# On the spectra and spectral radii of token graphs 

Cristina Dalfó<br>Universitat de Lleida, Igualada (Barcelona), Catalonia<br>joint work with<br>Miquel Àngel Fiol<br>Universitat Politècnica de Catalunya, Barcelona, Catalonia<br>Mónica A. Reyes<br>Universitat de Lleida, Igualada (Barcelona), Catalonia

International Workshop on Optimal Network Topologies (IWONT 2023)
ICMS, Bayes Centre, Edinburgh, Scotland, 17 - 21 July 2023

## Outline

1．Introduction

2．$k$－algebraic connectivity and $k$－spectral radius

3．Spectral radius of token graphs

4．Distance－regular graphs

## Outline

1. Introduction
2. $k$-algebraic connectivity and $k$-spectral radius
3. Spectral radius of token graphs
4. Distance-regular graphs

## Introduction: Some results on token graphs

Theorem (Audenaert, Godsil, Royle, and Rudolph, 2007) All the strongly regular graphs with the same parameters have cospectral 2-token graphs.

## Introduction: Some results on token graphs

Theorem (Audenaert, Godsil, Royle, and Rudolph, 2007)
All the strongly regular graphs with the same parameters have cospectral 2-token graphs.

Theorem (Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, Zaragoza Martínez, 2021)
For any graph $G$ on $n$ vertices, the Laplacian spectrum of its $h$-token is contained in the Laplacian spectrum of its $k$-token for every $1 \leq h<k \leq n / 2$ :

$$
\operatorname{sp} F_{h}(G) \subset \operatorname{sp} F_{k}(G)
$$

## Introduction: Some results on token graphs

Theorem (Audenaert, Godsil, Royle, and Rudolph, 2007)
All the strongly regular graphs with the same parameters have cospectral 2-token graphs.

Theorem (Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, Zaragoza Martínez, 2021)
For any graph $G$ on $n$ vertices, the Laplacian spectrum of its $h$-token is contained in the Laplacian spectrum of its $k$-token for every $1 \leq h<k \leq n / 2$ :

$$
\operatorname{sp} F_{h}(G) \subset \operatorname{sp} F_{k}(G)
$$

Theorem (Lew, 2023)
Let $G$ have Laplacian eigenvalues $\lambda_{1}(=0)<\lambda_{2} \leq \cdots \leq \lambda_{n}$. Let $\lambda$ be an eigenvalues of $F_{k}(G)$ not in $F_{k-1}(G)$. Then,

$$
k\left(\lambda_{2}-k+1\right) \leq \lambda \leq k \lambda_{n} .
$$

## Introduction: Spectral radius

- The index or spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In the case of the Laplacian matrix, it is called Laplacian spectral radius.


## Introduction: Spectral radius

- The index or spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In the case of the Laplacian matrix, it is called Laplacian spectral radius.
- It has special relevance in the study of the: diameter, radius, domination number, matching number, clique number, independence number, chromatic number, or the sequence of vertex degrees.


## Introduction: Spectral radius

- The index or spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In the case of the Laplacian matrix, it is called Laplacian spectral radius.
- It has special relevance in the study of the: diameter, radius, domination number, matching number, clique number, independence number, chromatic number, or the sequence of vertex degrees.
- This leads to studying the structure of graphs having an extremal spectral radius and fixed values of some of such parameters.


## Introduction: Notation

- $G$ : a (simple and connected) graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$.


## Introduction: Notation

- $G$ : a (simple and connected) graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$.
- The spectrum of the adjacency matrix $A$ is $\operatorname{sp} G \equiv \operatorname{sp} \boldsymbol{A}=\left\{\theta_{0}^{m_{0}}, \theta_{1}^{m_{1}}, \ldots, \theta_{d}^{m_{d}}\right\}$, where $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. By the Perron-Frobenius theorem, $G$ has spectral radius $\rho(G)=\theta_{0}$.


## Introduction: Notation

- $G$ : a (simple and connected) graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$.
- The spectrum of the adjacency matrix $A$ is $\operatorname{sp} G \equiv \operatorname{sp} \boldsymbol{A}=\left\{\theta_{0}^{m_{0}}, \theta_{1}^{m_{1}}, \ldots, \theta_{d}^{m_{d}}\right\}$, where $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. By the Perron-Frobenius theorem, $G$ has spectral radius $\rho(G)=\theta_{0}$.
- The spectrum of the Laplacian matrix $L=\boldsymbol{D}-\boldsymbol{A}$ is $\lambda_{1}(=0)<\lambda_{2} \leq \cdots \leq \lambda_{n}$.
$\lambda_{2}$ is the algebraic connectivity.


## Introduction: Local spectrum of a vertex

- Let $G$ have different eigenvalues $\theta_{0}>\cdots>\theta_{d}$, with respective multiplicities $m_{0}, \ldots, m_{d}$.


## Introduction: Local spectrum of a vertex

- Let $G$ have different eigenvalues $\theta_{0}>\cdots>\theta_{d}$, with respective multiplicities $m_{0}, \ldots, m_{d}$.
- If $\boldsymbol{U}_{i}$ is the $n \times m_{i}$ matrix whose columns are the orthonormal eigenvectors of $\theta_{i}$, the matrix $\boldsymbol{E}_{i}=\boldsymbol{U}_{i} \boldsymbol{U}_{i}^{\top}$, for $i=0,1, \ldots, d$, is the (principal) idempotent of $\boldsymbol{A}$ and represents the orthogonal projection of $\mathbb{R}^{n}$ onto the eigenspace $\operatorname{Ker}\left(\boldsymbol{A}-\theta_{i} \boldsymbol{I}\right)$.


## Introduction: Local spectrum of a vertex

- Let $G$ have different eigenvalues $\theta_{0}>\cdots>\theta_{d}$, with respective multiplicities $m_{0}, \ldots, m_{d}$.
- If $\boldsymbol{U}_{i}$ is the $n \times m_{i}$ matrix whose columns are the orthonormal eigenvectors of $\theta_{i}$, the matrix $\boldsymbol{E}_{i}=\boldsymbol{U}_{i} \boldsymbol{U}_{i}^{\top}$, for $i=0,1, \ldots, d$, is the (principal) idempotent of $\boldsymbol{A}$ and represents the orthogonal projection of $\mathbb{R}^{n}$ onto the eigenspace $\operatorname{Ker}\left(\boldsymbol{A}-\theta_{i} \boldsymbol{I}\right)$.
- The ( $u$-)local multiplicities of the eigenvalue $\theta_{i}$ are defined as $m_{u}\left(\theta_{i}\right)=\left\|\boldsymbol{E}_{i} \boldsymbol{e}_{u}\right\|^{2}=\left\langle\boldsymbol{E}_{i} \boldsymbol{e}_{u}, \boldsymbol{e}_{u}\right\rangle=\left(\boldsymbol{E}_{i}\right)_{u u}$ for $u \in V$ and $i=$ $0,1, \ldots, d$.


## Introduction: Local spectrum of a vertex

- Let $G$ have different eigenvalues $\theta_{0}>\cdots>\theta_{d}$, with respective multiplicities $m_{0}, \ldots, m_{d}$.
- If $\boldsymbol{U}_{i}$ is the $n \times m_{i}$ matrix whose columns are the orthonormal eigenvectors of $\theta_{i}$, the matrix $\boldsymbol{E}_{i}=\boldsymbol{U}_{i} \boldsymbol{U}_{i}^{\top}$, for $i=0,1, \ldots, d$, is the (principal) idempotent of $\boldsymbol{A}$ and represents the orthogonal projection of $\mathbb{R}^{n}$ onto the eigenspace $\operatorname{Ker}\left(\boldsymbol{A}-\theta_{i} \boldsymbol{I}\right)$.
- The ( $u$-)local multiplicities of the eigenvalue $\theta_{i}$ are defined as $m_{u}\left(\theta_{i}\right)=\left\|\boldsymbol{E}_{i} \boldsymbol{e}_{u}\right\|^{2}=\left\langle\boldsymbol{E}_{i} \boldsymbol{e}_{u}, \boldsymbol{e}_{u}\right\rangle=\left(\boldsymbol{E}_{i}\right)_{u u}$ for $u \in V$ and $i=$ $0,1, \ldots, d$.
- $\sum_{i=0}^{d} m_{u}\left(\theta_{i}\right)=1$ and $\sum_{u \in V} m_{u}\left(\theta_{i}\right)=m_{i}$, for $i=0,1, \ldots, d$. The number $a_{u u}^{(\ell)}$ of closed walks of length $\ell$ rooted at vertex $u$ can be computed as $a_{u u}^{(\ell)}=\sum_{i=0}^{d} m_{u}\left(\theta_{i}\right) \theta_{i}^{\ell}$ (Fiol and Garriga, 1997).


## Introduction: Local spectrum of a vertex

- Let $G$ have different eigenvalues $\theta_{0}>\cdots>\theta_{d}$, with respective multiplicities $m_{0}, \ldots, m_{d}$.
- If $\boldsymbol{U}_{i}$ is the $n \times m_{i}$ matrix whose columns are the orthonormal eigenvectors of $\theta_{i}$, the matrix $\boldsymbol{E}_{i}=\boldsymbol{U}_{i} \boldsymbol{U}_{i}^{\top}$, for $i=0,1, \ldots, d$, is the (principal) idempotent of $\boldsymbol{A}$ and represents the orthogonal projection of $\mathbb{R}^{n}$ onto the eigenspace $\operatorname{Ker}\left(\boldsymbol{A}-\theta_{i} \boldsymbol{I}\right)$.
- The $\left(u\right.$-)local multiplicities of the eigenvalue $\theta_{i}$ are defined as $m_{u}\left(\theta_{i}\right)=\left\|\boldsymbol{E}_{i} \boldsymbol{e}_{u}\right\|^{2}=\left\langle\boldsymbol{E}_{i} \boldsymbol{e}_{u}, \boldsymbol{e}_{u}\right\rangle=\left(\boldsymbol{E}_{i}\right)_{u u}$ for $u \in V$ and $i=$ $0,1, \ldots, d$.
- $\sum_{i=0}^{d} m_{u}\left(\theta_{i}\right)=1$ and $\sum_{u \in V} m_{u}\left(\theta_{i}\right)=m_{i}$, for $i=0,1, \ldots, d$. The number $a_{u u}^{(\ell)}$ of closed walks of length $\ell$ rooted at vertex $u$ can be computed as $a_{u u}^{(\ell)}=\sum_{i=0}^{d} m_{u}\left(\theta_{i}\right) \theta_{i}^{\ell}$ (Fiol and Garriga, 1997).
- By picking up the eigenvalues with non-null local multiplicities, $\mu_{0}\left(=\theta_{0}\right)>\mu_{1}>\cdots>\mu_{d_{u}}$, the $(u)$-local spectrum of $G$ is $\operatorname{sp}_{u} G:=\left\{\mu_{0}^{m_{u}\left(\mu_{0}\right)}, \mu_{1}^{m_{u}\left(\mu_{1}\right)}, \ldots, \mu_{d_{u}}^{m_{u}\left(\mu_{d_{u}}\right)}\right\}$.


## First result

## Lemma

Let $G$ be a finite graph with different eigenvalues $\theta_{0}>\cdots>\theta_{d}$. Let $w_{u}^{(\ell)}$ be the number of $\ell$-walks starting from (any fixed) vertex $u$, and let $w_{u u}^{(\ell)}$ be the number of closed $\ell$-walks rooted at $u$. Then,

$$
\rho(G)=\lim _{\ell \rightarrow \infty} \sqrt[\ell]{w_{u}^{(\ell)}}=\lim _{\ell \rightarrow \infty} \sup \sqrt[\ell]{w_{u u}^{(\ell)}}
$$

where 'sup' denotes the supremum.

## Introduction: Regular o equitable partitions

- A partition $\pi$ of the vertex set $V$ into $r$ cells $C_{1}, C_{2}, \ldots, C_{r}$ is called regular or equitable whenever, for any $i, j=1, \ldots, r$, the intersection numbers $b_{i j}(u)=\left|G(u) \cap C_{j}\right|$, where $u \in V_{i}$, do not depend on the vertex $u$ but only on the cells $C_{i}$ and $C_{j}$. In this case, such numbers are simply written as $b_{i j}$, and the $r \times r$ matrix $\boldsymbol{Q}_{A}=\boldsymbol{A}(G / \pi)$ is called quotient matrix with entries $\left(\boldsymbol{Q}_{A}\right)_{i j}=b_{i j}$.


## Introduction: Regular o equitable partitions

- A partition $\pi$ of the vertex set $V$ into $r$ cells $C_{1}, C_{2}, \ldots, C_{r}$ is called regular or equitable whenever, for any $i, j=1, \ldots, r$, the intersection numbers $b_{i j}(u)=\left|G(u) \cap C_{j}\right|$, where $u \in V_{i}$, do not depend on the vertex $u$ but only on the cells $C_{i}$ and $C_{j}$. In this case, such numbers are simply written as $b_{i j}$, and the $r \times r$ matrix $\boldsymbol{Q}_{A}=\boldsymbol{A}(G / \pi)$ is called quotient matrix with entries $\left(\boldsymbol{Q}_{A}\right)_{i j}=b_{i j}$.
- With the Laplacian matrix, we get the quotient Laplacian matrix $\boldsymbol{Q}_{L}=\boldsymbol{L}(G / \pi)$ with entries

$$
\left(\boldsymbol{Q}_{L}\right)_{i j}=\left\{\begin{array}{cc}
-b_{i j} & \text { if } i \neq j, \\
b_{i i}-\sum_{j=1}^{r} b_{i j} & \text { if } i=j,
\end{array}\right.
$$

## Introduction: Walk-regular graphs

$\circ a_{u}^{(\ell)}$ is the number of closed walks of length $\ell$ rooted at vertex $u$.

## Introduction: Walk-regular graphs

- $a_{u}^{(\ell)}$ is the number of closed walks of length $\ell$ rooted at vertex $u$.
- If $a_{u}^{(\ell)}$ only depend on $\ell$, for each $\ell \geq 0$, then $G$ is called walk-regular (Godsil and McKay, 1980).


## Introduction: Walk-regular graphs

- $a_{u}^{(\ell)}$ is the number of closed walks of length $\ell$ rooted at vertex $u$.
- If $a_{u}^{(\ell)}$ only depend on $\ell$, for each $\ell \geq 0$, then $G$ is called walk-regular (Godsil and McKay, 1980).
- Since $a_{u}^{(2)}=\delta_{u}$, the degree of vertex $u$, a walk-regular graph is necessarily regular.


## Introduction: Walk-regular graphs

- $a_{u}^{(\ell)}$ is the number of closed walks of length $\ell$ rooted at vertex $u$.
- If $a_{u}^{(\ell)}$ only depend on $\ell$, for each $\ell \geq 0$, then $G$ is called walk-regular (Godsil and McKay, 1980).
- Since $a_{u}^{(2)}=\delta_{u}$, the degree of vertex $u$, a walk-regular graph is necessarily regular.
- A graph $G$ is called spectrally regular when all vertices have the same local spectrum: $\operatorname{sp}_{u} G=\operatorname{sp}_{v} G$ for any $u, v \in V$.


## Introduction: Walk-regular graphs

- $a_{u}^{(\ell)}$ is the number of closed walks of length $\ell$ rooted at vertex $u$.
- If $a_{u}^{(\ell)}$ only depend on $\ell$, for each $\ell \geq 0$, then $G$ is called walk-regular (Godsil and McKay, 1980).
- Since $a_{u}^{(2)}=\delta_{u}$, the degree of vertex $u$, a walk-regular graph is necessarily regular.
- A graph $G$ is called spectrally regular when all vertices have the same local spectrum: $\operatorname{sp}_{u} G=\operatorname{sp}_{v} G$ for any $u, v \in V$.

Lemma (Delorme and Tillich (1997), Fiol and Garriga (1998), Godsil and McKay (1980))
Let $G=(V, E)$ be a graph. The following statements are equivalent.
(i) $G$ is walk-regular.
(ii) $G$ is spectrally regular.
(iii) The spectra of the vertex-deleted subgraphs are all equal:

$$
\operatorname{sp}(G \backslash u)=\operatorname{sp}(G \backslash v) \text { for any } u, v \in V .
$$

## Outline

## 1. Introduction

2. $k$-algebraic connectivity and $k$-spectral radius
3. Spectral radius of token graphs
4. Distance-regular graphs

## $k$-algebraic connectivity and $k$-spectral radius

- We consider the Laplacian spectrum. Let $G$ be a graph on $n$ vertices, and $F_{k}(G)$ its $k$-token graph for $k \in\{0,1, \ldots, n\}$. Recall that $F_{k}(G) \cong F_{n-k}(G)$ where, by convenience, $F_{0}(G) \cong F_{n}(G)=K_{1}$ (a singleton). Moreover, $F_{1}(G) \cong G$.


## $k$-algebraic connectivity and $k$-spectral radius

- We consider the Laplacian spectrum. Let $G$ be a graph on $n$ vertices, and $F_{k}(G)$ its $k$-token graph for $k \in\{0,1, \ldots, n\}$. Recall that $F_{k}(G) \cong F_{n-k}(G)$ where, by convenience, $F_{0}(G) \cong F_{n}(G)=K_{1}$ (a singleton). Moreover, $F_{1}(G) \cong G$.
- From DDFFHTZ (2021), it is known that the Laplacian spectra of the token graphs of $G$ satisfy

$$
\{0\}=\operatorname{sp} F_{0}(G) \subset \operatorname{sp} F_{1}(G) \subset \operatorname{sp} F_{2}(G) \subset \cdots \subset F_{\lfloor n / 2\rfloor}(G) .
$$

## $k$-algebraic connectivity and $k$-spectral radius

- We consider the Laplacian spectrum. Let $G$ be a graph on $n$ vertices, and $F_{k}(G)$ its $k$-token graph for $k \in\{0,1, \ldots, n\}$. Recall that $F_{k}(G) \cong F_{n-k}(G)$ where, by convenience, $F_{0}(G) \cong F_{n}(G)=K_{1}$ (a singleton). Moreover, $F_{1}(G) \cong G$.
- From DDFFHTZ (2021), it is known that the Laplacian spectra of the token graphs of $G$ satisfy

$$
\{0\}=\operatorname{sp} F_{0}(G) \subset \operatorname{sp} F_{1}(G) \subset \operatorname{sp} F_{2}(G) \subset \cdots \subset F_{\lfloor n / 2\rfloor}(G) .
$$

- Let denote $\alpha(G)$ and $\rho(G)$ the algebraic connectivity and the spectral radius of a graph $G$, respectively. Then, we have

$$
\begin{aligned}
\alpha(G) & \geq \alpha\left(F_{2}(G)\right) \geq \cdots \geq \alpha\left(F_{\lfloor n / 2\rfloor}(G)\right) \\
\rho(G) & \leq \rho\left(F_{2}(G)\right) \leq \cdots \leq \rho\left(F_{\lfloor n / 2\rfloor}(G)\right)
\end{aligned}
$$

## $k$-algebraic connectivity and $k$-spectral radius

- We consider the Laplacian spectrum. Let $G$ be a graph on $n$ vertices, and $F_{k}(G)$ its $k$-token graph for $k \in\{0,1, \ldots, n\}$. Recall that $F_{k}(G) \cong F_{n-k}(G)$ where, by convenience, $F_{0}(G) \cong F_{n}(G)=K_{1}$ (a singleton). Moreover, $F_{1}(G) \cong G$.
- From DDFFHTZ (2021), it is known that the Laplacian spectra of the token graphs of $G$ satisfy

$$
\{0\}=\operatorname{sp} F_{0}(G) \subset \operatorname{sp} F_{1}(G) \subset \operatorname{sp} F_{2}(G) \subset \cdots \subset F_{\lfloor n / 2\rfloor}(G)
$$

- Let denote $\alpha(G)$ and $\rho(G)$ the algebraic connectivity and the spectral radius of a graph $G$, respectively. Then, we have

$$
\begin{aligned}
\alpha(G) & \geq \alpha\left(F_{2}(G)\right) \geq \cdots \geq \alpha\left(F_{\lfloor n / 2\rfloor}(G)\right), \\
\rho(G) & \leq \rho\left(F_{2}(G)\right) \leq \cdots \leq \rho\left(F_{\lfloor n / 2\rfloor}(G)\right) .
\end{aligned}
$$

## Definition

Given a graph $G$ on $n$ vertices and an integer $k$ such that $1 \leq k \leq\lfloor n / 2\rfloor$, the $k$-algebraic connectivity $\alpha_{k}=\alpha_{k}(G)$ and the $k$-spectral radius $\rho_{k}=\rho_{k}(G)$ of $G$ are, respectively, the minimum and maximum eigenvalues of the multiset $\operatorname{sp} F_{k}(G) \backslash \mathrm{sp} F_{k-1}(G)$.

## $k$-algebraic connectivity and $k$-spectral radius

Example


## $k$-algebraic connectivity and $k$-spectral radius: Some facts

(i) $\rho_{k}(G) \geq \alpha_{k}(G) \geq 0$.
(ii) $\alpha_{1}(G)=\alpha(G)$ (the standard algebraic connectivity of $G$ ) and $\rho_{\lfloor n / 2\rfloor}(G)=\rho(G)$ (the standard spectral radius of $G$ ).
(iii) Since $F_{k}\left(K_{n}\right) \cong J(n, k)$ (the Johnson graph), we have

$$
\alpha_{k}\left(K_{n}\right)=\rho_{k}\left(K_{n}\right)=k(n+1-k), \quad k=1, \ldots,\lfloor n / 2\rfloor .
$$

In particular, $\alpha_{1}\left(K_{n}\right)=\rho_{1}\left(K_{n}\right)=n$, $\alpha_{2}\left(K_{n}\right)=\rho_{2}\left(K_{n}\right)=2(n-1)$, and so on.

## $k$-algebraic connectivity and $k$-spectral radius: Conjectures

## Conjecture

For any graph $G, \alpha_{1}(G) \leq \alpha_{2}(G) \leq \cdots \leq \alpha_{\lfloor n / 2\rfloor}(G)$.

## $k$-algebraic connectivity and $k$-spectral radius: Conjectures

Conjecture
For any graph $G, \alpha_{1}(G) \leq \alpha_{2}(G) \leq \cdots \leq \alpha_{\lfloor n / 2\rfloor}(G)$.
Conjecture
For any graph $G, \rho_{1}(G) \leq \rho_{2}(G) \leq \cdots \leq \rho_{\lfloor n / 2\rfloor}(G)$.

## $k$-algebraic connectivity and $k$-spectral radius: Conjectures

Conjecture
For any graph $G, \alpha_{1}(G) \leq \alpha_{2}(G) \leq \cdots \leq \alpha_{\lfloor n / 2\rfloor}(G)$.
Conjecture
For any graph $G$, $\rho_{1}(G) \leq \rho_{2}(G) \leq \cdots \leq \rho_{\lfloor n / 2\rfloor}(G)$.
Conjecture
If $\rho_{1}(G) \leq \rho_{2}(G) \leq \cdots \leq \rho_{\lfloor n / 2\rfloor}(G)$, then $\rho_{k}(G)=\rho\left(F_{k}(G)\right)$ for any
$k \leq\lfloor n / 2\rfloor$.
$k$-algebraic connectivity and $k$-spectral radius: Results
Lemma
For any graph $G$ and its complementary graph $\bar{G}$, the $k$-algebraic connectivity and $k$-spectral radius of $\bar{G}$ satisfy

$$
\alpha_{k}(G)+\rho_{k}(\bar{G})=k(n-k+1) .
$$

For $k=1: \alpha(G)+\rho(\bar{G})=n$.

## $k$-algebraic connectivity and $k$-spectral radius: Results

Lemma
For any graph $G$ and its complementary graph $\bar{G}$, the $k$-algebraic connectivity and $k$-spectral radius of $\bar{G}$ satisfy

$$
\alpha_{k}(G)+\rho_{k}(\bar{G})=k(n-k+1) .
$$

For $k=1: \alpha(G)+\rho(\bar{G})=n$.
Corollary
For any graph $G$ on $n$ vertices, for $k=1, \ldots,\lfloor n / 2\rfloor$,

$$
\alpha_{k}(G) \leq k(n-k+1), \quad \rho_{k}(\bar{G}) \leq k(n-k+1)
$$

## $k$-algebraic connectivity and $k$-spectral radius: Results

## Lemma

For any graph $G$ and its complementary graph $\bar{G}$, the $k$-algebraic connectivity and $k$-spectral radius of $\bar{G}$ satisfy

$$
\alpha_{k}(G)+\rho_{k}(\bar{G})=k(n-k+1)
$$

For $k=1: \alpha(G)+\rho(\bar{G})=n$.
Corollary
For any graph $G$ on $n$ vertices, for $k=1, \ldots,\lfloor n / 2\rfloor$,

$$
\alpha_{k}(G) \leq k(n-k+1), \quad \rho_{k}(\bar{G}) \leq k(n-k+1)
$$

## Corollary

Let $G$ be a bipartite distance-regular graph. Let $\boldsymbol{L}\left(F_{2} / \pi\right)$ be the quotient matrix with spectral radius $\rho_{L}\left(F_{2} / \pi\right)$. Then,

$$
\alpha_{2}(\bar{G})=\binom{n}{2}-\rho_{L}\left(F_{2} / \pi\right)
$$

## Outline

## 1．Introduction

2．$k$－algebraic connectivity and $k$－spectral radius

3．Spectral radius of token graphs

4．Distance－regular graphs

## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.


## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.
- By taking the spectral radii of its $U$-deleted subgraphs, with $U \subset V$ and $|U|=k<\kappa$, we define the two following parameters:

$$
\begin{aligned}
\rho_{M}^{k}(G) & =\max \{\rho(G \backslash U): U \subset V,|U|=k\}, \\
\rho_{m}^{k}(G) & =\min \{\rho(G \backslash U): U \subset V,|U|=k\} .
\end{aligned}
$$

## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.
- By taking the spectral radii of its $U$-deleted subgraphs, with $U \subset V$ and $|U|=k<\kappa$, we define the two following parameters:

$$
\begin{aligned}
\rho_{M}^{k}(G) & =\max \{\rho(G \backslash U): U \subset V,|U|=k\}, \\
\rho_{m}^{k}(G) & =\min \{\rho(G \backslash U): U \subset V,|U|=k\} .
\end{aligned}
$$

- If $G$ is walk-regular, then $\rho_{M}^{1}(G)=\rho_{m}^{1}(G)=\rho(G \backslash u)$ for every vertex $u$.


## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.
- By taking the spectral radii of its $U$-deleted subgraphs, with $U \subset V$ and $|U|=k<\kappa$, we define the two following parameters:

$$
\begin{aligned}
\rho_{M}^{k}(G) & =\max \{\rho(G \backslash U): U \subset V,|U|=k\}, \\
\rho_{m}^{k}(G) & =\min \{\rho(G \backslash U): U \subset V,|U|=k\} .
\end{aligned}
$$

- If $G$ is walk-regular, then $\rho_{M}^{1}(G)=\rho_{m}^{1}(G)=\rho(G \backslash u)$ for every vertex $u$.
- If $G$ is distance-regular with degree $\delta$, then $\kappa(G)=\delta$ (Brouwer and Koolen, 2009).


## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.
- By taking the spectral radii of its $U$-deleted subgraphs, with $U \subset V$ and $|U|=k<\kappa$, we define the two following parameters:

$$
\begin{aligned}
\rho_{M}^{k}(G) & =\max \{\rho(G \backslash U): U \subset V,|U|=k\}, \\
\rho_{m}^{k}(G) & =\min \{\rho(G \backslash U): U \subset V,|U|=k\} .
\end{aligned}
$$

- If $G$ is walk-regular, then $\rho_{M}^{1}(G)=\rho_{m}^{1}(G)=\rho(G \backslash u)$ for every vertex $u$.
- If $G$ is distance-regular with degree $\delta$, then $\kappa(G)=\delta$ (Brouwer and Koolen, 2009).
- D., Van Dam, and Fiol (2011) showed that $\operatorname{sp}(G \backslash U)$ only depends on the distances in $G$ between the vertices of $U$.


## Spectral radius of token graphs

- We consider the spectral radius of the adjacency matrix of a (connected) graph $G$ with spectral radius $\rho(G)$ and vertex-connectivity $\kappa$.
- By taking the spectral radii of its $U$-deleted subgraphs, with $U \subset V$ and $|U|=k<\kappa$, we define the two following parameters:

$$
\begin{aligned}
\rho_{M}^{k}(G) & =\max \{\rho(G \backslash U): U \subset V,|U|=k\}, \\
\rho_{m}^{k}(G) & =\min \{\rho(G \backslash U): U \subset V,|U|=k\} .
\end{aligned}
$$

- If $G$ is walk-regular, then $\rho_{M}^{1}(G)=\rho_{m}^{1}(G)=\rho(G \backslash u)$ for every vertex $u$.
- If $G$ is distance-regular with degree $\delta$, then $\kappa(G)=\delta$ (Brouwer and Koolen, 2009).
- D., Van Dam, and Fiol (2011) showed that $\operatorname{sp}(G \backslash U)$ only depends on the distances in $G$ between the vertices of $U$.
- For every $k \leq \delta-1$, the computation of $\rho_{M}^{k}(G)$ and $\rho_{m}^{k}(G)$ can be drastically reduced by considering only the subsets $U$ with different distance-pattern between vertices.


## Spectral radius of token graphs

- For instance, if $G$ has diameter $D$,

$$
\begin{aligned}
& \rho_{M}^{2}(G)=\max _{1 \leq \ell \leq D}\left\{\rho(G \backslash\{u, v\}): \operatorname{dist}_{G}(u, v)=\ell\right\}, \\
& \rho_{m}^{2}(G)=\min _{1 \leq \ell \leq D}\left\{\rho(G \backslash\{u, v\}): \operatorname{dist}_{G}(u, v)=\ell\right\} .
\end{aligned}
$$

## Spectral radius of token graphs

- For instance, if $G$ has diameter $D$,

$$
\begin{aligned}
& \rho_{M}^{2}(G)=\max _{1 \leq \ell \leq D}\left\{\rho(G \backslash\{u, v\}): \operatorname{dist}_{G}(u, v)=\ell\right\}, \\
& \rho_{m}^{2}(G)=\min _{1 \leq \ell \leq D}\left\{\rho(G \backslash\{u, v\}): \operatorname{dist}_{G}(u, v)=\ell\right\} .
\end{aligned}
$$

## Lemma

Let $G$ be a graph with $n$ vertices, vertex-connectivity $\kappa$, and eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then, for every $k=1, \ldots, \kappa-1$,

$$
\left.\begin{array}{rl}
\lambda_{k+1} & \leq \rho_{M}^{k}(G)
\end{array}\right) \lambda_{1}, ~ 子 \rho_{m}^{k}(G) \leq \lambda_{n-k} .
$$

Proof. By using interlacing (Haemers (1995) or Fiol (1999)).

## Spectral radius of token graphs: Main result

Theorem
Let $G$ be a graph with spectral radius $\rho(G)$ and vertex-connectivity $\kappa>1$. Given an integer $k$, with $1 \leq k<\kappa$, let $\rho_{M}^{k}(G)$ and $\rho_{m}^{k}(G)$ be the maximum and minimum of the spectral radii of the $U$-deleted subgraphs of $G$, where $|U|=k$.

## Spectral radius of token graphs: Main result

Theorem
Let $G$ be a graph with spectral radius $\rho(G)$ and vertex-connectivity $\kappa>1$. Given an integer $k$, with $1 \leq k<\kappa$, let $\rho_{M}^{k}(G)$ and $\rho_{m}^{k}(G)$ be the maximum and minimum of the spectral radii of the $U$-deleted subgraphs of $G$, where $|U|=k$.
(i) The spectral radius of the $k$-token graph $F_{k}(G)$ satisfies

$$
k \rho_{m}^{k-1}(G) \leq \rho\left(F_{k}(G)\right) \leq k \rho_{M}^{k-1}(G) .
$$

## Spectral radius of token graphs: Main result

Theorem
Let $G$ be a graph with spectral radius $\rho(G)$ and vertex-connectivity $\kappa>1$. Given an integer $k$, with $1 \leq k<\kappa$, let $\rho_{M}^{k}(G)$ and $\rho_{m}^{k}(G)$ be the maximum and minimum of the spectral radii of the $U$-deleted subgraphs of $G$, where $|U|=k$.
(i) The spectral radius of the $k$-token graph $F_{k}(G)$ satisfies

$$
k \rho_{m}^{k-1}(G) \leq \rho\left(F_{k}(G)\right) \leq k \rho_{M}^{k-1}(G) .
$$

(ii) If $G$ is a graph of order $n$ and diameter $D$, the spectral radius of the $k$-token graph $F_{k}(G)$ satisfies

$$
\rho\left(F_{k}(G)\right)<k\left(\rho(G)-\frac{1}{n \rho(G)^{2 D}}\right) .
$$

## Spectral radius of token graphs: Main result

Theorem
Let $G$ be a graph with spectral radius $\rho(G)$ and vertex-connectivity $\kappa>1$. Given an integer $k$, with $1 \leq k<\kappa$, let $\rho_{M}^{k}(G)$ and $\rho_{m}^{k}(G)$ be the maximum and minimum of the spectral radii of the $U$-deleted subgraphs of $G$, where $|U|=k$.
(i) The spectral radius of the $k$-token graph $F_{k}(G)$ satisfies

$$
k \rho_{m}^{k-1}(G) \leq \rho\left(F_{k}(G)\right) \leq k \rho_{M}^{k-1}(G) .
$$

(ii) If $G$ is a graph of order $n$ and diameter $D$, the spectral radius of the $k$-token graph $F_{k}(G)$ satisfies

$$
\rho\left(F_{k}(G)\right)<k\left(\rho(G)-\frac{1}{n \rho(G)^{2 D}}\right) .
$$

(iii) If $G$ is walk-regular and $k=2\left(F_{2}(G)\right.$ is the 2-token graph of $\left.G\right)$, then

$$
\rho\left(F_{2}(G)\right)=2 \rho_{m}^{1}(G)=2 \rho_{M}^{1}(G) .
$$

## Spectral radius of token graphs: Consequences

- Eigenvalues of $P_{n}: \theta_{i}=2 \cos \left(\frac{i \pi}{n+1}\right)$ for $i=1, \ldots, n$.


## Spectral radius of token graphs: Consequences

- Eigenvalues of $P_{n}: \theta_{i}=2 \cos \left(\frac{i \pi}{n+1}\right)$ for $i=1, \ldots, n$.
- Spectral radius of $K_{m, n}: \rho\left(K_{m, n}\right)=\sqrt{m n}$.


## Spectral radius of token graphs: Consequences

- Eigenvalues of $P_{n}: \theta_{i}=2 \cos \left(\frac{i \pi}{n+1}\right)$ for $i=1, \ldots, n$.
- Spectral radius of $K_{m, n}: \rho\left(K_{m, n}\right)=\sqrt{m n}$.


## Corollary

Let $P_{n}$ and $C_{n}$ be the path and cycle graphs on $n$ vertices. Let $P_{\infty}$ and $C_{\infty}$ be the infinite path and cycle graphs.
(i) $\rho\left(F_{2}\left(P_{n}\right)\right) \leq 4 \cos (\pi / n)$ and $\rho\left(F_{2}\left(P_{\infty}\right)\right)=4$,
(ii) $\rho\left(F_{2}\left(C_{n}\right)\right)=4 \cos (\pi / n)$ and $\rho\left(F_{2}\left(C_{\infty}\right)\right)=4$,
(iii) $\rho\left(F_{2}\left(K_{n, n}\right)\right)=2 \sqrt{n(n-1)}$.

| $n$ | 3 | 4 | $\cdots$ | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho\left(P_{n-1}\right)$ | 1 | 1.41421 | $\cdots$ | 1.84776 | 1.87938 | 1.92113 | 1.91898 |
| $\rho\left(F_{2}\left(C_{n}\right)\right)$ | 2 | 2.82842 | $\cdots$ | 3.69552 | 3.75877 | 3.84226 | 3.83796 |

Table: Spectral radii of the 2-token graphs of the cycles $C_{n}$ with respect to spectral radii of the paths graphs $P_{n-1}$.

## Outline

## 1．Introduction

2．$k$－algebraic connectivity and $k$－spectral radius

3．Spectral radius of token graphs

4．Distance－regular graphs

## Distance-regular graphs

- We consider both the adjacency and Laplacian spectra, with their respective spectral radii $\rho_{A}$ and $\rho_{L}$.


## Distance-regular graphs

- We consider both the adjacency and Laplacian spectra, with their respective spectral radii $\rho_{A}$ and $\rho_{L}$.
- $G$ is a distance-regular graph with degree $\delta=b_{0}$, diameter $d$, intersection array

$$
\iota(G)=\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\} .
$$

or intersection matrix

$$
\boldsymbol{B}=\left(\begin{array}{ccccc}
0 & c_{1} & & & \\
b_{0} & a_{1} & c_{2} & & \\
& b_{1} & a_{2} & \ddots & \\
& & \ddots & \ddots & c_{d} \\
& & & b_{d-1} & a_{d}
\end{array}\right)
$$

where $a_{i}=\delta-b_{i}-c_{i}$, for $i=1, \ldots, d$.

## Distance-regular graphs

## Lemma

Let $F_{2}(G)$ be the 2-token graph of a distance-regular graph $G$ with degree $\delta=b_{0}$, diameter $d$, and intersection array $\iota(G)$. Then, $F_{2}=F_{2}(G)$ has a regular partition $\pi$ with quotient matrix and quotient Laplacian matrix

$$
\begin{aligned}
& \boldsymbol{A}\left(F_{2} / \pi\right)=2\left(\begin{array}{ccccc}
a_{1} & c_{2} & & & \\
b_{1} & a_{2} & c_{3} & & \\
& b_{2} & a_{3} & \ddots & \\
& & \ddots & \ddots & c_{d} \\
& & b_{d-1} & a_{d}
\end{array}\right), \\
& \boldsymbol{L}\left(F_{2} / \pi\right)=2\left(\begin{array}{ccccc}
c_{2} & -c_{2} & & & \\
-b_{1} & b_{1}+c_{3} & -c_{3} & & \\
& -b_{2} & b_{2}+c_{4} & \ddots & \\
& & \ddots & \ddots & -c_{d} \\
& & & -b_{d-1} & b_{d-1}
\end{array}\right)
\end{aligned}
$$

where $c_{i}+a_{i}+b_{i}=\delta$, for $i=0,1, \ldots, d$.

## Distance-regular graphs

## Proposition

Let $G$ be a distance-regular graph with adjacency and Laplacian matrices $\boldsymbol{A}$ and $\boldsymbol{L}$. Let $F_{2}(G)$ be its 2-token graph with adjacency and Laplacian matrices $\boldsymbol{A}\left(F_{2}\right)$ and $\boldsymbol{L}\left(F_{2}\right)$ with respective spectral radii $\rho_{A}\left(F_{2}\right)$ and $\rho_{L}\left(F_{2}\right)$. Let $\boldsymbol{A}\left(F_{2} / \pi\right)$ and $\boldsymbol{L}\left(F_{2} / \pi\right)$ be the quotient matrices with respective spectral radii $\rho_{A}\left(F_{2} / \pi\right)$ and $\rho_{L}\left(F_{2} / \pi\right)$. Then, the following holds:
(a) $\rho_{A}\left(F_{2}\right)=\rho_{A}\left(F_{2} / \pi\right)$.
(b) $\rho_{L}\left(F_{2}\right) \geq \rho_{L}\left(F_{2} / \pi\right)$, with equality if $G$ is bipartite.

## Distance-regular graphs

## Example (Heawood graph)

$\circ H$ is a bipartite distance-regular graph with $n=14$ vertices, diameter 3, and intersection array $\left\{b_{0}, b_{1}, b_{2} ; c_{1}, c_{2}, c_{3}\right\}=\{3,2,2 ; 1,1,3\}$.


## Distance-regular graphs

## Example (Heawood graph)

- $H$ is a bipartite distance-regular graph with $n=14$ vertices, diameter 3 , and intersection array $\left\{b_{0}, b_{1}, b_{2} ; c_{1}, c_{2}, c_{3}\right\}=\{3,2,2 ; 1,1,3\}$.

- The Laplacian spectral radius of $H$ is $\rho_{L}(H)=6$, and the algebraic connectivity of $\bar{H}$ is $\alpha_{1}(\bar{H})=n-\rho(H)=8$.


## Distance-regular graphs

## Example (Heawood graph)

- $H$ is a bipartite distance-regular graph with $n=14$ vertices, diameter 3, and intersection array $\left\{b_{0}, b_{1}, b_{2} ; c_{1}, c_{2}, c_{3}\right\}=\{3,2,2 ; 1,1,3\}$.

- The Laplacian spectral radius of $H$ is $\rho_{L}(H)=6$, and the algebraic connectivity of $\bar{H}$ is $\alpha_{1}(\bar{H})=n-\rho(H)=8$.
- By the last proposition, the 2-token graph $F_{2}=F_{2}(H)$ has a regular partition $\pi$ with quotient and quotient Laplacian matrices

$$
\boldsymbol{A}\left(F_{2} / \pi\right)=2\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 3 \\
0 & 2 & 0
\end{array}\right), \quad \boldsymbol{L}\left(F_{2} / \pi\right)=2\left(\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 5 & -3 \\
0 & -2 & 2
\end{array}\right) .
$$

## Distance-regular graphs

## Example (Heawood graph)

- $H$ is a bipartite distance-regular graph with $n=14$ vertices, diameter 3, and intersection array $\left\{b_{0}, b_{1}, b_{2} ; c_{1}, c_{2}, c_{3}\right\}=\{3,2,2 ; 1,1,3\}$.

- The Laplacian spectral radius of $H$ is $\rho_{L}(H)=6$, and the algebraic connectivity of $\bar{H}$ is $\alpha_{1}(\bar{H})=n-\rho(H)=8$.
- By the last proposition, the 2-token graph $F_{2}=F_{2}(H)$ has a regular partition $\pi$ with quotient and quotient Laplacian matrices

$$
\boldsymbol{A}\left(F_{2} / \pi\right)=2\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 3 \\
0 & 2 & 0
\end{array}\right), \quad \boldsymbol{L}\left(F_{2} / \pi\right)=2\left(\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 5 & -3 \\
0 & -2 & 2
\end{array}\right) .
$$

- $\operatorname{ev} \boldsymbol{A}\left(F_{2} / \pi\right)=0, \pm 4 \sqrt{2}, \operatorname{ev} \boldsymbol{L}\left(F_{2} / \pi\right)=0,8 \pm 2 \sqrt{7}$. Thus, $\rho_{A}\left(F_{2}(H)\right)=4 \sqrt{2}$ and $\rho_{2}(H)=\rho_{L}\left(F_{2}(H)\right)=8+2 \sqrt{7}$.


## Distance-regular graphs

## Example (Heawood graph)

- $H$ is a bipartite distance-regular graph with $n=14$ vertices, diameter 3, and intersection array $\left\{b_{0}, b_{1}, b_{2} ; c_{1}, c_{2}, c_{3}\right\}=\{3,2,2 ; 1,1,3\}$.

- The Laplacian spectral radius of $H$ is $\rho_{L}(H)=6$, and the algebraic connectivity of $\bar{H}$ is $\alpha_{1}(\bar{H})=n-\rho(H)=8$.
- By the last proposition, the 2-token graph $F_{2}=F_{2}(H)$ has a regular partition $\pi$ with quotient and quotient Laplacian matrices

$$
\boldsymbol{A}\left(F_{2} / \pi\right)=2\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 3 \\
0 & 2 & 0
\end{array}\right), \quad \boldsymbol{L}\left(F_{2} / \pi\right)=2\left(\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 5 & -3 \\
0 & -2 & 2
\end{array}\right) .
$$

- ev $\boldsymbol{A}\left(F_{2} / \pi\right)=0, \pm 4 \sqrt{2}, \operatorname{ev} \boldsymbol{L}\left(F_{2} / \pi\right)=0,8 \pm 2 \sqrt{7}$. Thus, $\rho_{A}\left(F_{2}(H)\right)=4 \sqrt{2}$ and $\rho_{2}(H)=\rho_{L}\left(F_{2}(H)\right)=8+2 \sqrt{7}$.
- $\alpha_{2}(\bar{H})=2(n-1)-\rho_{2}(H)=18-2 \sqrt{7}>8=\alpha_{1}(\bar{H})$.

Since the algebraic connectivity of $F_{2}(\bar{H})$ also is 8 , $\alpha_{1}\left(F_{2}(\bar{H})\right)=\alpha_{1}(\bar{H})$, as expected.

## Distance-regular graphs

## Corollary

Let $\mathcal{F}$ be the family of all distance-regular graphs with diameter $d$ and the same parameters (or intersection array). Then, every graph $G \in \mathcal{F}$ has 2-token graph $F_{2}$ with the $d$ (adjacency or Laplacian) eigenvalues of $\boldsymbol{A}\left(F_{2} / \pi\right)$ or $\boldsymbol{L}\left(F_{2} / \pi\right)$ given as before. In particular, $F_{2}$ has spectral radii $\rho_{A}\left(F_{2}\right)=\rho_{A}\left(F_{2} / \pi\right)$, and $\rho_{L}\left(F_{2}\right)=\rho_{L}\left(F_{2} / \pi\right)$ if it is bipartite.

## Distance-regular graphs

## Corollary

Let $\mathcal{F}$ be the family of all distance-regular graphs with diameter $d$ and the same parameters (or intersection array). Then, every graph $G \in \mathcal{F}$ has 2-token graph $F_{2}$ with the $d$ (adjacency or Laplacian) eigenvalues of $\boldsymbol{A}\left(F_{2} / \pi\right)$ or $\boldsymbol{L}\left(F_{2} / \pi\right)$ given as before. In particular, $F_{2}$ has spectral radii $\rho_{A}\left(F_{2}\right)=\rho_{A}\left(F_{2} / \pi\right)$, and $\rho_{L}\left(F_{2}\right)=\rho_{L}\left(F_{2} / \pi\right)$ if it is bipartite.

## Corollary

Let $G$ be a distance-regular graph with (adjacency) eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Then, 2-token graph $F_{2}(G)$ has some eigenvalues $\mu_{0}>\mu_{1}>\cdots>\mu_{d-1}$ satisfying

$$
2 \theta_{i+1} \leq \mu_{i} \leq 2 \theta_{i}, \quad i=0, \ldots, d-1
$$

## Distance-regular graphs

Open problem: All the strongly regular graphs with the same parameters are cospectral. Does the same happen with all distance-regular graphs with the same parameters (with respect to the adjacency or Laplacian matrix)???

## IWONT 2011



## IWONT 2016



## References


K. Audenaert, C. Godsil, G. Royle, and T. Rudolph, Symmetric squares of graphs, J. Combin. Theory B 97 (2007) 74-90.
C. Dalfó, E. R. van Dam, and M. A. Fiol, On perturbations of almost distance-regular graphs, Linear Algebra Appl. 435 (2011), no. 10, 2626-2638.
C. Dalfó, F. Duque, R. Fabila-Monroy, M. A. Fiol, C. Huemer, A. L. Trujillo-Negrete, and F. J. Zaragoza Martínez, On the Laplacian spectra of token graphs, Linear Algebra Appl. 625 (2021) 322-348.
C. Dalfó, M. A. Fiol, E. Garriga, A differential approach for bounding the index of graphs under perturbations, Electron. J. Combin. 18 (2011), no. 1, P172.

R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood, Token graphs, Graphs Combin. 28 (2012), no. 3, 365-380.
C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228 (1995) 593-616.
A. Lew, Garlands method for token graphs, https://arxiv.org/abs/2305 .02406v1, 2023.
V. Nikiforov, The spectral radius of subgraphs of regular graphs, Electron. J. Combin. 14 (2007) \#N20.
V. Nikiforov, Revisiting two classical results on graph spectra, Electron. J. Combin. 14 (2007) \#R14.

## References

K. Audenaert, C. Godsil, G. Royle, and T. Rudolph, Symmetric squares of graphs, J. Combin. Theory B 97 (2007) 74-90.
C. Dalfó, E. R. van Dam, and M. A. Fiol, On perturbations of almost distance-regular graphs, Linear Algebra Appl. 435 (2011), no. 10, 2626-2638.
C. Dalfó, F. Duque, R. Fabila-Monroy, M. A. Fiol, C. Huemer, A. L. Trujillo-Negrete, and F. J. Zaragoza Martínez, On the Laplacian spectra of token graphs, Linear Algebra Appl. 625 (2021) 322-348.
C. Dalfó, M. A. Fiol, E. Garriga, A differential approach for bounding the index of graphs under perturbations, Electron. J. Combin. 18 (2011), no. 1, P172.

R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood, Token graphs, Graphs Combin. 28 (2012), no. 3, 365-380.

C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228 (1995) 593-616.
A. Lew, Garlands method for token graphs, https://arxiv.org/abs/2305 .02406v1, 2023.
V. Nikiforov, The spectral radius of subgraphs of regular graphs, Electron. J. Combin. 14 (2007) \#N20.
V. Nikiforov, Revisiting two classical results on graph spectra, Electron. J. Combin. 14 (2007) \#R14.

TAPADH LEAT! THANK YOU! GRÀCIES!

