Upper Bounds on
 the Orders of Cages

Robert Jajcay, Comenius University robert.jajcay Cfmph.uniba.sk

IWONT 2023
July 17-21
ICMS, Bayes Centre, Edinburgh

- A k-regular graph of girth g is a (k, g)-graph
- A k-regular graph of girth g is a (k, g)-graph
- we will denote the order of a smallest (k, g)-graph by $n(k, g)$
- A k-regular graph of girth g is a (k, g)-graph
- we will denote the order of a smallest (k, g)-graph by $n(k, g)$
- the Moore Bound is a lower bound on $n(k, g)$:

$$
n(k, g) \geq M(k, g)= \begin{cases}1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}, & g \text { odd } \\ 2 \frac{(k-1)^{g / 2}-1}{k-2}, & g \text { even }\end{cases}
$$

- A k-regular graph of girth g is a (k, g)-graph
- we will denote the order of a smallest (k, g)-graph by $n(k, g)$
- the Moore Bound is a lower bound on $n(k, g)$:

$$
n(k, g) \geq M(k, g)= \begin{cases}1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}, & g \text { odd } \\ 2 \frac{(k-1)^{g / 2}-1}{k-2}, & g \text { even }\end{cases}
$$

- any (k, g)-graph whose order matches the Moore bound is called a Moore graph
- A k-regular graph of girth g is a (k, g)-graph
- we will denote the order of a smallest (k, g)-graph by $n(k, g)$
- the Moore Bound is a lower bound on $n(k, g)$:

$$
n(k, g) \geq M(k, g)= \begin{cases}1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}, & g \text { odd } \\ 2 \frac{(k-1)^{g / 2}-1}{k-2}, & g \text { even }\end{cases}
$$

- any (k, g)-graph whose order matches the Moore bound is called a Moore graph
- a smallest (k, g)-graph is called a (k, g)-cage;
- A k-regular graph of girth g is a (k, g)-graph
- we will denote the order of a smallest (k, g)-graph by $n(k, g)$
- the Moore Bound is a lower bound on $n(k, g)$:

$$
n(k, g) \geq M(k, g)= \begin{cases}1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}, & g \text { odd } \\ 2 \frac{(k-1)^{g / 2}-1}{k-2}, & g \text { even }\end{cases}
$$

- any (k, g)-graph whose order matches the Moore bound is called a Moore graph
- a smallest (k, g)-graph is called a (k, g)-cage;
- a (k, g)-Moore-graph is necessarily a (k, g)-cage

Known Cages

girth	5	6	7	8	9	10	11	12
order	10	14	24	30	58	70	112	126
\# of cages	1	1	1	1	18	3	1	1

Table: Known trivalent cages.

k	3	4	5	6	7
$n(k, 5)$	10	19	30	40	50
number of cages	1	1	4	1	1

Table: Known cages of girth 5.

- $(7,6)$ - and $(4,7)$-cage
- $(q+1,6)-,(q+1,8)-$, and $(q+1,12)$-cages, q a prime power

The $(3,13)$-case

- $n(3,13) \geq 202=M(3,13)+12$, McKay, Myrvold and Nadon, 1998

The $(3,13)$-case

- $n(3,13) \geq 202=M(3,13)+12$, McKay, Myrvold and Nadon, 1998
- The record $(3,13)$-graph has 272 vertices, Biggs and Hoare, 1989

The $(3,13)$-case

- $n(3,13) \geq 202=M(3,13)+12$, McKay, Myrvold and Nadon, 1998
- The record $(3,13)$-graph has 272 vertices, Biggs and Hoare, 1989
- The record is a Cayley graph, and no smaller Cayley (3,13)-graph exists, Royle

Record ($3, g$)-graphs

Girth g	Lower Bound	Smallest Known (k, g)-Graph	Author(s)
13	202	272	McKay-Myrvold; Hoare
14	258	384	McKay; Exoo
15	384	620	Biggs
16	512	960	Exoo
17	768	2176	Exoo
18	1024	2560	Exoo
19	1536	4324	Hoare, H(47)
20	2048	5376	Exoo
21	3072	16028	Exoo
22	4096	16206	Biggs-Hoare, S(73)
23	6144	35446	Erskine-Tuite
24	8192	35640	Erskine-Tuite
25	12288	108906	Exoo
26	16384	109200	Bray-Parker-Rowley

Record ($3, g$)-graphs

Girth g	Lower Bound	Smallest Known (k, g)-Graph	Author(s)
27	24576	285852	Bray-Parker-Rowley
28	32768	368640	Erskine-Tuite
29	49152	805746	Erskine-Tuite
30	65536	806736	Erskine-Tuite
31	98304	1440338	Erskine-Tuite
32	131072	1441440	Erskine-Tuite

Bermond and Bollobás Question for Cages

Does there exist a constant C such that for every pair of parameters k, g there exists a (k, g)-graph of order not exceeding $M(k, g)+C$?

Bermond and Bollobás Question for Cages

Does there exist a constant C such that for every pair of parameters k, g there exists a (k, g)-graph of order not exceeding

$$
M(k, g)+C ?
$$

- Computer evidence suggests negative answer

Bermond and Bollobás Question for Cages

Does there exist a constant C such that for every pair of parameters k, g there exists a (k, g)-graph of order not exceeding

$$
M(k, g)+C ?
$$

- Computer evidence suggests negative answer
- The excess of a (k, g)-graph of order n is the difference $n-M(k, g)$; which seems to grow with the growth of both degree and girth

Two (Three?) Closely Related Question:

For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u; a k-tree of depth r.

Two (Three?) Closely Related Question:

For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u; a k-tree of depth r.

- What is the maximum number of edges one can add to $\mathcal{T}_{k, g}$ to obtain a graph in which each vertex is of degree $\leq k$ and which does not contain a cycle shorter than g ?

Two (Three?) Closely Related Question:

For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u; a k-tree of depth r.

- What is the maximum number of edges one can add to $\mathcal{T}_{k, g}$ to obtain a graph in which each vertex is of degree $\leq k$ and which does not contain a cycle shorter than g ?
- What is the maximum number of edges one can add to $M(k, g)$ vertices to obtain a graph in which each vertex is of degree $\leq k$ and which does not contain a cycle shorter than g ?

Two (Three?) Closely Related Question:

For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u; a k-tree of depth r.

- What is the maximum number of edges one can add to $\mathcal{T}_{k, g}$ to obtain a graph in which each vertex is of degree $\leq k$ and which does not contain a cycle shorter than g ?
- What is the maximum number of edges one can add to $M(k, g)$ vertices to obtain a graph in which each vertex is of degree $\leq k$ and which does not contain a cycle shorter than g ?
- Are these two numbers equal?

Detour to Multipoles

- A multipole is a generalized graph which contains both edges and semi-edges

Detour to Multipoles

- A multipole is a generalized graph which contains both edges and semi-edges
- The degree of a vertex u in a multipole is the number of edges and semi-edges incident with u

Detour to Multipoles

- A multipole is a generalized graph which contains both edges and semi-edges
- The degree of a vertex u in a multipole is the number of edges and semi-edges incident with u
- A (k, g)-multipole is a multipole in which every vertex is of degree k, and the length of a shortest cycle is g

Detour to Multipoles

- A multipole is a generalized graph which contains both edges and semi-edges
- The degree of a vertex u in a multipole is the number of edges and semi-edges incident with u
- A (k, g)-multipole is a multipole in which every vertex is of degree k, and the length of a shortest cycle is g
- If one picks a vertex u in a (k, g)-graph $\Gamma, g=2 r+1$, and removes all the vertices of Γ of distance larger than r from u, keeping semi-edges for those vertices that lost their neighbors, one obtains a (k, g)-multipole of order $M(k, g)$

Detour to Multipoles

- A multipole is a generalized graph which contains both edges and semi-edges
- The degree of a vertex u in a multipole is the number of edges and semi-edges incident with u
- A (k, g)-multipole is a multipole in which every vertex is of degree k, and the length of a shortest cycle is g
- If one picks a vertex u in a (k, g)-graph $\Gamma, g=2 r+1$, and removes all the vertices of Γ of distance larger than r from u, keeping semi-edges for those vertices that lost their neighbors, one obtains a (k, g)-multipole of order $M(k, g)$
- The minimum number $s_{k, g}$ of semi-edges in a (k, g)-multipole of order $M(k, g)$ gives a lower bound on the order of a (k, g)-cage

$$
M(k, g)+\left\lceil\frac{s_{k, g}}{k}\right\rceil \leq n(k, g)
$$

A 'Much Easier' Bermond and Bollobás Question for Cages

Does there exist a $k \geq 3$ and a constant C_{k} such that there exist infinitely many $g \geq 3$ with the property that there exists a (k, g)-graph of order not exceeding the product $C_{k} M(k, g)$?

The answer to the second question should be ...

- For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the corresponding Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u (a k-tree of depth r)

The answer to the second question should be ...

- For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the corresponding Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u (a k-tre of depth r)
- Take k disjoint copies of $\mathcal{T}_{k, g}$ and complete the graph into a (k, g)-graph by connecting each leave in each tree to one leaf in each other tree

The answer to the second question should be ...

- For odd $g \geq 3, g=2 r+1$, and $k \geq 3$, let $\mathcal{T}_{k, g}$ be the corresponding Moore tree consisting of $M(k, g)$ vertices, a root u of degree k, all the non-leaf vertices of degree k, and all the leaves being of distance r from u (a k-tree of depth r)
- Take k disjoint copies of $\mathcal{T}_{k, g}$ and complete the graph into a (k, g)-graph by connecting each leave in each tree to one leaf in each other tree
- This surely should be possible, and it would give the constant $C_{k}=k$; and maybe one would not even need to use k trees
- In order to get a (k, g)-graph, one could, instead of starting from $\mathcal{T}_{k, g}$, start from $\mathcal{T}_{k, g+2}$ and 'carelessly' complete the edges among the trees without forming cycles smaller than g
- In order to get a (k, g)-graph, one could, instead of starting from $\mathcal{T}_{k, g}$, start from $\mathcal{T}_{k, g+2}$ and 'carelessly' complete the edges among the trees without forming cycles smaller than g
- That would lead to a construction of a (k, g)-graph of order $M(k, g+2)$, and since

$$
\frac{M(k, g+2)}{M(k, g)}=\frac{1+k \frac{(k-1)^{r+1}-1}{k-2}}{1+k \frac{(k-1)^{r}-1}{k-2}} \approx(k-1)
$$

it would give $C_{K} \approx(k-1)$

Historic Upper Bounds

Theorem (Erdős, Sachs, 1963)
For every $k \geq 2, g \geq 3$,

$$
n(k, g) \leq 4 \sum_{t=1}^{g-2}(k-1)^{t}
$$

Historic Upper Bounds

Theorem (Erdős, Sachs, 1963)
For every $k \geq 2, g \geq 3$,

$$
n(k, g) \leq 4 \sum_{t=1}^{g-2}(k-1)^{t}
$$

$$
\frac{4 \sum_{t=1}^{g-2}(k-1)^{t}}{M(k, g)}=\frac{4 \sum_{t=1}^{g-2}(k-1)^{t}}{1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}} \approx M(k, g)^{2}
$$

Historic Upper Bounds

Theorem (Sauer 1967)
For every $k \geq 2, g \geq 3$,

$$
n(k, g) \leq \begin{cases}2(k-2)^{g-2}, & g \text { odd } \\ 4(k-1)^{g-3}, & g \text { even }\end{cases}
$$

Historic Upper Bounds

Theorem (Sauer 1967)

For every $k \geq 2, g \geq 3$,

$$
n(k, g) \leq \begin{cases}2(k-2)^{g-2}, & g \text { odd } \\ 4(k-1)^{g-3}, & g \text { even }\end{cases}
$$

Still,

$$
\frac{2(k-2)^{g-2}}{M(k, g)}=\frac{2(k-2)^{g-2}}{1+k \frac{(k-1)^{(g-1) / 2}-1}{k-2}} \approx M(k, g)^{2}
$$

Constructive Upper Bounds

- $M(k, g) \approx(k-1)^{g / 2}$, equivalently, $\log _{k-1}(M(k, g)) \approx \frac{g}{2}$

Constructive Upper Bounds

- $M(k, g) \approx(k-1)^{g / 2}$, equivalently, $\log _{k-1}(M(k, g)) \approx \frac{g}{2}$
- When evaluating the 'quality' of a construction of an infinite family of k-regular graphs of increasing girths g_{i}, it makes sense to express the orders as powers of $(k-1)$, and then compare these powers to $\frac{g_{i}}{2}$.

Constructive Upper Bounds

- $M(k, g) \approx(k-1)^{g / 2}$, equivalently, $\log _{k-1}(M(k, g)) \approx \frac{g}{2}$
- When evaluating the 'quality' of a construction of an infinite family of k-regular graphs of increasing girths g_{i}, it makes sense to express the orders as powers of $(k-1)$, and then compare these powers to $\frac{g_{i}}{2}$.
- Biggs, 1998, suggested to call an infinite family of k-regular graphs of increasing girths g_{i} and orders v_{i} a family of large girth if there exists a positive $\gamma>0$ such that

$$
g_{i} \geq \gamma \log _{k-1}\left(v_{i}\right), \quad \text { for all } i
$$

Constructive Upper Bounds

- $M(k, g) \approx(k-1)^{g / 2}$, equivalently, $\log _{k-1}(M(k, g)) \approx \frac{g}{2}$
- When evaluating the 'quality' of a construction of an infinite family of k-regular graphs of increasing girths g_{i}, it makes sense to express the orders as powers of $(k-1)$, and then compare these powers to $\frac{g_{i}}{2}$.
- Biggs, 1998, suggested to call an infinite family of k-regular graphs of increasing girths g_{i} and orders v_{i} a family of large girth if there exists a positive $\gamma>0$ such that

$$
g_{i} \geq \gamma \log _{k-1}\left(v_{i}\right), \quad \text { for all } i
$$

- Due to the Moore bound, any family of k-regular graphs of increasing girths g_{i} has $\gamma \leq 2$

Constructive Upper Bounds

- $M(k, g) \approx(k-1)^{g / 2}$, equivalently, $\log _{k-1}(M(k, g)) \approx \frac{g}{2}$
- When evaluating the 'quality' of a construction of an infinite family of k-regular graphs of increasing girths g_{i}, it makes sense to express the orders as powers of $(k-1)$, and then compare these powers to $\frac{g_{i}}{2}$.
- Biggs, 1998, suggested to call an infinite family of k-regular graphs of increasing girths g_{i} and orders v_{i} a family of large girth if there exists a positive $\gamma>0$ such that

$$
g_{i} \geq \gamma \log _{k-1}\left(v_{i}\right), \quad \text { for all } i
$$

- Due to the Moore bound, any family of k-regular graphs of increasing girths g_{i} has $\gamma \leq 2$
- The graphs whose existence is guaranteed by the results of Erdős, Sachs, and Sauer, have $\gamma=1$

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$
- 1984, Imrich, $\gamma \approx 0.48$, and $\gamma \approx 0.96$, for $k=3$

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$
- 1984, Imrich, $\gamma \approx 0.48$, and $\gamma \approx 0.96$, for $k=3$
- 1983, Biggs and Hoare, $\gamma \geq \frac{4}{3}$, for $k=3$

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$
- 1984, Imrich, $\gamma \approx 0.48$, and $\gamma \approx 0.96$, for $k=3$
- 1983, Biggs and Hoare, $\gamma \geq \frac{4}{3}$, for $k=3$
- 1988, Lubotzky, Philips, and Sarnak, $\gamma \geq \frac{4}{3}$, for $k=p+1, p$ a prime

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$
- 1984, Imrich, $\gamma \approx 0.48$, and $\gamma \approx 0.96$, for $k=3$
- 1983, Biggs and Hoare, $\gamma \geq \frac{4}{3}$, for $k=3$
- 1988, Lubotzky, Philips, and Sarnak, $\gamma \geq \frac{4}{3}$, for $k=p+1, p$ a prime
- 1995 Lazebnik, Ustimenko, and Woldar, $\gamma \geq \frac{4}{3}$, for k a prime power

Constructive Upper Bounds

- 1982, Margulis, $\gamma=\frac{4}{9}$
- 1984, Imrich, $\gamma \approx 0.48$, and $\gamma \approx 0.96$, for $k=3$
- 1983, Biggs and Hoare, $\gamma \geq \frac{4}{3}$, for $k=3$
- 1988, Lubotzky, Philips, and Sarnak, $\gamma \geq \frac{4}{3}$, for $k=p+1, p$ a prime
- 1995 Lazebnik, Ustimenko, and Woldar, $\gamma \geq \frac{4}{3}$, for k a prime power
- the hopeless obvious constructions would yield $\gamma \approx 2$, but we have not had any improvements since 1995

Monotonicity of $n(k, g)(?)$

Monotonicity of $n(k, g)(?)$

- Theorem (Sauer, 1967)

For every $k \geq 2, g \geq 3$,

$$
n(k, g)<n(k, g+1)
$$

Monotonicity of $n(k, g)(?)$

- Theorem (Sauer, 1967)

For every $k \geq 2, g \geq 3$,

$$
n(k, g)<n(k, g+1)
$$

- Theorem (Sauer, 1967)

For every even $k \geq 2, g \geq 3$,

$$
n(k, g) \leq n(k+2, g)
$$

Detour to Biregular Cages

- an ($m, n ; g$)-graph is a graph of girth g in which each vertex is of degree m or n

Detour to Biregular Cages

- an ($m, n ; g$)-graph is a graph of girth g in which each vertex is of degree m or n
- biregular graphs are known to exist for all triples ($m, n ; g$), $2 \leq m<n, g \geq 3$

Detour to Biregular Cages

- an ($m, n ; g$)-graph is a graph of girth g in which each vertex is of degree m or n
- biregular graphs are known to exist for all triples ($m, n ; g$), $2 \leq m<n, g \geq 3$
- an $(m, n ; g)$-cage is an $(m, n ; g)$-graph with the smallest number of vertices, $n(m, n ; g)$

Detour to Biregular Cages

- an ($m, n ; g$)-graph is a graph of girth g in which each vertex is of degree m or n
- biregular graphs are known to exist for all triples ($m, n ; g$), $2 \leq m<n, g \geq 3$
- an $(m, n ; g)$-cage is an $(m, n ; g)$-graph with the smallest number of vertices, $n(m, n ; g)$

g	4	5	6	7	8	9	10	11
$n(3, g)$	6	10	14	24	30	58	70	116
$n(3,4 ; g)$	7	13	18	29	39	61	82	125
$n(4, g)$	8	19	26	67	80	275	384	

A possible approach to proving the degree monotonicity:

- Clearly,

$$
n(k, k+1 ; g) \leq n(k+1, g)
$$

A possible approach to proving the degree monotonicity:

- Clearly,

$$
n(k, k+1 ; g) \leq n(k+1, g)
$$

- If one were able to prove the 'obvious' result

$$
n(k, g) \leq n(k, k+1 ; g)
$$

A possible approach to proving the degree monotonicity:

- Clearly,

$$
n(k, k+1 ; g) \leq n(k+1, g)
$$

- If one were able to prove the 'obvious' result

$$
n(k, g) \leq n(k, k+1 ; g)
$$

- then one would prove

$$
n(k, g) \leq n(k, k+1 ; g) \leq n(k+1, g)
$$

Degree Monotonicity via Recursive Constructions (?)

- Lemma (Eze and RJ, 2022)

If Γ is a bipartite k-regular graph of girth 6 , then there exists a $(k+1)$-regular graph of girth 6 and order the 3-multiple of the order of Γ.

Degree Monotonicity via Recursive Constructions (?)

- Lemma (Eze and RJ, 2022)

If Γ is a bipartite k-regular graph of girth 6 , then there exists a $(k+1)$-regular graph of girth 6 and order the 3-multiple of the order of Γ.

- proof using voltage graph lift with a group \mathbb{Z}_{3}

Degree Monotonicity via Recursive Constructions (?)

- Lemma (Eze and RJ, 2022)

If Γ is a bipartite k-regular graph of girth 6 , then there exists a $(k+1)$-regular graph of girth 6 and order the 3-multiple of the order of Γ.

- proof using voltage graph lift with a group \mathbb{Z}_{3}
- $n(k+1,6) \leq 3 n(k, 6)$

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;
- each edge replaced by a pair of opposing arcs;

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;
- each edge replaced by a pair of opposing arcs;
- the set of all arcs denoted by $D(G)$.

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;
- each edge replaced by a pair of opposing arcs;
- the set of all arcs denoted by $D(G)$.

Definition

A voltage assignment on G is any mapping α from $D(G)$ into a group Γ that satisfies the condition $\alpha\left(e^{-1}\right)=(\alpha(e))^{-1}$ for all $e \in D(G)$.

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;
- each edge replaced by a pair of opposing arcs;
- the set of all arcs denoted by $D(G)$.

Definition

A voltage assignment on G is any mapping α from $D(G)$ into a group Γ that satisfies the condition $\alpha\left(e^{-1}\right)=(\alpha(e))^{-1}$ for all $e \in D(G)$.
The derived regular cover (lift) of G with respect to the voltage assignment α is the graph denoted by G^{α}.

- $V\left(G^{\alpha}\right)=V(G) \times \Gamma$,
- u_{g} and v_{f} are adjacent iff $e=(u, v) \in D(G)$ and $f=g \cdot \alpha(e)$.

Recursive Constructions - Voltage Graph Construction

- G, an undirected graph;
- each edge replaced by a pair of opposing arcs;
- the set of all arcs denoted by $D(G)$.

Definition

A voltage assignment on G is any mapping α from $D(G)$ into a group Γ that satisfies the condition $\alpha\left(e^{-1}\right)=(\alpha(e))^{-1}$ for all $e \in D(G)$.
The derived regular cover (lift) of G with respect to the voltage assignment α is the graph denoted by G^{α}.

- $V\left(G^{\alpha}\right)=V(G) \times \Gamma$,
- u_{g} and v_{f} are adjacent iff $e=(u, v) \in D(G)$ and $f=g \cdot \alpha(e)$.
(C) The degree of the derived regular cover of a k-regular G is k-regular.

Recursive Constructions - Voltage Graph Construction -

 Example

Recursive Constructions - Voltage Graph Construction Example

Recursive Constructions - Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γ^{α} is a canonical double cover of Γ if the voltage group is \mathbb{Z}_{2} and each dart of Γ receives the voltage assignment $1 \in \mathbb{Z}_{2}$.

Recursive Constructions - Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γ^{α} is a canonical double cover of Γ if the voltage group is \mathbb{Z}_{2} and each dart of Γ receives the voltage assignment $1 \in \mathbb{Z}_{2}$.

Figure: Canonical Double Covers of C_{4} and C_{5}

Recursive Constructions - Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γ^{α} is a canonical double cover of Γ if the voltage group is \mathbb{Z}_{2} and each dart of Γ receives the voltage assignment $1 \in \mathbb{Z}_{2}$.

Figure: Canonical Double Covers of C_{4} and C_{5}

- The canonical double cover of the Petersen graph of girth 5 is the Desargues graph, which has 20 vertices and girth 6.

Recursive Constructions - Canonical Double Cover

- Theorem (Erdős and Sachs, 1963)

For every $k \geq 3$, and odd $g \geq 3$,

$$
n(k, g+1) \leq 2 n(k, g)
$$

Recursive Constructions - Canonical Double Cover

- Theorem (Erdős and Sachs, 1963)

For every $k \geq 3$, and odd $g \geq 3$,

$$
n(k, g+1) \leq 2 n(k, g)
$$

- Proof via the canonical double cover of a graph of odd girth.

Recursive Constructions - Canonical Double Cover

- Theorem (Erdős and Sachs, 1963)

For every $k \geq 3$, and odd $g \geq 3$,

$$
n(k, g+1) \leq 2 n(k, g)
$$

- Proof via the canonical double cover of a graph of odd girth.
- Theorem (Balbuena, González-Moreno and Montellano-Ballesteros, 2013)

Let $k \geq 2$ and $g \geq 5$, with g odd. Then
$n(k, g+1) \leq\left\{\begin{array}{lc}2 n(k, g)-2\left(\frac{k(k-1)^{(g-3) / 4}-2}{k-2}\right), & g \equiv 3(\bmod 4) \\ 2 n(k, g)-4\left(\frac{(k-1)^{(g-1) / 4}-1}{k-2}\right), & \text { otherwise } .\end{array}\right.$

Recursive Constructions - Voltage Graph Construction

- Theorem (Exoo and RJ, 2011)

Let Γ be a base graph of girth g. Then there exists a voltage graph lift of Γ of girth at least $2 g$.

$$
{ }^{1} \beta(\Gamma)=|E(\Gamma)|-|V(\Gamma)|+1
$$

Recursive Constructions - Voltage Graph Construction

- Theorem (Exoo and RJ, 2011)

Let Γ be a base graph of girth g. Then there exists a voltage graph lift of Γ of girth at least $2 g$.

- The voltage group in this construction is the elementary abelian group $\mathbb{Z}_{2}^{\beta(\Gamma)}$, where $\beta(\Gamma)$ is the Betti number ${ }^{1}$ of Γ, and thus the order of the lift is the $2^{\beta(\Gamma)}$ multiple of the order of Γ.

$$
{ }^{1} \beta(\Gamma)=|E(\Gamma)|-|V(\Gamma)|+1
$$

Recursive Constructions - Voltage Graph Construction

- Theorem (Exoo and RJ, 2011)

Let Γ be a base graph of girth g. Then there exists a voltage graph lift of Γ of girth at least $2 g$.

- The voltage group in this construction is the elementary abelian group $\mathbb{Z}_{2}^{\beta(\Gamma)}$, where $\beta(\Gamma)$ is the Betti number ${ }^{1}$ of Γ, and thus the order of the lift is the $2^{\beta(\Gamma)}$ multiple of the order of Γ.
-

$$
\frac{2^{\beta(\Gamma)}|V(\Gamma)|}{M(k, 2 g)} \geq \frac{2^{\left(\frac{k}{2}-1\right) M(k, g)} M(k, g)}{M(k, 2 g)}
$$

$$
\approx \frac{2^{\left(\frac{k}{2}-1\right)(k-1)^{(g-1) / 2}}(k-1)^{(g-1) / 2}}{(k-1)^{g-1}}=\frac{2^{\left(\frac{k}{2}-1\right)(k-1)^{(g-1) / 2}}}{(k-1)^{(g-1) / 2}}
$$

${ }^{1} \beta(\Gamma)=|E(\Gamma)|-|V(\Gamma)|+1$

How about the step from even to odd girth?

- Theorem (Eze and RJ, 2022)

There is no $\alpha \in \mathbb{R}$ such that for any $k \geq 3$ and even $g \geq 4$, $n(k, g+1) \leq \alpha n(k, g)$.

How about the step from even to odd girth?

- Theorem (Eze and RJ, 2022)

There is no $\alpha \in \mathbb{R}$ such that for any $k \geq 3$ and even $g \geq 4$, $n(k, g+1) \leq \alpha n(k, g)$.

- Proof by analysis of the asymptotics of the Moore bound

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order
- If one wants to obtain a smaller graph, one also needs to remove some vertices

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order
- If one wants to obtain a smaller graph, one also needs to remove some vertices
- Many constructions start off from a Moore graph of girth 6, 8 or 12 , and repeatedly decrease the degree of the graph

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order
- If one wants to obtain a smaller graph, one also needs to remove some vertices
- Many constructions start off from a Moore graph of girth 6, 8 or 12 , and repeatedly decrease the degree of the graph
- In 2008, Gács and Héger present a unified view of these constructions using the concept of a t-good structure

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order
- If one wants to obtain a smaller graph, one also needs to remove some vertices
- Many constructions start off from a Moore graph of girth 6, 8 or 12 , and repeatedly decrease the degree of the graph
- In 2008, Gács and Héger present a unified view of these constructions using the concept of a t-good structure
- A t-good structure in a generalized n-gon is a pair (P, L) consisting of a set of points P, and a set of lines L, subject to the condition that there are t lines in L through any point not in P, and t points in P on any line not in L.

Recursive Degree Decreasing Constructions

- If a (k, g)-graph contains a perfect matching, removing it will result in a $\left(k-1, g^{\prime}\right)$-graph, $g^{\prime} \geq g$, of the same order
- If one wants to obtain a smaller graph, one also needs to remove some vertices
- Many constructions start off from a Moore graph of girth 6,8 or 12 , and repeatedly decrease the degree of the graph
- In 2008, Gács and Héger present a unified view of these constructions using the concept of a t-good structure
- A t-good structure in a generalized n-gon is a pair (P, L) consisting of a set of points P, and a set of lines L, subject to the condition that there are t lines in L through any point not in P, and t points in P on any line not in L.
- Removing the points and lines of a t-good structure from the incidence graph of a generalized n-gon results in a $(q+1-t)$-regular graph of girth at least $2 n$.

Recursive Degree Decreasing Constructions

Theorem (Gács and Héger, 2008)

- For any prime power q and $1 \leq t \leq q$, there is a $(q+1-t, 6)$-graph of order $2\left(q^{2}+q+1-(t q+1)\right)$

$$
\begin{array}{lll}
n(q, 8) & \leq 2\left(q^{3}-2 q\right), & q \text { odd } \\
n(q, 8) & \leq 2\left(q^{3}-3 q-2\right), & q \text { even } \\
n(q, 12) & \leq 2\left(q^{5}-q^{3}\right) &
\end{array}
$$

Recursive Degree Decreasing Constructions

- The $C D(k, q)$-graphs of Lazebnik, Ustimenko, and Woldar are known to be of girth $k+4$ or $k+5$

Recursive Degree Decreasing Constructions

- The $C D(k, q)$-graphs of Lazebnik, Ustimenko, and Woldar are known to be of girth $k+4$ or $k+5$
- Theorem

Let $k \geq 2$ and $g \geq 5$ be integers, and let q denote the smallest odd prime power for which $k \leq q$. Then

$$
\begin{equation*}
n(k, g) \leq 2 k q^{\frac{3}{4} g-a} \tag{2}
\end{equation*}
$$

where $a=4,11 / 4,7 / 2,13 / 4$ for $g \equiv 0,1,2,3 \bmod 4$, respectively.

Recursive Degree Decreasing Constructions

- The $C D(k, q)$-graphs of Lazebnik, Ustimenko, and Woldar are known to be of girth $k+4$ or $k+5$
- Theorem

Let $k \geq 2$ and $g \geq 5$ be integers, and let q denote the smallest odd prime power for which $k \leq q$. Then

$$
\begin{equation*}
n(k, g) \leq 2 k q^{\frac{3}{4} g-a} \tag{2}
\end{equation*}
$$

where $a=4,11 / 4,7 / 2,13 / 4$ for $g \equiv 0,1,2,3 \bmod 4$, respectively.

- Suggestion for further research: Can an idea similar to the idea of a t-good structure be used with the $C D(k, q)$-graphs?

Announcement

- Together with Geoff Exoo, we are preparing the next version of the Dynamic Cage Survey
- Beside updating the tables, we also intend to add sections on
- spectral methods
- connections to designs and geometries
- connectedness and cyclic connectedness
- biregular cages and bipartite biregular cages
- mixed cages

Please, if you have results that should be included in the Survey and have been published after 2013, send them to me or Geoff.

Call for papers for special issue of ADAM

devoted to results obtained at or related to BIRS workshop Extremal Graphs Arising from Designs and Configurations. Papers submitted for this special issue should be on topics presented or discussed at the workshop Extremal Graphs Arising from Designs and Configurations, organized in Banff, Canada, May 14-19, 2023.

Call for papers for special issue of ADAM

 devoted to results obtained at or related to BIRS workshop Extremal Graphs Arising from Designs and Configurations. Papers submitted for this special issue should be on topics presented or discussed at the workshop Extremal Graphs Arising from Designs and Configurations, organized in Banff, Canada, May 14-19, 2023.- To be considered for inclusion in this special issue, papers should be submitted by November 30, 2023 via the ADAM website https://adam-journal.eu/. Accepted papers will become available for readers almost immediately through the list of accepted papers. The entire issue should become available by the end of 2024; or possibly by the beginning of 2025.

Call for papers for special issue of ADAM

devoted to results obtained at or related to BIRS workshop Extremal Graphs Arising from Designs and Configurations. Papers submitted for this special issue should be on topics presented or discussed at the workshop Extremal Graphs Arising from Designs and Configurations, organized in Banff, Canada, May 14-19, 2023.

- To be considered for inclusion in this special issue, papers should be submitted by November 30, 2023 via the ADAM website https://adam-journal.eu/. Accepted papers will become available for readers almost immediately through the list of accepted papers. The entire issue should become available by the end of 2024; or possibly by the beginning of 2025.
- The ideal length of papers is 10 to 15 pages, but longer or shorter papers will be considered. Papers that are not processed in time for the special issue may still be accepted and published in subsequent regular issues of ADAM.

Thank you.

