Accurate Reflection Arrangements

Gerhard Röhrle (joint work with Paul Mücksch and Tan Nhat Tran)

Ruhr-Universität Bochum

Various Guises of Reflection Arrangements – ICMS, Edinburgh March 14, 2023

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Motivation

In 1983, Orlik and Solomon computed $\chi(\mathscr{A}(W)^X, t)$ of every restriction $\mathscr{A}(W)^X$ of each Coxeter arrangement $\mathscr{A}(W)$ to some intersection X of reflecting hyperplanes of $\mathscr{A}(W)$ in long and intricate computations. They showed that each $\chi(\mathscr{A}(W)^X, t)$ factors over Z. They observed that for each $1 \le d \le \ell$, where ℓ is the dimension of the reflection representation of W, there exists such a restriction $\mathscr{A}(W)^X$ such that the roots of $\chi(\mathscr{A}(W)^X, t)$ are the first d exponents of $\mathscr{A}(W)$ when ordered by size. In view of Terao's factorization theorem, it is natural to pose:

Conjecture (Orlik-Solomon-Terao 1987)

For every Coxeter arrangement $\mathscr{A}(W)$ the first d exponents of $\mathscr{A}(W)$ when ordered by size are realized as the exponents of some free restriction $\mathscr{A}(W)^{X}$ of $\mathscr{A}(W)$ for every $1 \le d \le \ell$.

Proof: long case-by-case studies by Orlik-Terao (1992, 1993). Goal: Find a uniform proof at least for Weyl arrangements.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

Arrangements

- V an ℓ -dimensional, complex vector space;
- \mathscr{A} a (central) hyperplane arrangement in V;
- $L(\mathscr{A})$ the intersection lattice of \mathscr{A} .
- for X in $L(\mathscr{A})$ consider the *localization* \mathscr{A}_X of \mathscr{A} at X: $\mathscr{A}_X := \{H \in \mathscr{A} \mid H \supset X\} \subseteq \mathscr{A}.$
- for X in $L(\mathscr{A})$ consider the *restriction* \mathscr{A}^X of \mathscr{A} to X: $\mathscr{A}^X := \{H \cap X \mid H \in \mathscr{A} \setminus \mathscr{A}_X\}$ is a hyperplane arrangement in X.
- Let $S = S(V^*)$ be the symmetric algebra of the dual space V^* of V.
- The defining polynomial $Q(\mathscr{A})$ of \mathscr{A} is given by

$$Q(\mathscr{A}) := \prod_{H \in \mathscr{A}} \alpha_H \in S,$$

where $\alpha_H \in V^*$ satisfies $H = \ker(\alpha_H)$.

Free Arrangements

Let Der(S) be the S-module of \mathbb{C} -derivations of S. It is a free S-module with basis $\partial/\partial x_1, \ldots, \partial/\partial x_\ell$.

From the grading of S, we obtain a \mathbb{Z} -grading $\operatorname{Der}(S) = \bigoplus_{p \in \mathbb{Z}} \operatorname{Der}(S)_p$.

Definition (K. Saito 1975/1981)

The module of *A*-derivations of *A* is defined by

 $D(\mathscr{A}) := \{ \theta \in \mathsf{Der}(S) \mid \theta(Q(\mathscr{A})) \in Q(\mathscr{A})S \}.$

We say that \mathscr{A} is *free* if $D(\mathscr{A})$ is a free *S*-module.

If \mathscr{A} is a free arrangement we may choose a homogeneous basis $\theta_1, \ldots, \theta_\ell$ of $D(\mathscr{A})$. The degrees of the θ_i are called the *exponents* of \mathscr{A} . They are uniquely determined by \mathscr{A} . In that case we write

 $\exp(\mathscr{A}) := (e_1, e_2, \dots, e_\ell)$

for the exponents of \mathscr{A} .

- If \mathscr{A} is free, so is any localization \mathscr{A}_X .
- In general the restriction \mathscr{A}^X of a free arrangement \mathscr{A} need not be free (Edelman-Reiner 1991).
- Every reflection arrangement A(G) is free, for G a complex reflection group (Arnold/Saito (case of Coxeter groups); Terao (general case) 1980).
- For \$\alpha(G)\$ the reflection arrangement of a complex reflection group G, every restriction \$\alpha(G)^X\$ of \$\alpha(G)\$ is free.
 (Orlik-Terao 1992, 1993: Coxeter, in complex case up to dim \$X = 3\$, Hoge-R 2013: \$G_{33}\$, \$G_{34}\$ and dim \$X = 4, 5\$).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Fix $H \in \mathscr{A}$, denote $\mathscr{A}' := \mathscr{A} \setminus \{H\}$ and $\mathscr{A}'' := \mathscr{A}^H$. Call $(\mathscr{A}, \mathscr{A}', \mathscr{A}'')$ the triple with respect to the hyperplane $H \in \mathscr{A}$.

Theorem (Addition-Deletion Theorem (Terao 1980))

Let \mathscr{A} be a non-empty arrangement and let $H \in \mathscr{A}$. Then two of the following statements imply the third:

- (i) \mathscr{A} is free with $\exp(\mathscr{A}) = (e_1, \ldots, e_{\ell-1}, e_{\ell})$.
- (ii) \mathscr{A}' is free with $\exp(\mathscr{A}') = (e_1, \ldots, e_{\ell-1}, e_{\ell} 1)$.
- (iii) \mathscr{A}'' is free with $\exp(\mathscr{A}'') = (e_1, \ldots, e_{\ell-1})$.

Moreover, all three assertions hold if \mathscr{A} and \mathscr{A}' are both free.

Terao's Theorem above motivates the following concept.

Definition (Orlik-Terao 1992)

The class \mathcal{IF} of *inductively free* arrangements is the smallest class of arrangements which satisfies

- (i) the empty arrangement \emptyset_{ℓ} is in \mathcal{IF} for $\ell \geq 0$,
- (ii) if there exists $H \in \mathscr{A}$ such that $\mathscr{A}'' \in \mathcal{IF}$, $\mathscr{A}' \in \mathcal{IF}$, and $\exp(\mathscr{A}'') \subseteq \exp(\mathscr{A}')$, then $\mathscr{A} \in \mathcal{IF}$.

Inductive freeness is a combinatorial property (Cuntz-Hoge 2015). Example: Coxeter arrangements are inductively free; in fact they are hereditarily inductivley free (every restriction is inductivley free) (Barakat-Cuntz 2012).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Definition (Mücksch-R 2021; Mücksch-R-Tran 2023)

Suppose \mathscr{A} is free with exponents $\exp(\mathscr{A}) = (e_1, e_2, \dots, e_\ell)_{\leq}$.

- A is accurate provided for each 1 ≤ d ≤ l there exists a flat X_d in L(A) of dimension d such that the restriction A^{X_d} of A to X_d is free with exp(A^{X_d}) = (e₁, e₂,..., e_d)≤. The tuple (X₁, X₂,..., X_l) is a witness for the accuracy of A.
- If a state of a such that X₁ ⊂ X₂ ⊂ ... ⊂ X_ℓ is a flag in L(A).
- A is *ind-flag-accurate* if A is both inductively free and flag-accurate, and there is a witness (X₁, X₂,..., X_ℓ) for the flag-accuracy of A such that A^{X_d} is inductively free for every 1 ≤ d ≤ ℓ. In that case (X₁, X₂,..., X_ℓ) is a *witness* for the ind-flag-accuracy of A.

・ ロ ト ・ (目 ト ・ 目 ト ・ 日 ト

nar

Examples among reflection arrangements

Example

Let $G = G(1, 1, \ell)$ be the symmetric group. Then $\mathscr{A}(G)$ is free with $\exp \mathscr{A}(G) = \{1, 2, \dots, \ell - 1\}$. Let $X_d := \{x_1 = \dots = x_{\ell-d+1}\}$ for $1 \le d \le \ell - 1$. Then $\mathscr{A}(G)^{X_d} \cong \mathscr{A}(G(1, 1, d))$. So the latter is free with $\exp \mathscr{A}(G) = \{1, 2, \dots, d - 1\}$. Since braid arrangements are inductively free and the flats X_d form a flag in $L(\mathscr{A}(G))$, the braid arrangement $\mathscr{A}(G)$ is ind-flag-accurate.

Rephrase motivating conjecture:

Conjecture (Orlik-Solomon-Terao 1987)

Every Coxeter arrangement is accurate.

Proof: intricate and long case-by-case studies (Orlik-Terao 1992, 1993). Uniform proof for Weyl arrangements [Mücksch-R 2021] (MAT-freeness). Are Coxeter arrangements even flag-accurate, or ind-flag-accurate?

Definition/Theorem (Abe 2016) An ℓ -arrangement \mathscr{A} is *divisionally free* if there is a flag $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_{\ell-1} \subseteq X_\ell = V$ with dim $(X_i) = i$ for $1 \le i \le \ell$ and $\chi(\mathscr{A}^{X_i}, t) \mid \chi(\mathscr{A}^{X_{i+1}}, t)$ for each $1 \le i \le \ell - 1$. Such a flag is called a *divisional flag*. Such \mathscr{A} are free.

Remarks

(i). If \mathscr{A} is flag-accurate, then it is both accurate and divisionally free, since any witness for the flag-accuracy is a divisional flag and a witness for accuracy. The converse is false (ex. ideal Shi arrangement in type F_4). (ii). Flag-accuracy only depends on $L(\mathscr{A})$ and thus is combinatorial, ditto for ind-flag-accuracy. Likewise, divisional freeness is also combinatorial. But it is not known whether this is also the case for accuracy itself.

・ロン ・四 と ・ 回 と

Э

nar

Theorem (Mücksch-R 2021; Mücksch-R-Tran 2023)

Let G be a complex reflection group with reflection arrangement $\mathscr{A} = \mathscr{A}(G)$. Then \mathscr{A} is flag-accurate if and only if it is divisionally free. This is the case if and only if G has no irreducible factor isomorphic to one of the monomial groups $G(r, r, \ell)$, r > 2, $\ell > 2$, or $G_{24}, G_{27}, G_{29}, G_{33}, G_{34}$.

Proof uses classification of divisionally free reflection arrangements due to Abe (2016). [Mücksch-R 2021]: accuracy and divisional freeness coincide for reflection arrangements. Proof extends to flag-accuracy.

Corollary

Coxeter arrangements are ind-flag-accurate.

Proof uses hereditary inductive freeness of Coxeter arrangements (Barakat-Cuntz 2012).

Theorem (Mücksch-R-Tran 2023)

Let G be an irreducible complex reflection group with reflection arrangement $\mathscr{A} = \mathscr{A}(G)$. Suppose $G \neq G_{31}$. TFAE:

- (i) A is accurate;
- (ii) A is flag-accurate;
- (iii) *A* is ind-flag-accurate;
- (iv) A is divisionally free;
- (v) \mathscr{A} is inductively free.

Proof uses theorem above and classification of inductively free reflection arrangements (Hoge-R 2015). G_{31} is excluded, as $\mathscr{A}(G_{31})$ itself is not inductively free, but $\mathscr{A}(G_{31})$ does

satisfy the properties in parts (i), (ii), and (iv) of the theorem. In particular, $\mathscr{A}(G_{31})$ is flag-accurate, but not ind-flag-accurate.

The following is very helpful in inductive arguments:

Lemma

Let \mathscr{A} be (inductively) free with exponents $\exp(\mathscr{A}) = (e_1, \ldots, e_{\ell})_{\leq}$. Then \mathscr{A} is (ind-)flag-accurate if and only if there exist k linearly independent hyperplanes $H_1, \ldots, H_k \in \mathscr{A}$ for some $1 \leq k \leq \ell$ such that \mathscr{A}^{X_i} is (inductively) free with $\exp(\mathscr{A}^{X_i}) = (e_1, \ldots, e_{\ell-i})_{\leq}$ for each $1 \leq i \leq k$ where $X_i := \bigcap_{j=1}^i H_j$ and that \mathscr{A}^{X_k} is (ind-)flag-accurate. In particular, \mathscr{A} is (ind-)flag-accurate if and only if there exists an H in \mathscr{A} such that \mathscr{A}^H is (ind-)flag-accurate with $\exp(\mathscr{A}^H) = (e_1, \ldots, e_{\ell-1})_{<}$.

Reverse implication of last statement also applies for accuracy, but not forward implication: there are examples where \mathscr{A} is accurate, but \mathscr{A}^{H} is not accurate for any H.

MAT-freeness

In 2020, Cuntz-Mücksch introduced the notion of *MAT-freeness* to investigate arrangements whose freeness can be derived using an iterative application of the Multiple Addition Theorem (due to Abe et al 2016).

Theorem (Mücksch-R 2021)

MAT-free arrangements are accurate.

MAT-freeness is a combinatorial property only relying on $L(\mathscr{A})$. As *ideal subarrangements* of Weyl arrangements are MAT-free, due to Abe-Barakat-Cuntz-Hoge-Terao 2016, we get:

Theorem (Mücksch-R 2021)

Ideal arrangements are accurate.

Theorem (Mücksch-R-Tran 2023)

Ideal arrangements of rank at most 8 are flag-accurate.

Theorem (Mücksch-R 2021)

Extended Shi arrangements Shi^k , ideal-Shi arrangements $\mathrm{Shi}_{\mathcal{I}}^k$ and extended Catalan arrangements Cat^k are accurate.

Theorem (Mücksch-R-Tran 2023)

Extended Shi arrangements Shi^m are flag-accurate. Extended Catalan arrangements Cat^m of Dynkin type A, B, or C are flag-accurate.

Conjecture

Extended Catalan arrangements are flag-accurate.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Let $\mathscr{A}' = (\mathscr{A}', V)$ be a free arrangement with $\exp(\mathscr{A}') = (e_1, \ldots, e_\ell)_{\leq}$ and let $1 \leq p \leq \ell$ be the multiplicity of the highest exponent, i.e.

Let H_1, \ldots, H_q be hyperplanes $\vec{h} \neq \vec{h} \neq \vec{$

 $\mathscr{A}_{j}^{\prime\prime} := (\mathscr{A}^{\prime} \cup \{H_{j}\})^{H_{j}} = \{H \cap H_{j} \mid H \in \mathscr{A}^{\prime}\}, \text{ for } j = 1, \dots, q.$ Assume that the following conditions are satisfied:

(1) $X := H_1 \cap \cdots \cap H_q$ is q-codimensional.

- (2) $X \not\subseteq \bigcup_{H \in \mathscr{A}'} H$.
- (3) $|\mathscr{A}'| |\mathscr{A}''_j| = e$ for $1 \le j \le q$.

Then $q \leq p$ and $\mathscr{A} := \mathscr{A}' \cup \{H_1, \dots, H_q\}$ is free with

$$\exp(\mathscr{A}) = (e_1, \ldots, e_{\ell-q}, e+1, \ldots, e+1)_{\leq}.$$

Definition

Let \mathscr{A}' and $\{H_1, \ldots, H_q\}$ be as in MAT-Theorem such that conditions (1)–(3) are satisfied. Then the addition of $\{H_1, \ldots, H_q\}$ to \mathscr{A}' resulting in $\mathscr{A} = \mathscr{A}' \cup \{H_1, \ldots, H_q\}$ is called an *MAT-step*.

An iterative application of the MAT-Theorem motivates the concept of MAT-freeness.

Definition (Cuntz-Mücksch 2019)

An arrangement *A* is called *MAT-free* if there exists an ordered partition

$$\pi = (\pi_1 | \cdots | \pi_n)$$

of \mathscr{A} such that the following hold. Set $\mathscr{A}_0:= \varnothing_\ell$ and

$$\mathscr{A}_k := \bigcup_{i=1}^k \pi_i \quad \text{ for } 1 \le k \le n.$$

Then for every $0 \le k \le n-1$ suppose that

(1)
$$\operatorname{rk}(\pi_{k+1}) = |\pi_{k+1}|,$$

(2) $\cap_{H \in \pi_{k+1}} H \nsubseteq \bigcup_{H' \in \mathscr{A}_k} H',$
(3) $|\mathscr{A}_k| - |(\mathscr{A}_k \cup \{H\})^H| = k \text{ for each } H \in \pi_{k+1},$
i.e. $\mathscr{A}_{k+1} = \mathscr{A}_k \cup \pi_{k+1} \text{ is an MAT-step.}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

nar

Theorem (Cuntz-Mücksch 2020)

Let G be an irreducible complex reflection group with reflection arrangement $\mathscr{A} = \mathscr{A}(G)$. Suppose $G \neq G_{32}$. Then \mathscr{A} is MAT-free if and only if it is inductively free. This is the case if and only if G has no irreducible factor isomorphic to one of the monomial groups $G(r, r, \ell)$, r > 2, $\ell > 2$, or $G_{24}, G_{27}, G_{29}, G_{31}, G_{33}, G_{34}$.

Theorem (Abe-Barakat-Cuntz-Hoge-Terao 2016)

Ideal subarrangements of Weyl arrangements are MAT-free.

(本間) (本語) (本語) (二語)