Cyclic connectivity of cages

Jozef Rajník joint work with Róbert Lukot'ka and Edita Máčajová

Comenius University in Bratislava

21th July 2023
IWONT 2023, Edinburgh

Cage problem

- (k, g)-graph $=$ a k-regular graph with girth g
- (k, g)-cage $=$ a smallest (k, g)-graph
- $n(k, g)=$ size of a (k, g)-cage
- $n(k, g) \geq M(k, g)$ (Moore bound)

Connectivity of cages

Connectivity of cages

Conjecture (Fu, Huang, Rodger, 1977)
Each (k, g)-cage is k-connected

Connectivity of cages

Conjecture (Fu, Huang, Rodger, 1977)
Each (k, g)-cage is k-connected
Partial progress:

- $(\lfloor k / 2\rfloor+1)$-connected for odd $g \geq 7$ [Balbuena, Salas, 2012]
- $(r+1)$-connected for each even g and $r^{3}+2 r^{2} \leq k$ [Lin et al., '08]

Connectivity of cages

Conjecture (Fu, Huang, Rodger, 1977)
Each (k, g)-cage is k-connected
Partial progress:

- $(\lfloor k / 2\rfloor+1)$-connected for odd $g \geq 7$ [Balbuena, Salas, 2012]
- $(r+1)$-connected for each even g and $r^{3}+2 r^{2} \leq k$ [Lin et al., '08]

Theorem (Wang et al. 2003 + Lin et al. 2005)
Each (k, g)-cage is k-edge-connected.

Limits of connectivity

- Problem: k-regular graph is at most k-(edge-)connected

Limits of connectivity

- Problem: k-regular graph is at most k-(edge-)connected
- Does a $(3,47)$-cage look like this?

Cyclic connectivity

Cyclic connectivity

- A cycle separating edge-cut S : at least two components of $G-S$ contain a cycle

Cyclic connectivity

- A cycle separating edge-cut S : at least two components of $G-S$ contain a cycle
- G is cyclically z-edge-connected: contains no cycle-separating edge-cut of size $<z$

Cyclic connectivity

- A cycle separating edge-cut S : at least two components of $G-S$ contain a cycle
- G is cyclically z-edge-connected: contains no cycle-separating edge-cut of size $<z$

Cyclic connectivity

- A cycle separating edge-cut S : at least two components of $G-S$ contain a cycle
- G is cyclically z-edge-connected: contains no cycle-separating edge-cut of size $<z$

Why cyclic edge-connectivity?

- Refinement of the classical edge-connectivity

Why cyclic edge-connectivity?

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:

Why cyclic edge-connectivity?

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples

Why cyclic edge-connectivity?

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples
- Useful for proofs

Why cyclic edge-connectivity?

- Refinement of the classical edge-connectivity
- An important invariant, mostly of cubic graphs:
- Smallest counterexamples
- Useful for proofs
- Non-triviality measure

Cyclic connectivity of cages

Cyclic connectivity of cages

Cyclic connectivity of cages

Cyclic connectivity of cages

- Almost always a cycle-separating $(k-2) g$-edge-cut

Cyclic connectivity of cages

Conjecture (Lukotka, Máčajová, R. 2023+)
Each (k, g)-cage cyclically $(k-2) g$-edge-connected.

Cyclic connectivity of cages

Conjecture (Lukot'ka, Máčajová, R. 2023+)
Each (k, g)-cage cyclically $(k-2) g$-edge-connected.
Conjecture (Lukot'ka, Máčajová, R. 2023+)
For each (k, g)-cage G, any cycle separating $(k-2) g$-edge-cut in G separates a g-cycle.

Cyclic connectivity of cages

Conjecture (Lukot'ka, Máčajová, R. 2023+)
Each (k, g)-cage cyclically $(k-2) g$-edge-connected.
Conjecture (Lukot'ka, Máčajová, R. 2023+)
For each (k, g)-cage G, any cycle separating $(k-2) g$-edge-cut in G separates a g-cycle.

- Both true for all known cubic cages, that is for $g \leq 12$

Cyclic connectivity of cages

Conjecture (Lukot'ka, Máčajová, R. 2023+)
Each (k, g)-cage cyclically $(k-2) g$-edge-connected.
Conjecture (Lukot'ka, Máčajová, R. 2023+)
For each (k, g)-cage G, any cycle separating $(k-2) g$-edge-cut in G separates a g-cycle.

- Both true for all known cubic cages, that is for $g \leq 12$
- We prove them for some small values of k, g

Multipoles

Multipoles

Multipoles

Our problem

(k, g, s)-multipole

- k-regular multipole

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$

Our problem

($k, g, s)$-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges
(3,6,6)-multipoles:

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges
(3,6,6)-multipoles:

- For $s \leq(k-2) g$:
nontrivial $=$ cyclic and different from C_{g}

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges
- For $s \leq(k-2) g$:
nontrivial $=$ cyclic and different from C_{g}
- k even $\Rightarrow s$ even
(3,6,6)-multipoles:

Our problem

(k, g, s)-multipole

- k-regular multipole
- girth $\geq g$
- s semiedges
- For $s \leq(k-2) g$: nontrivial $=$ cyclic and different from C_{g}
- k even $\Rightarrow s$ even

Problem

What is the size $n(k, g, s)$ of a smallest nontrivial (k, g, s)-multipole.

Small cases: $k=3$

$s=$	0	1	2	3	4	5	6	7	8	9
$g=3$	4	5	4	5						
$g=4$	6	7	6	5	6					
$g=5$	10	11	10	9	8	7				
$g=6$	14	15	14	13	12	11	8			
$g=7$	24	25	24	23	22	21	20	17		
$g=8$	30	31	30	29	28	27	26	25	22	

Obtained by hand and by the program multigraph [Brinkmann]

Small cases: $k=4$

$s=$	0	2	4	6	8	10	12	14	16
$g=3$	5	5	4	4					
$g=4$	8	8	7	6	5				
$g=5$	19	19	18	17	15	10			
$g=6$	26	26	25	24	23	22	20		

Obtained by hand and by the program multigraph [Brinkmann]

Small cases: $k=3$

Small cases: $k=4$

Upper bound

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges

Upper bound

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \leq n(3, g)-s+2$ for $0<s<g$

Upper bound

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \leq n(3, g)-s+2$ for $0<s<g$
- $n(3, g, g) \leq n(3, g)-g$ for $g \geq 6$

Upper bound

- Nontrivial (k, g, s)-multipoles can be obtained from (k, g)-graphs by removing vertices or severing edges
- $n(3, g, s) \leq n(3, g)-s+2$ for $0<s<g$
- $n(3, g, g) \leq n(3, g)-g$ for $g \geq 6$
- Generalisation (except small cases):

$$
n(k, g, s) \leq n(k, g)-\left\lfloor\frac{s-2}{k-2}\right\rfloor+\left(k\left\lfloor\frac{s-2}{k-2}\right\rfloor+s\right) \bmod 2
$$

Moore trees for multipoles (odd g)

Moore trees for multipoles (odd g)

$$
|G| \geq M(k, g)
$$

Moore trees for multipoles (odd g)

$$
|G| \geq M(k, g)
$$

Moore trees for multipoles (odd g)

$$
|G| \geq M(k, g)-\quad \frac{(k-1)^{d-h_{i}}-1}{k-2}
$$

Moore trees for multipoles (odd g)

$$
|G| \geq M(k, g)-\sum_{i=1}^{s} \frac{(k-1)^{d-h_{i}}-1}{k-2}
$$

Which vertex should we choose?

Which vertex should we choose?

Some summation...

$$
n \geq M-\frac{1}{k-2} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right)
$$

Some summation...

$$
\begin{aligned}
n & \geq M-\frac{1}{k-2} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
\sum_{v \in V(G)} n & \geq \sum_{v \in V(G)} M-\frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right)
\end{aligned}
$$

Some summation...

$$
\begin{aligned}
n & \geq M-\frac{1}{k-2} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
\sum_{v \in V(G)} n & \geq \sum_{v \in V(G)} M-\frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
n^{2} & \geq M n-\frac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right)
\end{aligned}
$$

Some summation...

$$
\begin{aligned}
n & \geq M-\frac{1}{k-2} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
\sum_{v \in V(G)} n & \geq \sum_{v \in V(G)} M-\frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
n^{2} & \geq M n-\frac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
n^{2} & \geq M n-\frac{1}{k-2} \sum_{i=1}^{s} \frac{(d k-2 d-1)(k-1)^{d}+1}{k-2}
\end{aligned}
$$

Some summation...

$$
\begin{aligned}
n & \geq M-\frac{1}{k-2} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
\sum_{v \in V(G)} n & \geq \sum_{v \in V(G)} M-\frac{1}{k-2} \sum_{v \in V(G)} \sum_{i=1}^{s}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
n^{2} & \geq M n-\frac{1}{k-2} \sum_{i=1}^{s} \sum_{v \in V(G)}\left((k-1)^{d-\operatorname{dist}\left(v, f_{i}\right)}-1\right) \\
n^{2} & \geq M n-\frac{1}{k-2} \sum_{i=1}^{s} \frac{(d k-2 d-1)(k-1)^{d}+1}{k-2} \\
n^{2} & -M n+s \cdot \frac{(d k-2 d-1)(k-1)^{d}+1}{(k-2)^{2}} \geq 0
\end{aligned}
$$

Summary

Let n be the order of a (k, g, s)-multipole

- For odd g :

$$
n^{2}-M n+s \cdot \frac{(d k-2 d-1)(k-1)^{d}+1}{(k-2)^{2}} \geq 0
$$

Summary

Let n be the order of a (k, g, s)-multipole

- For odd g :

$$
n^{2}-M n+s \cdot \frac{(d k-2 d-1)(k-1)^{d}+1}{(k-2)^{2}} \geq 0
$$

- For even g :

$$
k n^{2}-(k M+s) n+M s+2 s \cdot \frac{(d k-2 d-1)(k-1)^{d+1}+k-1}{(k-2)^{2}} \geq 0
$$

Summary

Let n be the order of a (k, g, s)-multipole

- For odd g :

$$
n^{2}-M n+s \cdot \frac{(d k-2 d-1)(k-1)^{d}+1}{(k-2)^{2}} \geq 0
$$

- For even g :

$$
k n^{2}-(k M+s) n+M s+2 s \cdot \frac{(d k-2 d-1)(k-1)^{d+1}+k-1}{(k-2)^{2}} \geq 0
$$

- Therefore, $n \leq b_{1}(k, g, s) \quad$ or $\quad n \geq b_{2}(k, g, s)$

Simpler bounds

$$
n \leq b_{1}(k, g, s) \leq \frac{g^{2}}{2} \quad \text { or } \quad n \geq b_{2}(k, g, s) \geq M(k, g)-\frac{g^{2}}{2}
$$

- $k=3$ and $g \geq 11$,
- $k=4$ and $g \geq 7$,
- $k \in\{5,6\}$ and $g \geq 5$,
- $k \in\{7,8,9,10\}$ and $g \geq 3$ and $g \neq 4$,
- $k \geq 11$ and $g \geq 3$.

Bound on $n(k, g, s)$

Theorem (Lukotka, Máčajová, R. 2022+)

For $s \leq(k-2) g$, the order of a non-trivial (k, g, s)-multipole is:

$$
n(k, g, s) \geq b_{2}(k, g, s) \geq M(k, g)-O\left(g^{2}\right)
$$

Bound on $n(k, g, s)$

Theorem (Lukotka, Máčajová, R. 2022+)

For $s \leq(k-2) g$, the order of a non-trivial (k, g, s)-multipole is:

$$
n(k, g, s) \geq b_{2}(k, g, s) \geq M(k, g)-O\left(g^{2}\right)
$$

Proof outline (induction):

Bound on $n(k, g, s)$

Theorem (Lukoťka, Máčajová, R. 2022+)

For $s \leq(k-2) g$, the order of a non-trivial (k, g, s)-multipole is:

$$
n(k, g, s) \geq b_{2}(k, g, s) \geq M(k, g)-O\left(g^{2}\right)
$$

Proof outline (induction):

- We want to show $|G|>b_{1}(k, g, s) \Leftarrow|G|>g^{2} / 2$

Bound on $n(k, g, s)$

Theorem (Lukoťka, Máčajová, R. 2022+)

For $s \leq(k-2) g$, the order of a non-trivial (k, g, s)-multipole is:

$$
n(k, g, s) \geq b_{2}(k, g, s) \geq M(k, g)-O\left(g^{2}\right)
$$

Proof outline (induction):

- We want to show $|G|>b_{1}(k, g, s) \Leftarrow|G|>g^{2} / 2$
- If $\exists v$ with 2 proper edges - suppress v

Bound on $n(k, g, s)$

Theorem (Lukoťka, Máčajová, R. 2022+)

For $s \leq(k-2) g$, the order of a non-trivial (k, g, s)-multipole is:

$$
n(k, g, s) \geq b_{2}(k, g, s) \geq M(k, g)-O\left(g^{2}\right)
$$

Proof outline (induction):

- We want to show $|G|>b_{1}(k, g, s) \Leftarrow|G|>g^{2} / 2$
- If $\exists v$ with 2 proper edges - suppress v
- Otherwise, $|G| \geq M(3, g)$

Results

Theorem (Lukoťka, Máčajová, R. 2022+)

Each (k, g)-graph or order less than

$$
2 b_{2}(k, g, s)=2 M(k, g)-O\left(g^{2}\right)
$$

is cyclically $(k-2) g$-edge-connected and every cycle-separating $(k-2) g$-edge-cut separates a g-cycle.

Results

In particular, this is true for:

- $k=3, g \leq 15$

Results

In particular, this is true for:

- $k=3, g \leq 15$
- $k \in\{4,5\}, g \leq 12$

Results

In particular, this is true for:

- $k=3, g \leq 15$
- $k \in\{4,5\}, g \leq 12$
- $k \in\{6,9\}, g=7$

Results

In particular, this is true for:

- $k=3, g \leq 15$
- $k \in\{4,5\}, g \leq 12$
- $k \in\{6,9\}, g=7$
- $g \in\{3,4\}$

Results

In particular, this is true for:

- $k=3, g \leq 15$
- $k \in\{4,5\}, g \leq 12$
- $k \in\{6,9\}, g=7$
- $g \in\{3,4\}$
- Moore graphs

Results

In particular, this is true for:

- $k=3, g \leq 15$
- $k \in\{4,5\}, g \leq 12$
- $k \in\{6,9\}, g=7$
- $g \in\{3,4\}$
- Moore graphs

If a $(57,5)$-Moore graph exists, it is cyclically 275-edge-connected

Trivial (k, g, s)-multipoles?

Cyclic (3, 11, 17)-multipoles:

Trivial (k, g, s)-multipoles?

Cyclic (3, 11, 17)-multipoles:

(a) order 17

(b) order 19

(c) order 21

(d) order 23

Trivial (k, g, s)-multipoles?

Cyclic (3, 11, 17)-multipoles:

(a) order 17

(b) order 19

(c) order 21

(d) order 23

- No other $(3,11,17)$-multipoles up to order $43=b_{1}(3,11,17)$

Trivial (k, g, s)-multipoles?

Cyclic (3, 11, 17)-multipoles:

(a) order 17

(b) order 19

(c) order 21

(d) order 23

- No other $(3,11,17)$-multipoles up to order $43=b_{1}(3,11,17)$
- Thus, nothing up to order $b_{2}(3,11,17)=51$

$$
n \leq b_{1}(k, g, s) \leq \frac{g^{2}}{2} \quad \text { or } \quad n \geq b_{2}(k, g, s) \geq M(k, g)-\frac{g^{2}}{2}
$$

Further work

- Obtain better lower bounds (close to $M(k, g)$)

Further work

- Obtain better lower bounds (close to $M(k, g)$)
- Investigate relation to cages

Further work

- Obtain better lower bounds (close to $M(k, g)$)
- Investigate relation to cages
- Find small nontrivial (k, g, s)-multipoles using a computer

Further work

- Obtain better lower bounds (close to $M(k, g)$)
- Investigate relation to cages
- Find small nontrivial (k, g, s)-multipoles using a computer
- Estimate the number of semiedges of a multipole induced by the Moore tree

$$
\begin{gathered}
n^{2}-M n+s \cdot \frac{(d k-2 d-1)(k-1)^{d}+1}{(k-2)^{2}} \geq 0 \\
k n^{2}-(k M+s) n+M s+2 s \cdot \frac{(d k-2 d-1)(k-1)^{d+1}+k-1}{(k-2)^{2}} \geq 0
\end{gathered}
$$

Thank you for your attention.

