On the automorphisms of a family of small ($q, 8$)-graphs

Štefan Gyürki
Slovak University of Technology

Abstract

For given integers $k \geq 2$ and $g \geq 3$, the k-regular graphs of girth g are called (k, g)-graphs. In the cage problem one has to construct the smallest possible (k, g) graph (with respect to the order). The smallest such graphs are called (k, g)-cages.

It is known that the $(q+1,8)$-cages, when q is an odd prime power, arise as incidence graphs of generalized quadrangles, thus they are very symmetric in the sense of automorphisms and transitivity.

There were a few attempts to construct small ($q, 8$)-graphs from the $(q+1,8)$ cages as induced subgraphs. In this talk, maybe surprisingly, we show that a family of such $(q, 8)$-graphs of order $2 q\left(q^{2}-1\right)$ is not so symmetric in comparison with other families. More precisely, we show that their group of automorphisms has precisely 4 orbits on the set of vertices.

Joint work with Pavol Jánoš.

