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Miquel Àngel Fiol

Universitat Politècnica de Catalunya, Barcelona, Catalonia
Mónica A. Reyes

Universitat de Lleida, Igualada (Barcelona), Catalonia

International Workshop on Optimal Network Topologies
(IWONT 2023)

ICMS, Bayes Centre, Edinburgh, Scotland, 17 – 21 July 2023



Outline

1. Introduction

2. k-algebraic connectivity and k-spectral radius

3. Spectral radius of token graphs

4. Distance-regular graphs



Outline

1. Introduction

2. k-algebraic connectivity and k-spectral radius

3. Spectral radius of token graphs

4. Distance-regular graphs



Introduction k-algebraic connectivity and k-spectral radius Spectral radius of token graphs Distance-regular graphs

Introduction: Some results on token graphs

Theorem (Audenaert, Godsil, Royle, and Rudolph, 2007)
All the strongly regular graphs with the same parameters have cospectral
2-token graphs.

Theorem (Dalfó, Duque, Fabila-Monroy, Fiol, Huemer,
Trujillo-Negrete, Zaragoza Mart́ınez, 2021)
For any graph G on n vertices, the Laplacian spectrum of its h-token is
contained in the Laplacian spectrum of its k-token for every
1 ≤ h < k ≤ n/2:

spFh(G) ⊂ spFk(G).

Theorem (Lew, 2023)
Let G have Laplacian eigenvalues λ1(= 0) < λ2 ≤ · · · ≤ λn. Let λ be an
eigenvalues of Fk(G) not in Fk−1(G). Then,

k(λ2 − k + 1) ≤ λ ≤ kλn.
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Introduction: Spectral radius

◦ The index or spectral radius of a graph is the largest eigenvalue
of its adjacency matrix. In the case of the Laplacian matrix, it is
called Laplacian spectral radius.

◦ It has special relevance in the study of the: diameter, radius,
domination number, matching number, clique number, independence
number, chromatic number, or the sequence of vertex degrees.

◦ This leads to studying the structure of graphs having an extremal
spectral radius and fixed values of some of such parameters.
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Introduction: Notation

◦ G: a (simple and connected) graph with vertex set
V (G) = {1, 2, . . . , n} and edge set E(G).

◦ The spectrum of the adjacency matrix A is
spG ≡ spA = {θm0

0 , θm1
1 , . . . , θmd

d }, where θ0 > θ1 > · · · > θd.
By the Perron-Frobenius theorem, G has spectral radius ρ(G) = θ0.

◦ The spectrum of the Laplacian matrix L = D −A is
λ1(= 0) < λ2 ≤ · · · ≤ λn.
λ2 is the algebraic connectivity.
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Introduction: Local spectrum of a vertex
◦ Let G have different eigenvalues θ0 > · · · > θd, with respective

multiplicities m0, . . . ,md.

◦ If U i is the n×mi matrix whose columns are the orthonormal
eigenvectors of θi, the matrix Ei = U iU

>
i , for i = 0, 1, . . . , d, is the

(principal) idempotent of A and represents the orthogonal
projection of Rn onto the eigenspace Ker(A− θiI).

◦ The (u-)local multiplicities of the eigenvalue θi are defined as
mu(θi) = ‖Eieu‖2 = 〈Eieu, eu〉 = (Ei)uu for u ∈ V and i =
0, 1, . . . , d.

◦
d∑
i=0

mu(θi) = 1 and
∑
u∈V

mu(θi) = mi, for i = 0, 1, . . . , d. The

number a
(`)
uu of closed walks of length ` rooted at vertex u can

be computed as a
(`)
uu =

d∑
i=0

mu(θi)θ
`
i (Fiol and Garriga, 1997).

◦ By picking up the eigenvalues with non-null local multiplicities,
µ0(= θ0) > µ1 > · · · > µdu , the (u)-local spectrum of G is

spuG := {µmu(µ0)
0 , µ

mu(µ1)
1 , . . . , µ

mu(µdu )
du

}.
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First result

Lemma
Let G be a finite graph with different eigenvalues θ0 > · · · > θd. Let w

(`)
u

be the number of `-walks starting from (any fixed) vertex u, and let w
(`)
uu

be the number of closed `-walks rooted at u. Then,

ρ(G) = lim
`→∞

√̀
w

(`)
u = lim

`→∞
sup

√̀
w

(`)
uu ,

where ‘ sup’ denotes the supremum.

8 / 31
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Introduction: Regular o equitable partitions

◦ A partition π of the vertex set V into r cells C1, C2, . . . , Cr is
called regular or equitable whenever, for any i, j = 1, . . . , r, the
intersection numbers bij(u) = |G(u) ∩ Cj |, where u ∈ Vi, do not
depend on the vertex u but only on the cells Ci and Cj . In this
case, such numbers are simply written as bij , and the r × r matrix
QA = A(G/π) is called quotient matrix with entries (QA)ij = bij .

◦ With the Laplacian matrix, we get the quotient Laplacian matrix
QL = L(G/π) with entries

(QL)ij =


−bij if i 6= j,

bii −
r∑
j=1

bij if i = j,

9 / 31
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Introduction: Walk-regular graphs

◦ a(`)u is the number of closed walks of length ` rooted at vertex u.

◦ If a
(`)
u only depend on `, for each ` ≥ 0, then G is called

walk-regular (Godsil and McKay, 1980).

◦ Since a
(2)
u = δu, the degree of vertex u, a walk-regular graph is

necessarily regular.

◦ A graph G is called spectrally regular when all vertices have the
same local spectrum: spuG = spv G for any u, v ∈ V .

Lemma (Delorme and Tillich (1997), Fiol and Garriga (1998),
Godsil and McKay (1980))
Let G = (V,E) be a graph. The following statements are equivalent.

(i) G is walk-regular.

(ii) G is spectrally regular.

(iii) The spectra of the vertex-deleted subgraphs are all equal:
sp (G \ u) = sp (G \ v) for any u, v ∈ V .

10 / 31
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k-algebraic connectivity and k-spectral radius

◦ We consider the Laplacian spectrum. Let G be a graph on n
vertices, and Fk(G) its k-token graph for k ∈ {0, 1, . . . , n}. Recall
that Fk(G) ∼= Fn−k(G) where, by convenience,
F0(G) ∼= Fn(G) = K1 (a singleton). Moreover, F1(G) ∼= G.

◦ From DDFFHTZ (2021), it is known that the Laplacian spectra of
the token graphs of G satisfy
{0} = spF0(G) ⊂ spF1(G) ⊂ spF2(G) ⊂ · · · ⊂ Fbn/2c(G).

◦ Let denote α(G) and ρ(G) the algebraic connectivity and the
spectral radius of a graph G, respectively. Then, we have

α(G) ≥ α(F2(G)) ≥ · · · ≥ α(Fbn/2c(G)),
ρ(G) ≤ ρ(F2(G)) ≤ · · · ≤ ρ(Fbn/2c(G)).

Definition
Given a graph G on n vertices and an integer k such that
1 ≤ k ≤ bn/2c, the k-algebraic connectivity αk = αk(G) and the
k-spectral radius ρk = ρk(G) of G are, respectively, the minimum and
maximum eigenvalues of the multiset spFk(G) \ spFk−1(G).

12 / 31
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k-algebraic connectivity and k-spectral radius
Example

Spectrum ev G

sp(F0) = sp(K1) 0
2= α1 = α

sp(F1) = sp(G) 4
4
4
6= ρ1
4= α2

4
6
6

sp(F2)− sp(F1) 6
8
8
8
10= ρ2
4= α3

8
sp(F3)− sp(F2) 8

10
10= ρ3 = ρ

G

G
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k-algebraic connectivity and k-spectral radius: Some facts

(i) ρk(G) ≥ αk(G) ≥ 0.

(ii) α1(G) = α(G) (the standard algebraic connectivity of G) and
ρbn/2c(G) = ρ(G) (the standard spectral radius of G).

(iii) Since Fk(Kn) ∼= J(n, k) (the Johnson graph), we have

αk(Kn) = ρk(Kn) = k(n+ 1− k), k = 1, . . . , bn/2c.

In particular, α1(Kn) = ρ1(Kn) = n,
α2(Kn) = ρ2(Kn) = 2(n− 1), and so on.

14 / 31
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k-algebraic connectivity and k-spectral radius: Conjectures

Conjecture
For any graph G, α1(G) ≤ α2(G) ≤ · · · ≤ αbn/2c(G).

Conjecture
For any graph G, ρ1(G) ≤ ρ2(G) ≤ · · · ≤ ρbn/2c(G).

Conjecture
If ρ1(G) ≤ ρ2(G) ≤ · · · ≤ ρbn/2c(G), then ρk(G) = ρ(Fk(G)) for any
k ≤ bn/2c.
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k-algebraic connectivity and k-spectral radius: Results
Lemma
For any graph G and its complementary graph G, the k-algebraic
connectivity and k-spectral radius of G satisfy

αk(G) + ρk(G) = k(n− k + 1).

For k = 1: α(G) + ρ(G) = n.

Corollary
For any graph G on n vertices, for k = 1, . . . , bn/2c,

αk(G) ≤ k(n− k + 1), ρk(G) ≤ k(n− k + 1).

Corollary
Let G be a bipartite distance-regular graph. Let L(F2/π) be the quotient
matrix with spectral radius ρL(F2/π). Then,

α2(G) =

(
n

2

)
− ρL(F2/π).
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Spectral radius of token graphs
◦ We consider the spectral radius of the adjacency matrix of a

(connected) graph G with spectral radius ρ(G) and
vertex-connectivity κ.

◦ By taking the spectral radii of its U -deleted subgraphs, with U ⊂ V
and |U | = k < κ, we define the two following parameters:

ρkM (G)= max{ρ(G \ U) : U ⊂ V, |U | = k},
ρkm(G)= min{ρ(G \ U) : U ⊂ V, |U | = k}.

◦ If G is walk-regular, then ρ1M (G) = ρ1m(G) = ρ(G \ u) for every
vertex u.

◦ If G is distance-regular with degree δ, then κ(G) = δ (Brouwer
and Koolen, 2009).

◦ D., Van Dam, and Fiol (2011) showed that sp(G \ U) only depends
on the distances in G between the vertices of U .

◦ For every k ≤ δ − 1, the computation of ρkM (G) and ρkm(G) can be
drastically reduced by considering only the subsets U with different
distance-pattern between vertices.
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Spectral radius of token graphs

◦ For instance, if G has diameter D,

ρ2M (G)= max
1≤`≤D

{ρ(G \ {u, v}) : distG(u, v) = `},

ρ2m(G)= min
1≤`≤D

{ρ(G \ {u, v}) : distG(u, v) = `}.

Lemma
Let G be a graph with n vertices, vertex-connectivity κ, and eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then, for every k = 1, . . . , κ− 1,

λk+1≤ ρkM (G) ≤ λ1,
λn≤ ρkm(G) ≤ λn−k.

Proof. By using interlacing (Haemers (1995) or Fiol (1999)).
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Spectral radius of token graphs: Main result

Theorem
Let G be a graph with spectral radius ρ(G) and vertex-connectivity
κ > 1. Given an integer k, with 1 ≤ k < κ, let ρkM (G) and ρkm(G) be the
maximum and minimum of the spectral radii of the U -deleted subgraphs
of G, where |U | = k.

(i) The spectral radius of the k-token graph Fk(G) satisfies

kρk−1m (G) ≤ ρ(Fk(G)) ≤ kρk−1M (G).

(ii) If G is a graph of order n and diameter D, the spectral radius of the
k-token graph Fk(G) satisfies

ρ(Fk(G)) < k

(
ρ(G)− 1

nρ(G)2D

)
.

(iii) If G is walk-regular and k = 2 (F2(G) is the 2-token graph of G),
then

ρ(F2(G)) = 2ρ1m(G) = 2ρ1M (G).

20 / 31
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Spectral radius of token graphs: Consequences
◦ Eigenvalues of Pn: θi = 2 cos

(
iπ
n+1

)
for i = 1, . . . , n.

◦ Spectral radius of Km,n: ρ(Km,n) =
√
mn.

Corollary
Let Pn and Cn be the path and cycle graphs on n vertices. Let P∞ and
C∞ be the infinite path and cycle graphs.

(i) ρ(F2(Pn)) ≤ 4 cos(π/n) and ρ(F2(P∞)) = 4,

(ii) ρ(F2(Cn)) = 4 cos(π/n) and ρ(F2(C∞)) = 4,

(iii) ρ(F2(Kn,n)) = 2
√
n(n− 1).

n 3 4 · · · 8 9 10 11

ρ(Pn−1) 1 1.41421 · · · 1.84776 1.87938 1.92113 1.91898
ρ(F2(Cn)) 2 2.82842 · · · 3.69552 3.75877 3.84226 3.83796

Table: Spectral radii of the 2-token graphs of the cycles Cn with respect to
spectral radii of the paths graphs Pn−1.
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Distance-regular graphs

◦ We consider both the adjacency and Laplacian spectra, with their
respective spectral radii ρA and ρL.

◦ G is a distance-regular graph with degree δ = b0, diameter d,
intersection array

ι(G) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd}.

or intersection matrix

B =



0 c1
b0 a1 c2

b1 a2
. . .

. . .
. . . cd
bd−1 ad

 ,

where ai = δ − bi − ci, for i = 1, . . . , d.
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Distance-regular graphs

Lemma
Let F2(G) be the 2-token graph of a distance-regular graph G with
degree δ = b0, diameter d, and intersection array ι(G). Then,
F2 = F2(G) has a regular partition π with quotient matrix and
quotient Laplacian matrix

A(F2/π) = 2



a1 c2
b1 a2 c3

b2 a3
. . .

. . .
. . . cd
bd−1 ad

 ,

L(F2/π) = 2



c2 −c2
−b1 b1 + c3 −c3

−b2 b2 + c4
. . .

. . .
. . . −cd

−bd−1 bd−1

 ,

where ci + ai + bi = δ, for i = 0, 1, . . . , d.
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Distance-regular graphs

Proposition
Let G be a distance-regular graph with adjacency and Laplacian matrices
A and L. Let F2(G) be its 2-token graph with adjacency and Laplacian
matrices A(F2) and L(F2) with respective spectral radii ρA(F2) and
ρL(F2). Let A(F2/π) and L(F2/π) be the quotient matrices with
respective spectral radii ρA(F2/π) and ρL(F2/π). Then, the following
holds:

(a) ρA(F2) = ρA(F2/π).

(b) ρL(F2) ≥ ρL(F2/π), with equality if G is bipartite.
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Distance-regular graphs
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Example (Heawood graph)

◦ H is a bipartite distance-regular graph with
n = 14 vertices, diameter 3, and intersection array
{b0, b1, b2; c1, c2, c3} = {3, 2, 2; 1, 1, 3}.

◦ The Laplacian spectral radius of H is ρL(H) = 6, and the algebraic
connectivity of H is α1(H) = n− ρ(H) = 8.

◦ By the last proposition, the 2-token graph F2 = F2(H) has a regular
partition π with quotient and quotient Laplacian matrices

A(F2/π) = 2

 0 1 0
2 0 3
0 2 0

 , L(F2/π) = 2

 1 −1 0
−2 5 −3
0 −2 2

 .

◦ evA(F2/π) = 0,±4
√
2, evL(F2/π) = 0, 8± 2

√
7. Thus,

ρA(F2(H)) = 4
√
2 and ρ2(H) = ρL(F2(H)) = 8 + 2

√
7.

◦ α2(H) = 2(n− 1)− ρ2(H) = 18− 2
√
7 > 8 = α1(H).

Since the algebraic connectivity of F2(H) also is 8,
α1(F2(H)) = α1(H), as expected.
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Example (Heawood graph)

◦ H is a bipartite distance-regular graph with
n = 14 vertices, diameter 3, and intersection array
{b0, b1, b2; c1, c2, c3} = {3, 2, 2; 1, 1, 3}.

◦ The Laplacian spectral radius of H is ρL(H) = 6, and the algebraic
connectivity of H is α1(H) = n− ρ(H) = 8.

◦ By the last proposition, the 2-token graph F2 = F2(H) has a regular
partition π with quotient and quotient Laplacian matrices

A(F2/π) = 2

 0 1 0
2 0 3
0 2 0

 , L(F2/π) = 2

 1 −1 0
−2 5 −3
0 −2 2

 .

◦ evA(F2/π) = 0,±4
√
2, evL(F2/π) = 0, 8± 2

√
7. Thus,

ρA(F2(H)) = 4
√
2 and ρ2(H) = ρL(F2(H)) = 8 + 2

√
7.

◦ α2(H) = 2(n− 1)− ρ2(H) = 18− 2
√
7 > 8 = α1(H).

Since the algebraic connectivity of F2(H) also is 8,
α1(F2(H)) = α1(H), as expected.

26 / 31



Introduction k-algebraic connectivity and k-spectral radius Spectral radius of token graphs Distance-regular graphs

Distance-regular graphs

1110

12
9

6

7

8

5

0

1

2

34

13

Example (Heawood graph)

◦ H is a bipartite distance-regular graph with
n = 14 vertices, diameter 3, and intersection array
{b0, b1, b2; c1, c2, c3} = {3, 2, 2; 1, 1, 3}.

◦ The Laplacian spectral radius of H is ρL(H) = 6, and the algebraic
connectivity of H is α1(H) = n− ρ(H) = 8.

◦ By the last proposition, the 2-token graph F2 = F2(H) has a regular
partition π with quotient and quotient Laplacian matrices

A(F2/π) = 2

 0 1 0
2 0 3
0 2 0

 , L(F2/π) = 2

 1 −1 0
−2 5 −3
0 −2 2

 .

◦ evA(F2/π) = 0,±4
√
2, evL(F2/π) = 0, 8± 2

√
7. Thus,

ρA(F2(H)) = 4
√
2 and ρ2(H) = ρL(F2(H)) = 8 + 2

√
7.

◦ α2(H) = 2(n− 1)− ρ2(H) = 18− 2
√
7 > 8 = α1(H).

Since the algebraic connectivity of F2(H) also is 8,
α1(F2(H)) = α1(H), as expected.

26 / 31



Introduction k-algebraic connectivity and k-spectral radius Spectral radius of token graphs Distance-regular graphs

Distance-regular graphs

1110

12
9

6

7

8

5

0

1

2

34

13

Example (Heawood graph)

◦ H is a bipartite distance-regular graph with
n = 14 vertices, diameter 3, and intersection array
{b0, b1, b2; c1, c2, c3} = {3, 2, 2; 1, 1, 3}.

◦ The Laplacian spectral radius of H is ρL(H) = 6, and the algebraic
connectivity of H is α1(H) = n− ρ(H) = 8.

◦ By the last proposition, the 2-token graph F2 = F2(H) has a regular
partition π with quotient and quotient Laplacian matrices

A(F2/π) = 2

 0 1 0
2 0 3
0 2 0

 , L(F2/π) = 2

 1 −1 0
−2 5 −3
0 −2 2

 .

◦ evA(F2/π) = 0,±4
√
2, evL(F2/π) = 0, 8± 2

√
7. Thus,

ρA(F2(H)) = 4
√
2 and ρ2(H) = ρL(F2(H)) = 8 + 2

√
7.

◦ α2(H) = 2(n− 1)− ρ2(H) = 18− 2
√
7 > 8 = α1(H).

Since the algebraic connectivity of F2(H) also is 8,
α1(F2(H)) = α1(H), as expected.

26 / 31



Introduction k-algebraic connectivity and k-spectral radius Spectral radius of token graphs Distance-regular graphs

Distance-regular graphs

1110

12
9

6

7

8

5

0

1

2

34

13

Example (Heawood graph)

◦ H is a bipartite distance-regular graph with
n = 14 vertices, diameter 3, and intersection array
{b0, b1, b2; c1, c2, c3} = {3, 2, 2; 1, 1, 3}.

◦ The Laplacian spectral radius of H is ρL(H) = 6, and the algebraic
connectivity of H is α1(H) = n− ρ(H) = 8.

◦ By the last proposition, the 2-token graph F2 = F2(H) has a regular
partition π with quotient and quotient Laplacian matrices

A(F2/π) = 2

 0 1 0
2 0 3
0 2 0

 , L(F2/π) = 2

 1 −1 0
−2 5 −3
0 −2 2

 .

◦ evA(F2/π) = 0,±4
√
2, evL(F2/π) = 0, 8± 2

√
7. Thus,

ρA(F2(H)) = 4
√
2 and ρ2(H) = ρL(F2(H)) = 8 + 2

√
7.

◦ α2(H) = 2(n− 1)− ρ2(H) = 18− 2
√
7 > 8 = α1(H).

Since the algebraic connectivity of F2(H) also is 8,
α1(F2(H)) = α1(H), as expected.

26 / 31



Introduction k-algebraic connectivity and k-spectral radius Spectral radius of token graphs Distance-regular graphs

Distance-regular graphs

Corollary
Let F be the family of all distance-regular graphs with diameter d and
the same parameters (or intersection array). Then, every graph G ∈ F
has 2-token graph F2 with the d (adjacency or Laplacian) eigenvalues of
A(F2/π) or L(F2/π) given as before. In particular, F2 has spectral radii
ρA(F2) = ρA(F2/π), and ρL(F2) = ρL(F2/π) if it is bipartite.

Corollary
Let G be a distance-regular graph with (adjacency) eigenvalues
θ0 > θ1 > · · · > θd. Then, 2-token graph F2(G) has some eigenvalues
µ0 > µ1 > · · · > µd−1 satisfying

2θi+1 ≤ µi ≤ 2θi, i = 0, . . . , d− 1.
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Open problem:
All the strongly regular graphs with the same parameters are
cospectral. Does the same happen with all distance-regular graphs
with the same parameters (with respect to the adjacency or Laplacian
matrix)???
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