Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová

Comenius University in Bratislava

21th July 2023 IWONT 2023, Edinburgh

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

→ ∃ →

- (k,g)-graph = a k-regular graph with girth g
- (k,g)-cage = a smallest (k,g)-graph
- n(k,g) = size of a (k,g) cage
- $n(k,g) \ge M(k,g)$ (Moore bound)

A B K A B K

э.

Connectivity of cages

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

æ.

Conjecture (Fu, Huang, Rodger, 1977)

Each (k, g)-cage is k-connected

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

イロト イポト イヨト イヨト

Conjecture (Fu, Huang, Rodger, 1977)

Each (k, g)-cage is k-connected

Partial progress:

- $(\lfloor k/2 \rfloor + 1)$ -connected for odd $g \ge 7$ [Balbuena, Salas, 2012]
- (r+1)-connected for each even g and $r^3 + 2r^2 \le k$ [Lin et al., '08]

э.

Conjecture (Fu, Huang, Rodger, 1977)

Each (k, g)-cage is k-connected

Partial progress:

- ($\lfloor k/2
 floor+1$)-connected for odd $g \geq 7$ [Balbuena, Salas, 2012]
- (r+1)-connected for each even g and $r^3 + 2r^2 \le k$ [Lin et al., '08]

Theorem (Wang et al. 2003 + Lin et al. 2005) Each (k, g)-cage is k-edge-connected.

• Problem: k-regular graph is at most k-(edge-)connected

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

(4) E (4) (4) E (4)

- Problem: k-regular graph is at most k-(edge-)connected
- Does a (3,47)-cage look like this?

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

æ

• A cycle separating edge-cut S: at least two components of G - S contain a cycle

→

- A cycle separating edge-cut S: at least two components of G S contain a cycle
- *G* is *cyclically z-edge-connected*: contains no cycle-separating edge-cut of size < *z*

→ ∃ →

- A cycle separating edge-cut S: at least two components of G Scontain a cvcle
- G is cyclically z-edge-connected: contains no cycle-separating edge-cut of size < z

- A cycle separating edge-cut S: at least two components of G S contain a cycle
- *G* is *cyclically z-edge-connected*: contains no cycle-separating edge-cut of size < *z*

• Refinement of the classical edge-connectivity

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

→

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:

A 3 3

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples
- Useful for proofs

< 3 > >

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples
- Useful for proofs
- Non-triviality measure

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ 7 / 26 э.

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

→

э

э.

• Almost always a cycle-separating (k-2)g-edge-cut

→

Each (k, g)-cage cyclically (k - 2)g-edge-connected.

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

Each (k,g)-cage cyclically (k-2)g-edge-connected.

Conjecture (Lukoťka, Máčajová, R. 2023+)

For each (k, g)-cage G, any cycle separating (k - 2)g-edge-cut in G separates a g-cycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Each (k, g)-cage cyclically (k - 2)g-edge-connected.

Conjecture (Lukoťka, Máčajová, R. 2023+)

For each (k, g)-cage G, any cycle separating (k - 2)g-edge-cut in G separates a g-cycle.

• Both true for all known cubic cages, that is for $g \leq 12$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Each (k,g)-cage cyclically (k-2)g-edge-connected.

Conjecture (Lukoťka, Máčajová, R. 2023+)

For each (k, g)-cage G, any cycle separating (k - 2)g-edge-cut in G separates a g-cycle.

- Both true for all known cubic cages, that is for $g \leq 12$
- We prove them for some small values of k, g

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Multipoles

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

а.

Multipoles

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

а.

Multipoles

æ.

- (k, g, s)-multipole
 - *k*-regular multipole

æ

イロト イボト イヨト イヨト

- (k, g, s)-multipole
 - *k*-regular multipole
 - girth $\geq g$

æ.

イロト 人間ト イヨト イヨト

- (k, g, s)-multipole
 - *k*-regular multipole
 - girth $\geq g$
 - *s* semiedges

э.

Our problem

- (k, g, s)-multipole
 - *k*-regular multipole
 - girth $\geq g$
 - *s* semiedges
- (3,6,6)-multipoles:

Our problem

- (k, g, s)-multipole
 - k-regular multipole
 - girth $\geq g$
 - s semiedges
- (3,6,6)-multipoles:

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges

(3,6,6)-multipoles:

 For s ≤ (k − 2)g: nontrivial = cyclic and different from C_g

•
$$k$$
 even $\Rightarrow s$ even

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges

 For s ≤ (k − 2)g: nontrivial = cyclic and different from C_g

•
$$k$$
 even \Rightarrow s even

Problem

What is the size n(k, g, s) of a smallest nontrivial (k, g, s)-multipole.
<i>s</i> =	0	1	2	3	4	5	6	7	8	9
<i>g</i> = 3	4	5	4	5						
<i>g</i> = 4	6	7	6	5	6					
<i>g</i> = 5	10	11	10	9	8	7				
g = 6	14	15	14	13	12	11	8			
<i>g</i> = 7	24	25	24	23	22	21	20	17		
<i>g</i> = 8	30	31	30	29	28	27	26	25	22	

Obtained by hand and by the program multigraph [Brinkmann]

<i>s</i> =	0	2	4	6	8	10	12	14	16
<i>g</i> = 3	5	5	4	4					
<i>g</i> = 4	8	8	7	6	5				
g = 5	19	19	18	17	15	10			
g = 6	26	26	25	24	23	22	20		

Obtained by hand and by the program multigraph [Brinkmann]

= nar

Small cases: k = 3

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová

Cyclic connectivity of cages

13/26

Small cases: k = 4

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová

Cyclic connectivity of cages

14/26

 Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges

э.

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \le n(3, g) s + 2$ for 0 < s < g

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \le n(3, g) s + 2$ for 0 < s < g

•
$$n(3, g, g) \le n(3, g) - g$$
 for $g \ge 6$

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \le n(3, g) s + 2$ for 0 < s < g
- $n(3,g,g) \leq n(3,g) g$ for $g \geq 6$
- Generalisation (except small cases):

$$n(k,g,s) \leq n(k,g) - \left\lfloor \frac{s-2}{k-2} \right\rfloor + \left(k \left\lfloor \frac{s-2}{k-2} \right\rfloor + s\right) \mod 2$$

A B K A B K

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

 $|G| \geq M(k,g)$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová

Cyclic connectivity of cages

16 / 26

< ∃⇒

э

 $|G| \geq M(k,g)$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová

Cyclic connectivity of cages

16 / 26

< ∃⇒

э

э

・ロット (雪) () () () ()

$$|G| \ge M(k,g) - \sum_{i=1}^{s} \frac{(k-1)^{d-h_i} - 1}{k-2}$$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cy

Cyclic connectivity of cages

→

э

4 /∃ > < ∃</p>

Which vertex should we choose?

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э

イロト イボト イヨト

Which vertex should we choose?

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э

$$n \geq M - \frac{1}{k-2}\sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1\right)$$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

・ロト ・回ト ・ヨト ・ヨト

$$n \ge M - \frac{1}{k-2} \sum_{i=1}^{s} \left((k-1)^{d - \operatorname{dist}(v, f_i)} - 1 \right)$$
$$\sum_{v \in V(G)} n \ge \sum_{v \in V(G)} M - \frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s} \left((k-1)^{d - \operatorname{dist}(v, f_i)} - 1 \right)$$

э.

・ロト ・回ト ・ヨト ・ヨト

$$n \ge M - \frac{1}{k-2} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$
$$\sum_{v \in V(G)} n \ge \sum_{v \in V(G)} M - \frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$
$$n^2 \ge Mn - \frac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

$$n \ge M - rac{1}{k-2} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1
ight)$$

 $\sum_{v \in V(G)} n \ge \sum_{v \in V(G)} M - rac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1
ight)$
 $n^2 \ge Mn - rac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1
ight)$
 $n^2 \ge Mn - rac{1}{k-2} \sum_{i=1}^{s} rac{(dk-2d-1)(k-1)^d + 1}{k-2}$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э

$$n \ge M - \frac{1}{k-2} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$
$$\sum_{v \in V(G)} n \ge \sum_{v \in V(G)} M - \frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$
$$n^2 \ge Mn - \frac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)} \left((k-1)^{d-\operatorname{dist}(v,f_i)} - 1 \right)$$
$$n^2 \ge Mn - \frac{1}{k-2} \sum_{i=1}^{s} \frac{(dk-2d-1)(k-1)^d + 1}{k-2}$$
$$n^2 - Mn + s \cdot \frac{(dk-2d-1)(k-1)^d + 1}{(k-2)^2} \ge 0$$

4 □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷</p>
18/26

Summary

Let *n* be the order of a (k, g, s)-multipole

• For odd g:

$$n^2 - Mn + s \cdot rac{(dk - 2d - 1)(k - 1)^d + 1}{(k - 2)^2} \ge 0$$

æ

Summary

Let *n* be the order of a (k, g, s)-multipole

• For odd g:

$$n^2 - Mn + s \cdot rac{(dk - 2d - 1)(k - 1)^d + 1}{(k - 2)^2} \ge 0$$

• For even *g*:

$$kn^2 - (kM + s)n + Ms + 2s \cdot rac{(dk - 2d - 1)(k - 1)^{d + 1} + k - 1}{(k - 2)^2} \geq 0$$

Ξ.

Summary

Let *n* be the order of a (k, g, s)-multipole

• For odd g:

$$n^2 - Mn + s \cdot rac{(dk - 2d - 1)(k - 1)^d + 1}{(k - 2)^2} \ge 0$$

• For even *g*:

$$kn^2 - (kM + s)n + Ms + 2s \cdot \frac{(dk - 2d - 1)(k - 1)^{d+1} + k - 1}{(k - 2)^2} \ge 0$$

• Therefore, $n \leq b_1(k,g,s)$ or $n \geq b_2(k,g,s)$

$$n \leq b_1(k,g,s) \leq rac{g^2}{2}$$
 or $n \geq b_2(k,g,s) \geq M(k,g) - rac{g^2}{2}$

- k = 3 and $g \ge 11$,
- k = 4 and $g \ge 7$,
- $k \in \{5, 6\}$ and $g \ge 5$,
- $k \in \{7, 8, 9, 10\}$ and $g \geq 3$ and $g \neq 4$,
- $k \ge 11$ and $g \ge 3$.

→

For $s \leq (k-2)g$, the order of a non-trivial (k, g, s)-multipole is:

$$n(k,g,s) \geq b_2(k,g,s) \geq M(k,g) - O(g^2)$$

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

イロト イヨト イヨト

For $s \leq (k-2)g$, the order of a non-trivial (k, g, s)-multipole is:

$$n(k,g,s) \geq b_2(k,g,s) \geq M(k,g) - O(g^2)$$

Proof outline (induction):

э

イロト 不得 トイヨト イヨト

For $s \leq (k-2)g$, the order of a non-trivial (k, g, s)-multipole is:

$$n(k,g,s) \geq b_2(k,g,s) \geq M(k,g) - O(g^2)$$

Proof outline (induction):

• We want to show $|G| > b_1(k,g,s) \Leftarrow |G| > g^2/2$

For $s \leq (k-2)g$, the order of a non-trivial (k, g, s)-multipole is:

$$n(k,g,s) \geq b_2(k,g,s) \geq M(k,g) - O(g^2)$$

Proof outline (induction):

- We want to show $|G| > b_1(k,g,s) \Leftarrow |G| > g^2/2$
- If $\exists v$ with 2 proper edges suppress v

For $s \leq (k-2)g$, the order of a non-trivial (k, g, s)-multipole is:

$$n(k,g,s) \geq b_2(k,g,s) \geq M(k,g) - O(g^2)$$

Proof outline (induction):

- We want to show $|G| > b_1(k,g,s) \Leftarrow |G| > g^2/2$
- If $\exists v$ with 2 proper edges suppress v
- Otherwise, $|G| \ge M(3,g)$

Each (k, g)-graph or order less than

$$2b_2(k,g,s) = 2M(k,g) - O(g^2)$$

is cyclically (k-2)g-edge-connected and every cycle-separating (k-2)g-edge-cut separates a g-cycle.

In particular, this is true for:

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

æ

In particular, this is true for:

k = 3, g ≤ 15
k ∈ {4,5}, g ≤ 12

э.

In particular, this is true for:

æ

In particular, this is true for:

æ

In particular, this is true for:

- k = 3, g ≤ 15
 k ∈ {4,5}, g ≤ 12
- $k \in \{6,9\}, g = 7$
- $g \in \{3, 4\}$
- Moore graphs

< ∃⇒

In particular, this is true for:

- $k = 3, g \le 15$
- $k \in \{4, 5\}, g \le 12$
- $k \in \{6,9\}$, g = 7
- $g \in \{3,4\}$
- Moore graphs

If a (57,5)-Moore graph exists, it is cyclically 275-edge-connected

• 3 >
Cyclic (3, 11, 17)-multipoles:

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э.

イロト イボト イヨト イヨト

Cyclic (3, 11, 17)-multipoles:

э

A D F A B F A B F A B F

Cyclic (3, 11, 17)-multipoles:

• No other (3, 11, 17)-multipoles up to order $43 = b_1(3, 11, 17)$

э

Cyclic (3, 11, 17)-multipoles:

- No other (3, 11, 17)-multipoles up to order $43 = b_1(3, 11, 17)$
- Thus, nothing up to order $b_2(3, 11, 17) = 51$

$$n \leq b_1(k,g,s) \leq rac{g^2}{2}$$
 or $n \geq b_2(k,g,s) \geq M(k,g) - rac{g^2}{2}$

(4) E (4) E (4) E (4)

э

• Obtain better lower bounds (close to M(k,g))

э.

イロト イヨト イヨト

- Obtain better lower bounds (close to M(k,g))
- Investigate relation to cages

э

イロト イボト イヨト イヨト

- Obtain better lower bounds (close to M(k,g))
- Investigate relation to cages
- Find small nontrivial (k, g, s)-multipoles using a computer

< ∃⇒

- Obtain better lower bounds (close to M(k,g))
- Investigate relation to cages
- Find small nontrivial (k, g, s)-multipoles using a computer
- Estimate the number of semiedges of a multipole induced by the Moore tree

$$n^2 - Mn + s \cdot rac{(dk - 2d - 1)(k - 1)^d + 1}{(k - 2)^2} \ge 0$$

$$kn^2 - (kM + s)n + Ms + 2s \cdot rac{(dk - 2d - 1)(k - 1)^{d + 1} + k - 1}{(k - 2)^2} \ge 0$$

→ Ξ →

Thank you for your attention.

Jozef Rajník joint work with Róbert Lukoťka and Edita Máčajová Cyclic connectivity of cages

э

イロト イボト イヨト イヨト