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Abstract. 

          Homogeneous algebraic graphs defined over an arbitrary field are classical objects 

of Algebraic Geometry.  Assume that codimension of homogeneous graph is the ratio of 

dimension of variety of its vertices and the dimension of neighbourhood of some vertex. 

We evaluate the minimal codimension v(g) of an algebraic graph of prescribed girth g.  

       We use known constructions of families of homogeneous bipartite algebraic graphs of 

increasing girth defined over arbitrary integrity domain K for the constructions of families 

of polynomial transformations of affine varieties K
n
 (free modules over K), n=1,2,… of 

polynomial degree k=2, 3. Some applications of these families of groups to Theoretical 

Computer Science will be discussed. 

  

1. On special optimisation problem for homogeneous algebraic graphs.          

Let us start from the concept of homogeneous algebraic graph. Let F be a 

field . 



 

 Recall that a projective space over F is a set of elements constructed from 

a vector space over F such that a distinct element of the projective space 

consists of all non-zero vectors which are equal up to a multiplication by a 

non-zero scalar. 

 

Its subset Q is called a quasiprojective variety, if it is the set of all solutions 

of some system of homogeneous polynomial equations and inequalities. 

 If F is a field than we can define a dimension dim Q of Q  as maximal 

dimension of subvariety isomorphic to Fn. 

 

EXAMPLES. 



1) If Q=Fn  then dimension of Q is n. 

 

2) If Q is Grassmanian , i. e. the totality of m-dimensional subspaces of 

Fn. Then Q is subdivided into orbits Cn
m of group UTn(F) 

unitriangular matrices of kind Fi, i≥0. The maximal orbit is a vector 

space of dimension m(n-m). So dim(Q)=m(n-m). 

3) Let us consider generalised m-gons corresponding to Chevalley 

groups A2(F), B2(F) and G2(F), m=3, 4, …, 5 respectively  Borel 

subgroups has orbits on partition sets of these bipartite graph of kind 

Fi, i≥0 , i=0, 1,…, m-1. So the dimension of the vertex set of this  

thick generalise m-gon is m-1. 

 



An algebraic graph ѱ over F consists of two things: the vertex set Q being a 

quasiprojective 

variety over F of non-zero dimension and the edge set being a quasiprojective 

variety ѱ in Q × Q  

such that (x, x) is not element of ѱ  for each x from  Q, 

 and x  ѱ y implies y ѱ x (x ѱ y means (x, y) is an element of ѱ. 

 

The graph ѱ is homogeneous (or N-homogeneous), if for each vertex  w from  Q, 

the set {x | w ѱ x } is 

isomorphic a quasiprojective variety M(w) over F of a non-zero finite dimension 

N. 

  



We further assume that each M(w) contains at least 3 elements and field F 

contains more than two elements.  We refer to codim(ѱ)=dim(Q)/N as 

codimension  of an algebraic  graph ѱ. 

     One of natural generalisation is homogeneous algebraic graph over commutative ring K 

can be obtained via straightforward change of field F for K. 

Studies of algebraic graphs  with some restrictions on their cycles are motivated 

by the following 3 areas in Mathematics.  

1) Investigations in the case of finite case are motivated by  Extremal Graph 

Theory. WE HAVE NICE INVITED TALK BY FELIX LAZEBNIK few minutes 

ago.  

 

2) Flag transitive geometries over arbitrary fields  are classical objects of 

Algebraic Geometry, they are incidence graphs  i. e. simple graphs of binary 



relations defined over algebraic varieties over field F such that their edge 

sets are also algebraic varieties over F.   

 

Rank two geometries are building bricks for geometries of higher rank. Their 

definitions are given in terms of girth and diameter.  

 

For example classical projective plane is a graph of girth 6 and diameter 3. Its 

vertex set is a disjoint union of one dimensional    

and two dimensional vector spaces of F3.  J. Tits defined generalised m-gons as a  

bipartite graph of girth 2m and diameter m. 

Noteworthy that geometries of Chevalley groups A2(F), B2(F) and G2(F) are 

generalised m-gons for m=3, 4 and 6.   

3) Studies of families G i (F) of homogeneous algebraic graphs defined over 

the field F with well defined projective limits G(F) when n tends to infinity 



form an interesting  direction of Algebraic Geometry.   The cases when 

G(F) is a forest or a tree are especially important. Investigations of  growth 

of order of minimal cycles in Gi(F) are naturally required in this cases 

   
      A possibility to define For by system of equations over some field of special 

commutative ring K i.e. as a projective limit of homogeneous algebraic graphs Gi  

, i=1,2, ... of increasing girth defined  over K  motivate special direction of 

Infinite Network Theory. 

 

4) Studies of walks on homogeneous algebraic graphs 

over rings K[x1, x2,…., xn] motivated by the THEORY OF SYMBOLIC 

COMPUTATIONS. 

 

 Let us introduce some definitions of homogeneous algebraic graph theory 
 



We refer to  G  as infinite algebraic graph over K if G  is a projective limit for the 

family  Gi  i=1,2, ... of k-homogeneous algebraic graphs. 

 

If G is a forest we say that the family  Gi  of k-homogeneous graphs  is an 

algebraic  forest approximation over commutative ring K.  

 

Let gi stands for the girth of Gi. 

  

 In the case  gi ≥ cni , where ni  are dimensions of the vertex sets V(Gi ) of the 

graph Gi  and c is some positive constant we use term  algebraic forest 

approximation of large girth.  
 

The first example of the family of graphs  of large girth over arbitrary field was 

introduced in [1998] where was stated that graphs D(n,K) over arbitrary infinite 

integrity domain have girth ≥ 2[(n+5)/2]. This fact was proven in [Ustimenko, 

Journal of Math Sci, 2007]. A bit more short prove without usage of terminology 

of linguistic dynamic systems theory is given in [IACR e-print archive, 

https://eprint.iacr.org/2022/1668.pdf]. 



 

 

     In [T. Shaska , Ustimenko] it was  proven that the girth of D(n, F) defined 

over the field F of characteristic zero equals 2[(n+5)/2]. 

 

          

 

Other definitions of Homogeneous Algebraic Graph Theory are motivated by the 

following statement.  

        

     Theorem  [T. Shaska, V. Ustimenko, Lin. Alg and its Appl].  

Let G be the homogeneous algebraic graph over a field F of girth g such that the 

dimension of a neighbourhood for each vertex is N, N ≥1. Then codim(G) = 

dim(Q)/N ≥[(g - 1)/2]. 

 



We introduce v(g) as minimal value of codim(G) for homogeneous algebraic 

graph G of girth g.  

We refer to v(g) as algebraic rank  of girth g.  

 

Corollary.  

v(g) ≥ [(g-1)/2] 

We refer to graph G of girth g and codim(G)=v(g) as algebraic cage. 

 In the case of graph G of girth g 

and codim(G)=[(g-1)/2] we say that  G is algebraic Moore graph. 

  

 

 



Theorem 1. 

 Let v(g) be the minimal codimension of homogeneous algebraic graph of 

even girth g=2k+2, k ≥6. 

Then  

            k≤ v(g) ≤  (3k−3+e)/2  where e = 0 if k is odd, and 

 e = 1 if k is even. 

(graphs CD(n,F)) 

Let F be a field F ≠ F2. We introduce Fv(g) as minimal codim(G) for 

 algebraic graph G over the field F with girth g. ● 

If g , g ≥6 is even then Fv(g)   is at least  (g-2)/2,  for each field F, F ≠ F2. 

The upper bound for Fv(g)   can be heavy dependable from the choice of field. 

  



THEOREM 2. 

 There are algebraic Moore graphs of girth 6, 8, 10, 12  

C4, C6, C8 , C10 of codimensions 3, 4, 5 and 6 respectively.  

(regular generalised m-gons for m=3, 4 , 6 and graph A(4, 4)). 

 

REMARK. Instead of generalised triangles and quadrangles one can take 

graphs D(2, F) and D(3, F) (affine parts of generalised polygons). 

THEOREM. 

6 ≤ v(14) ≤ Fv(14) ≤ 7 

It follows from the fact that the girth of algebraic graph A(7, F4) equals to 

14 . 

 



CONJECTURE. 

v(14) = 7 and A(7; F4) is an algebraic cage 

 

 

      

  2. OTHER OPTIMISATION PROBLEMS FOR HOMOGENEOUS 

ALGEBRAIC GRAPHS 

      Problems on evaluation of girth and diameter of k-regular simple graph  with k 

≥3 are well known.   Additionally we consider  following optimization  

‘’minimax’’ problems for graphs.   

 
(1) Investigate cycle indicator h(v) of the vertex v of the k-regular graph G, i. e. 

the minimal length of cycle through this vertex v. 

 



(2)  Find the cycle indicator h(G) of the graph which is maximal value of cycle 

indicators  of vertexes of the graph. 

 

As it instantly follows from the  definitions h(G) ≥ g(G), where g(G) stands for 

the girth of the graph, which is minimal size of a cycle of G.  

 

 

We say that family  Gi , i=1, 2, … of increasing order vi.is a family with large 

girth indicator if  cycle indicator h(i) of graph Gi are 

at least clogk-1 (vi) for some independent positive constant c. 

 

Similarly we say that family of homogeneous algebraic graphs  Gi., i=1,2,…,n 

defined over the field F with increasing dimensions di  of vertex sets 



 V(Gi) such that the neighbourhood of each vertex of Gi. has fixed dimension N 

independent from parameter i  

is an algebraic family  of graphs with large cycle indicator if cycle indicator 

h(i) of graph Gi are at least cdi for some positive constant i. 

  

As it follows from definitions each family of graphs (or algebraic graphs) of large 

girth is a family of graphs (algebraic graphs) with large circle indicator. So quite 

many examples of such families are known. In the case of intransitive graphs  the 

re is an interesting problem of computing CYCLIC GAP which is the 

DIFFERENCE between cycle indicator and girth. Some results can be found via 

the link 

https://grahameerskine.co.uk/OU/Slides/Ustimenko.pdf 

 

PROBLEMS.  

 

We can look at 



1) minimal codimensions of homogeneous algebraic graphs without  

CYCLES C2n ,  

2) minimal codimensions of homogeneous algebraic graphs with CYCLE 

INDICATOR 2n, 

3) maximal codimension of bipartite homogeneous graph cod of diameter d. 

  cod≤d-1. 

(generalised m-gons are optimal points of this optimisation problem, 

cod=m-1 and diameter m) 

 EXAMPLE OF FAMILIES are BELOW 

Let K be a commutative ring . 

We define A(n, K) as bipartite graph with the point set P=Kn and line set L=Kn 

(two copies of a Cartesian power of K are used). We will use brackets and 

parenthesis to distinguish tuples from P and L.  

               So (p)=(p1, p2, … , pn) ϵ Pn and [l]=[l1,  l2 , … , ln] ϵ Ln. 



The incidence relation I=A(n,K) (or corresponding bipartite graph I) is given by 

condition  p I l if and only if the equations of the following kind hold. 

p2 - l2=l1p1,   

p3 -  l3= p1 l2, 

 p4 - l4 = l1p3,  

 p5 - l5 = p1 l4 ,  

… , 

pn - ln = p1 ln-1 for odd n and pn - ln = l1 pn-1 for even n. 

We can consider an infinite bipartite graph  A(K) with points 

(p1, p2 ,…, pn ,…) and lines [l1 , l2 ,…,ln , …]. 

We proved that  for each odd n girth indicator of A(n, K) is at least 2n+2. 

FOR THE COMPARISON look at the following edge transitive graphs. 



GRAPHS D(n, K) 

The following interpretation of a family of graphs  D(n. K) in case of general 

commutative ring K is convenient for the computations.  Let us use the same  

notations for points and lines as in previous case of graphs A(n, K). 

 Points and lines are elements of two copies of the affine space  over 

K. Point (p)=(p1, p2, … , pn) is incident with the line [l]=[l1,  l2 , … , ln] if the 

following relations between their coordinates hold: 

p2 - l2=l1p1,   

p3 -  l3= p1 l2, 

 p4 - l4 = l1p3, 

…,  

li-pi=p1li-2 if i congruent to 2 or 3 modulo 4, 



li-pi=l1pi-2 if i congruent to 1 or 0 modulo  4. 

    

 

APPLICATIONS OF GRAPHS OVER COMUTATIVE RINGS TO THEORY OF 

SYMBOLIC COMPUTATIONS AND POSTQUANTUM CRYPTOGRAPHY. 

   

  Postquantum Cryptography is searching for security protection algorithms with resistance 

to adversarial attacks with the usage of Quantum Computer.  In ALGEBRAIC PC the 

usage of SYMBOLIC COMPUTATION and symbolic transformations of affine space Kn , 

K is a commutating ring,  of kind xi →fi(x1, x2,…, xn), i=1, 2,…, n where  fi  are nonlinear 

elements of K[x1, x2,…, xn] is looking promising. WHY? 

  Let us  compare Deterministic Turing machine and strange probabilistic  Quantum Computer, 

which does not allow to repeat the computation twice. 

 



1.Quantum Computer (QC) can factor number essentially faster than Turing machine. Here problem 

of impossibility to repeat the Quantum  computation twice  is not so important. One can check 

whether or not outcome of QC computation is right  on ordinary PC which can multiply numbers 

fast. Similar situation is with Discrete Logarithm Problem. 

 

2.We can form the list of problems for which QC has advantage in a comparison with including 

Fourier transform or Grover  search techniques in information space, Optimisation problems with 

easily computable aim functions, and etc. But the area of Symbolic Computations looks like definite 

area where Turing Machine  has advantage. 

 

The verification of symbolic computations obtained via QC looks like  almost impossible task. 

because  if we recompute written above symbolic computation second time  then all 

coefficients of fi will be changed. So symbolic computations can bring promising 

implementations of schemes from Noncommutative Cryptography or Multivariate 

Cryptography. 

   Let us consider the following important object of Algebraic Geometry. 

 

Affine Cremona Group nCG(K) is defined as endomorphism group of polynomial ring 



K[x1, x2,..., xn] over the commutative ring K. It is an important object of Algebraic 

Geometry (see Max Noether paper [Math Annales 1904] about mathematics of Luigi 

Cremona - prominent figure in Algebraic Geometry in XIX).    

        Element of the group 

 σ can be given via its values on variables, i. e. as the rule  xi→fi(x1, x2, …, xn), i=1, 2,…, 

n.  This rule induces the map σ’: (a1, a2,.., an)→(f1(a1, a2,.., an), f2(x1, x2, …, xn),…, fn(x1, 

x2,…, xn)). 

  In the case when K is a finite field or arithmetic ring Zm  of residues modulo m  

elements of affine Cremona Groups or Semigroups are used in encryption 

algorithms of Multivariate Cryptography. 

 

Let us assume that element σ   is given via so called standard form, i. e.   monomial 

terms of each fi are listed in the lexicographical order.  

 

We define degree of σ as maximal degree of fi . 

 

We say that the piece of information T is a trapdoor accelerator for nonlinear σ   

if the knowledge of T allows  us to compute the reimage of given value b in time 

O(n2).   



            

        Of course it is just an instrument to search for practical trapdoor functions for which     

without knowledge of secret T the computation of reimage in polynomial time is 

impossible.  

 

The existence of theoretical trapdoor functions is closely related to the open 

conjecture that P≠NP. 

 

The following inverse problem is an interesting for applications. Assume that σn  is a 

family of quadratic or cubic elements of  nCG(K) given in the standard form and it has 

hidden trapdoor  accelerator. Find some trapdoor accelerator for this map. 

  

We define degree of subgroup G of nCG(K) as maximal degree of representatives of G. 

 

Theorem 1. For each commutative ring K cardinality ≥ 3 with unity, each positive integer 

n, n ≥ 2, k = 2, 3 there is noncommutative subgroup kG(n, K) of degree k in nCG(K) such 

that each nonlinear element of nG(K) has a trapdoor accelerator. 

 



Remark 1. We can change group kG(n, K) of Theorem 1 for nL kG(n, K) nL-1, where  nL 

ϵAGLn(K) is some family of affine transformations of Kn. 

 

In fact two versions  kGD(n, K) and kGA(n, K) of a  family of  subgroups kG(n, K), n = 2, 

3, . . .  as in Theorem 1 were defined constructively in terms of walks on graphs D(n, K) 

and A(n,K).  

 

If K is a  finite commutative ring then constructed versions of  kG(n, K) are ‘’LARGE’’: 

the projective  limit of these   kG(n, K) is well defined for each K and resulting group is an 

infinite one. 

 

 

REMARK 2. 

Theorem 1 is far for trivial. Let us consider the affine Cremona Semigroup 1CS(K). 

We see that the product of two maps x→x2 and x →x3 will be the map of degree 6. 

In fact it holds for vast majority of pairs of endomorphisms of K[x1, x2, ..xn]. We have to 

multiply the degrees. 



      So elements as in Theorem 1 are very special,  the product of two quadratics elements 

is a quadratic map again. Similarly the product of two cubic elements is a cubic 

transformation again. 

 Clearly that symbolic computations in groups 3G(n, K) are feasible. 

That is why they can be used as platforms for protocols of Noncommutative 

Cryptography. 

 

Theorem 2. For each n ≥2 affine Cremona group nCG(Fq), q=2s  contains quadratic 

automorphism σ  with  trapdoor accelerator and  the inverse of degree ≥2s-1.  

 

Theorem 3.   Let K= Fq , q=2s  and 2G(n, K) be one of the groups 2GD(n, K) and  2GD(n, 

K). If σ1 is nonlinear representative of 2G(n, K) and σ2 such as in Theorem 2 then 

σ1σ2 is also quadratic and its inverse has degree at least 2s-1. 

Example. In the case of  q=264 the degree of inverse is at least 263. 
 



Applications of these statement to CRYPTOLOGY can be found in my 

recorded talk by July 3, 2023 , Sumy Ukraine , Int. Ukrainian Algebraic 

Conference 2023 

https://sites.google.com/view/iacu2023 

 

or my talk at Linz ( Austria) by July 4 , 2023 at Central European 

Conference on Cryptology 

https://secsys.lit-systems.jku.at/cecc2023/ 

 

Application to construction of pseudorandom real sequences were presented 

at https://www.newton.ac.uk/event/FD2W02/, 

CAMBRIDGE, March 2022 

https://www.newton.ac.uk/event/FD2W02/


 

ONE OF THE CONSTRUCTIONS. 

Let ℾ(n, K) be one of the graphs D(n, K) or A(n, K) with points 

x=(x1, x2,…, xn) and lines y=[y1, y2, …, yn] with colours c(x)=x1ϵK and c(y)=y1 ϵK. 

      Each vertex has exactly one neighbour of this bipartite graph of selected 

colour. So the path in the graph is uniquely defined by initial vertex and  

the sequence of consecutive colours.  

So we consider ℾ(n, K[x1, x2.,…, xn]) and the chain with initial point 

(x1, x2,…, xn) and colours x1+ᾳ1, x1+ᾳ2,…. , xt+ᾳ2t 

The destination point of this chain will be point (xt+ᾳ2t, g2, g3,…,gn) 

where gi are cubical polynomials from K[x1, x2,…,xn]). 

We consider automorphism σ= σ(a1, a2, …, a2t): 



 x1→ xt+ᾳ2t, x2→ g2(x1, x2, …,  xn),  x3 → g3(x1, x2, …,  xn),  …, xn →gn(x1, x2, …,  xn). 

of affine Cremona Group  nCG(K). 

Various automorphisms of kind σ(a1, a2, …, at) , t=O(n) generate subgroup 

3G(n, K) such as in Theorem 1. 

The tuple ᾳ1, ᾳ2,…. , ᾳ2t can be considered as a trapdoor accelerator of the map σ 

written in its standard form. 

 

 

REMARK.  

Noteworthy that groups GD(n, K) are much different from  

Aut D(n, K).   They are acting of different sets P and PUL respectively. 



Number of GD(n, K) orbits on Kn coincides with the number of connected 

components of D(n, K)  but group Aut D(n, K) is vertex and edge transitive. 

 

Let K≠F2. Group GA(n, K) acting on Kn is transitively put transformation group 

Aut A(n. K) is intransitive on PUL. 

Quite large subgroup of Aut A(n. K)  are described in my reprint 

On the families of algebraic graphs with the fastest growth of cycle indicator and their 

applications 

https://eprint.iacr.org/2022/1668.pdf 

 

 

 

https://eprint.iacr.org/2022/1668.pdf
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