).
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Free Arrangements

Let Der(S) be the S-module of C-derivations of S. It is a free S-module
with basis 9/0x1,...,0/0xq.
From the grading of S, we obtain a Z-grading Der(S) = ¢, Der(S),.

Definition (K. Saito 1975/1981)
The module of <7 -derivations of <f is defined by

D(o7) := {0 € Der(S) | 0(Q(7)) € Q()S}.

We say that 7 is free if D(27) is a free S-module.

If o is a free arrangement we may choose a homogeneous basis
01,...,00 of D(o7). The degrees of the 0; are called the exponents of .

They are uniquely determined by <. In that case we write
eXp((y) = (ela 627 ey e[)

for the exponents of 7.
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Free Arrangements, Il

o If o is free, so is any localization 7.

@ In general the restriction 27X of a free arrangement <7 need not be
free (Edelman-Reiner 1991).

@ Every reflection arrangement <7 (G) is free, for G a complex
reflection group (Arnold/Saito (case of Coxeter groups); Terao
(general case) 1980).

@ For &7(G) the reflection arrangement of a complex reflection group
G, every restriction <7 (G)X of @7(G) is free.
(Orlik-Terao 1992, 1993: Coxeter, in complex case up to dim X = 3,
Hoge-R 2013: Gs3, G34 and dim X = 4,5).
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Free Arrangements: Addition-Deletion

Fix H € o, denote &' := o/ \ {H} and & := /. Call (o, ", /")
the triple with respect to the hyperplane H € &7

Theorem (Addition-Deletion Theorem (Terao 1980))

Let o/ be a non-empty arrangement and let H € /. Then two of the
following statements imply the third:

(i) o is free with exp(</) = (e1, ..., €—1,€0).
(i) &' is free with exp(&/’) = (e1,...,e—1,e — 1).
(iii) <" is free with exp(/") = (eq,. .., e—1).

Moreover, all three assertions hold if &/ and </’ are both free.
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Inductive Freeness

Terao's Theorem above motivates the following concept.

Definition (Orlik-Terao 1992)

The class ZF of inductively free arrangements is the smallest class of
arrangements which satisfies
(i) the empty arrangement & is in ZF for £ > 0,

(i) if there exists H € o such that &/ € ZF, o/’ € TF, and
exp(/") C exp(«/’), then o € TF.

Inductive freeness is a combinatorial property (Cuntz-Hoge 2015).
Example: Coxeter arrangements are inductively free; in fact they are
hereditarily inductivley free (every restriction is inductivley free)
(Barakat-Cuntz 2012).
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Accuracy

Definition (Miicksch-R 2021; Miicksch-R-Tran 2023)

Suppose & is free with exponents exp(%/) = (e, €2, ..., €)<.

@ . is accurate provided for each 1 < d < / there exists a flat Xy in
L(/) of dimension d such that the restriction .&7*¢ of </ to Xy is
free with exp(X?) = (e1, e, ..., €4)<.

The tuple (X1, Xo, ..., Xp) is a witness for the accuracy of &.

@  is flag-accurate provided there is a witness (X1, Xa, ..., X¢) for

the accuracy of & such that X; C X, C ... C X, is a flag in L(</).

@  is ind-flag-accurate if o/ is both inductively free and
flag-accurate, and there is a witness (Xi, Xz, ..., X;) for the
flag-accuracy of 7 such that 7% is inductively free for every
1< d <{. Inthat case (X1, Xz, ..., Xp) is a witness for the
ind-flag-accuracy of 7.
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Examples among reflection arrangements

Let G = G(1,1,¢) be the symmetric group.

Then &7(G) is free with exp #7(G) = {1,2,...,¢ — 1}.

Let Xy := {Xl =...=Xg_d+1} forl<d</?¢-1.

Then &7 (G)X = &7(G(1,1,d)).

So the latter is free with exp &/(G) = {1,2,...,d — 1}.

Since braid arrangements are inductively free and the flats Xy form a flag
in L(«7(G)), the braid arrangement «7(G) is ind-flag-accurate.

4

Rephrase motivating conjecture:

Conjecture (Orlik-Solomon-Terao 1987) J

Every Coxeter arrangement is accurate.

Proof: intricate and long case-by-case studies (Orlik-Terao 1992, 1993).
Uniform proof for Weyl arrangements [Miicksch-R 2021] (MAT-freeness).
Are Coxeter arrangements even flag-accurate, or ind-flagsaccurate?
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Divisional Freeness

Definition/Theorem (Abe 2016)

An (-arrangement 7 is divisionally free if there is a flag
XICXC---CXp1 CXp =V

with dim(X;) = i for 1 < i < £ and x (7%, t) | x(&/%+1, t) for each
1<i</¢—1. Such a flag is called a divisional flag. Such <7 are free.

Remarks

(i). If o is flag-accurate, then it is both accurate and divisionally free,
since any witness for the flag-accuracy is a divisional flag and a witness
for accuracy. The converse is false (ex. ideal Shi arrangement in type Fy).
(ii). Flag-accuracy only depends on L(%7) and thus is combinatorial, ditto
for ind-flag-accuracy. Likewise, divisional freeness is also combinatorial.
But it is not known whether this is also the case for accuracy itself.
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Accurate Reflection Arrangements

Theorem (Miicksch-R 2021; Miicksch-R-Tran 2023)

Let G be a complex reflection group with reflection arrangement

of = @/ (G). Then < is flag-accurate if and only if it is divisionally free.
This is the case if and only if G has no irreducible factor isomorphic to
one of the monomial groups G(r,r,0), r > 2, £ > 2, or

Go4, Goz, Gog, G33, G3s.

v

Proof uses classification of divisionally free reflection arrangements due to
Abe (2016). [Miicksch-R 2021]: accuracy and divisional freeness coincide
for reflection arrangements. Proof extends to flag-accuracy.

Corollary
Coxeter arrangements are ind-flag-accurate.

Proof uses hereditary inductive freeness of Coxeter arrangements
(Barakat-Cuntz 2012).
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Accurate Reflection Arrangements

Theorem (Miicksch-R-Tran 2023)

Let G be an irreducible complex reflection group with reflection
arrangement of = @/ (G). Suppose G # Gz;. TFAE:

(i) < is accurate;
(ii
(iii

) o is flag-accurate;

)
(iv) < is divisionally free;

)

o is ind-flag-accurate;

(v) < is inductively free.

Proof uses theorem above and classification of inductively free reflection
arrangements (Hoge-R 2015).

Gz is excluded, as &7 (Gs;) itself is not inductively free, but 7 (Gs;) does
satisfy the properties in parts (i), (ii), and (iv) of the theorem. In

particular, 27 (Gsy) is flag-accurate, but not ind-flag-accurate.
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A useful lemma

The following is very helpful in inductive arguments:

Lemma

Let of be (inductively) free with exponents exp(<?) = (e1,...,€er)<.
Then & is (ind-)flag-accurate if and only if there exist k linearly
independent hyperplanes Hy, ..., Hy € & for some 1 < k < /¢ such that
/i is (inductively) free with exp(/*i) = (e1,...,e_;)< for each

1 < i< k where X; := 0;21 H; and that o/« is (ind-)flag-accurate.

In particular, <f is (ind-)flag-accurate if and only if there exists an H in
 such that o/ is (ind-)flag-accurate with exp(/") = (eq, ..., E‘g_l)g./

Reverse implication of last statement also applies for accuracy, but not
forward implication: there are examples where <7 is accurate, but «7" is
not accurate for any H.
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MAT-freeness

In 2020, Cuntz-Miicksch introduced the notion of MAT-freeness to
investigate arrangements whose freeness can be derived using an iterative
application of the Multiple Addition Theorem (due to Abe et al 2016).

Theorem (Miicksch-R 2021)

MAT-free arrangements are accurate.

MAT-freeness is a combinatorial property only relying on L(<).
As ideal subarrangements of Weyl arrangements are MAT-free, due to
Abe-Barakat-Cuntz-Hoge-Terao 2016, we get:

Theorem (Miicksch-R 2021)

Ideal arrangements are accurate.

Theorem (Miicksch-R-Tran 2023)

Ideal arrangements of rank at most 8 are flag-accurate.

= = =
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Extended Shi and extended Catalan arrangements

Theorem (Miicksch-R 2021)

Extended Shi arrangements Shi*, ideal-Shi arrangements Shi; and
extended Catalan arrangements Cat® are accurate.

Theorem (Miicksch-R-Tran 2023)

Extended Shi arrangements Shi™ are flag-accurate. Extended Catalan

arrangements Cat™ of Dynkin type A, B, or C are flag-accurate.

Conjecture

Extended Catalan arrangements are flag-accurate.
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Multi-Addition-Theorem (MAT-Theorem)

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Let o/' = (7', V) be a free arrangement with exp(</') = (e1, ..., &)<
and let 1 < p < ¢ be the multiplicity of the highest exponent, i.e.
Let Hy, ..., Hy be hyBerBlne iBY with H; & & For i =1,...,q. Let

o' =(' U{HWY ={HNH |He &'}, forj=1,...,q.
Assume that the following conditions are satisfied:

(1) X :=HiN---N Hy is g-codimensional.

(2) X Z Upear H-

() ||| |=efor1<j<q.

Then q < p and o/ := o/ U{Hi,..., Hy} is free with
exp(#) = (e1,...,e0—q,e+1,...,e+1)<.
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Let &7’ and {Hi,..., Hg} be as in MAT-Theorem such that conditions
(1)—(3) are satisfied. Then the addition of {H,...,Hq} to &7’ resulting
ino/ =/ U{H,...,Hg} is called an MAT-step.

An iterative application of the MAT-Theorem motivates the concept of
MAT-freeness.
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MAT-freeness

Definition (Cuntz-Miicksch 2019)

An arrangement &7 is called MAT-free if there exists an ordered partition
™= (m| - |mn)

of &7 such that the following hold. Set % := @, and

k
) ::Um forl < k <n.
i=1

Then for every 0 < k < n — 1 suppose that
(1) rk(mhs1) = |1l

(2) OHGMHH 7¢— UH’EMk HI'
(3) |@k| — |(@ U {H})H| = k for each H € myy1,
i.e. i1 = D Umger is an MAT-step.
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MAT-free Reflection arrangements

Theorem (Cuntz-Miicksch 2020)

Let G be an irreducible complex reflection group with reflection

arrangement of = o/ (G). Suppose G # Gs. Then </ is MAT-free if and
only if it is inductively free.

This is the case if and only if G has no irreducible factor isomorphic to
one of the monomial groups G(r,r,£), r > 2, £ > 2, or
Gos, Goz, Gog, G31, G33, Gaa.

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Ideal subarrangements of Weyl arrangements are MAT-free.
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