

Upper bounds for the order of Abelian Cayley graph families in the degree-diameter problem

Rob Lewis, Open University, 18th July 2023

The degree-diameter problem for Abelian Cayley graphs is equivalent to finding minimum-density lattice coverings of real space with orthoplexes.

The degree-diameter problem is a fundamental and simple question of graph theory: given any *maximum degree* and *diameter*, what is the *largest possible order* of a graph?

Within this context, such graphs are called *extremal*.

For example, the extremal graph of maximum degree 3 and diameter 2 is the Petersen graph, with order 10:

Only *seven* graphs with degree greater than 2 are known to be extremal.

	Diamet	er, <i>k</i>	
Degree, d	2	3	4
3	10*	20	38
4	15		
5	24		
6	32		
7	50^		

* Petersen graph

^ Hoffman-Singleton graph

The degree-diameter problem for undirected Abelian Cayley graphs is much more accessible

For an undirected Abelian Cayley graph, each edge must have arcs in both directions, so connection elements occur in pairs such as ± 1 (except for the involution if the degree is odd).

The number of elements in the connection set determines the degree d of the graph.

The dimension n of the graph is the number of pairs of connection elements: $n = \lfloor d/2 \rfloor$.

The simplest Abelian case is a finite cyclic group, generating a *circulant graph*.

In this example, the group is \mathbb{Z}_{13} and the connection set $\{\pm 1, \pm 5\}$.

The degree d = 4 and the dimension n = 2.

It has diameter k = 2.

With order 13, it is the extremal Abelian Cayley graph of degree 4 and diameter 2.

The Open University

Extremal and largest-known circulant graphs up to degree 20 and diameter 16

- Extremal circulant graph families defined for degrees 2 to 5 and arbitrary diameter
- Largest-known families for degrees 6 to 20 and beyond

Order of extremal (yellow) and largest-known (green) circulant graphs

1 2 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 1 3 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 2 4 13 25 41 61 85 113 145 181 221 265 313 365 421 481 544 2 5 16 36 64 100 144 196 256 324 400 484 576 676 784 900 1022 3 6 21 55 117 203 333 515 737 1027 1393 1815 2329 2943 3629 4431 535 3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 9744 4 8 3																		
1 3 8 12 16 20 24 28 32 36 40 44 48 52 56 60 66 2 4 13 25 41 61 85 113 145 181 221 265 313 365 421 481 54 2 5 16 36 64 100 144 196 256 324 400 484 576 676 784 900 102 3 6 21 55 117 203 333 515 737 1027 1393 1815 2329 2943 3629 4431 535 3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 974 4 8 35 104 248 528 984 1712 2768 4280 6320 9048 1252 17024 22568 29408 3766	f	$d \setminus$	k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2 4 13 25 41 61 85 113 145 181 221 265 313 365 421 481 544 2 5 16 36 64 100 144 196 256 324 400 484 576 676 784 900 1024 3 6 21 55 117 203 333 515 737 1027 1393 1815 2329 2943 3629 4431 535 3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 9744 4 8 35 104 248 528 984 1712 2768 4280 6320 9048 12552 17024 22568 29408 3766 4 9 42 130 320 700 1416 2548 4304 6804 10320 15004 21192 29068 39032 51300	1	2		5	7	9	11	13	15	17	19	21	23	25	27	29	31	33
2 5 16 36 64 100 144 196 256 324 400 484 576 676 784 900 1020 3 6 21 55 117 203 333 515 737 1027 1393 1815 2329 2943 3629 4431 535 3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 9744 4 8 35 104 248 528 984 1712 2768 4280 6320 9048 1252 17024 22568 29408 3766 4 9 42 130 320 700 1416 2548 4304 6804 10320 1504 21192 29068 39032 51300 66334 5 10 57 177 457 1099 23	1	3		8	12	16	20	24	28	32	36	40	44	48	52	56	60	64
3 6 21 55 117 203 333 515 737 1027 1393 1815 2329 2943 3629 4431 535 3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 9744 4 8 35 104 248 528 984 1712 2768 4280 6320 9048 12552 17024 22568 29408 37664 4 9 42 130 320 700 1416 2548 4304 6804 10320 15004 21192 29068 39032 51300 66334 5 10 51 177 457 1099 2380 4551 8288 14099 2805 35568 53025 77572 110045 152671 20805 5 11 56 210 576 1428 3200 6652 12416 21572 35880 56700 87248 12885	2	4		13	25	41	61	85	113	145	181	221	265	313	365	421	481	545
3 7 26 76 160 308 536 828 1232 1764 2392 3180 4144 5236 6536 8060 9744 4 8 35 104 248 528 984 1712 2768 4280 6320 9048 12552 17024 22568 29408 37664 4 9 42 130 320 700 1416 2548 4304 6804 10320 15004 21192 29068 39032 51300 66334 5 10 51 177 457 1099 2380 4551 8288 14099 22805 35568 53025 77572 110045 152671 20805 20805 35574 6 12 67 275 819 2120 5044 10777 21384 3996 69965 117712 190392 295965 448920 662680 952984 6 13 80 312 970 2676 6256 14740 30760 57396 10	2	5		16	36	64	100	144	196	256	324	400	484	576	676	784	900	1024
4 8 35 104 248 528 984 1712 2768 4280 6320 9048 12552 17024 22568 29408 37664 4 9 42 130 320 700 1416 2548 4304 6804 10320 15004 21192 29068 39032 51300 66333 5 10 51 177 457 1099 2380 4551 8288 14099 22805 35568 53025 77572 110045 152671 20805 5 11 56 210 576 1428 3200 6652 12416 21572 35880 56700 87248 128852 18424 259260 35557 6 12 67 275 819 2120 5044 10777 21384 39996 69965 117712 190392 295965 448920 662680 95298 613 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 <	3	6	1	21	55	117	203	333	515	737	1027	1393	1815	2329	2943	3629	4431	5357
4 9 42 130 320 700 1416 2548 4304 6804 10320 15004 21192 29068 39032 51300 66334 5 10 51 177 457 1099 2380 4551 8288 14099 22805 35568 53025 77572 110045 152671 20805 5 11 56 210 576 1428 3200 6652 12416 21572 35880 56700 87248 128552 184424 259260 35574 6 12 67 275 819 2120 5044 10777 21384 3996 69965 117712 190392 295965 448920 662680 952983 6 13 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 476100 732744 1081860 1593064 1593064 7 14 90 381 1229 3695 9800 23744 49757 103380<	3	7		26	76	160	308	536	828	1232	1764	2392	3180	4144	5236	6536	8060	9744
5 10 51 177 457 1099 2380 4551 8288 14099 22805 35568 53025 77572 110045 152671 20805 5 11 56 210 576 1428 3200 6652 12416 21572 35880 56700 87248 128852 184424 259260 35557 6 12 67 275 819 2120 5044 10777 21384 39996 69965 117712 190392 295965 448920 662680 952984 6 13 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 476100 732744 1081860 1593064 7 14 90 381 1229 3695 9800 23304 49757 103380 196689 350700 593989 996240 1603216 2486227 3843544 7 15 96 448 1420 4292 12232 32092 68944 142516	4	8		35	104	248	528	984	1712	2768	4280	6320	9048	12552	17024	22568	29408	37664
5 11 56 210 576 1428 3200 6652 12416 21572 35880 56700 87248 128852 184424 259260 35557 6 12 67 275 819 2120 5044 10777 21384 39996 69965 117712 190392 295965 448920 662680 952984 6 13 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 476100 732744 1081860 1593064 7 14 90 381 1229 3695 9800 23304 49757 103380 196689 350700 593989 996240 1603216 2486227 3843544 7 15 96 448 1420 4292 12232 32092 68944 142516 276928 514580 908480 1550228 2566712 4013468 6155056 8 16 112 518 1788 5847 17733 45900 107748	4	9		42	130	320	700	<u>1416</u>	2548	4304	6804	10320	15004	21192	29068	39032	51300	66336
6 12 67 275 819 2120 5044 10777 21384 39996 69965 117712 190392 295965 448920 662680 952983 6 13 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 476100 732744 1081860 1593064 7 14 90 381 1229 3695 9800 23304 49757 103380 196689 350700 593989 996240 1603216 2486227 3843544 7 15 96 448 1420 4292 12232 32092 68944 142516 276928 514580 908480 1550228 2566712 4013468 6155054 8 16 112 518 1788 5847 17733 45900 107748 232245 479255 924420 1702428 2982623 5209347 8476048 13588844 847 8 17 130 570 1954 6468 20360 576	5	10		51	177	457	1099	2380	4551	8288	14099	22805	35568	53025	77572	110045	152671	208052
6 13 80 312 970 2676 6256 14740 30760 57396 106120 182980 295840 476100 732744 1081860 159306 7 14 90 381 1229 3695 9800 23304 49757 103380 196689 350700 593989 996240 1603216 2486227 3843540 7 15 96 448 1420 4292 12232 32092 68944 142516 276928 514580 908480 1550228 2566712 4013468 6155050 8 16 112 518 1788 5847 17733 45900 107748 232245 479255 924420 1702428 2982623 5209347 8476048 13588844 8 17 130 570 1954 6468 20360 57684 136512 321780 659464 1350820 2479104 4557364 7729000 13275108 21252864 9 18 138 655 2645 8425 27273 80940 <td>5</td> <td>11</td> <td></td> <td>56</td> <td>210</td> <td>576</td> <td>1428</td> <td>3200</td> <td>6652</td> <td>12416</td> <td>21572</td> <td>35880</td> <td>56700</td> <td>87248</td> <td>128852</td> <td>184424</td> <td>259260</td> <td>355576</td>	5	11		56	210	576	1428	3200	6652	12416	21572	35880	56700	87248	128852	184424	259260	355576
7 14 90 381 1229 3695 9800 23304 49757 103380 196689 350700 593989 996240 1603216 2486227 3843540 7 15 96 448 1420 4292 12232 32092 68944 142516 276928 514580 908480 1550228 2566712 4013468 6155056 8 16 112 518 1788 5847 17733 45900 107748 232245 479255 924420 1702428 2982623 5209347 8476048 13588843 8 17 130 570 1954 6468 20360 57684 136512 321780 659464 1350820 2479104 4557364 7729000 13275108 21252864 9 18 138 655 2645 8425 27273 80940 208872 492776 1078280 2202955 4388640 8068383 14718984 25609955 43068508 43068508 43068508 43068508 43068508 43068508 43068508 4306	6	12		67	<mark>275</mark>	819	2120	5044	10777	21384	39996	69965	117712	190392	295965	448920	662680	952985
7 15 96 448 1420 4292 12232 32092 68944 142516 276928 514580 908480 1550228 2566712 4013468 6155056 8 16 112 518 1788 5847 17733 45900 107748 232245 479255 924420 1702428 2982623 5209347 8476048 13588849 8 17 130 570 1954 6468 20360 57684 136512 321780 659464 1350820 2479104 4557364 7729000 13275108 21252864 9 18 138 655 2645 8425 27273 80940 208872 492776 1078280 2202955 4388640 8068383 14718984 25609955 43068508 43068508 4408508383 44718984 45609955<	6	13		80	<mark>312</mark>	970	2676	6256	14740	30760	57396	106120	182980	295840	476100	732744	1081860	1593064
8 16 112 518 1788 5847 17733 45900 107748 232245 479255 924420 1702428 2982623 5209347 8476048 13588844 8 17 130 570 1954 6468 20360 57684 136512 321780 659464 1350820 2479104 4557364 7729000 13275108 21252864 9 18 138 655 2645 8425 27273 80940 208872 492776 1078280 2202955 4388640 8068383 14718984 25609955 43068508 9 19 156 722 2696 9652 31440 99420 258040 652004 1416256 3101860 6100520 11797684 21659528 38328220 66601304	7	14	1	90	<mark>381</mark>	1229	3695	9800	23304	49757	103380	196689	350700	593989	996240	1603216	2486227	3843540
8 17 130 570 1954 6468 20360 57684 136512 321780 659464 1350820 2479104 4557364 7729000 13275108 21252864 9 18 138 655 2645 8425 27273 80940 208872 492776 1078280 2202955 4388640 8068383 14718984 25609955 43068508 9 19 156 722 2696 9652 31440 99420 258040 652004 1416256 3101860 6100520 11797684 21659528 38328220 66601304	7	15		96	<u>448</u>	1420	4292	12232	32092	68944	142516	276928	514580	908480	1550228	2566712	4013468	6155056
9 18 138 655 2645 8425 27273 80940 208872 492776 1078280 2202955 4388640 8068383 14718984 25609955 43068503 9 19 156 722 2696 9652 31440 99420 258040 652004 1416256 3101860 6100520 11797684 21659528 38328220 66601304	8	16	1	12	518	1788	5847	17733	45900	107748	232245	479255	924420	1702428	2982623	5209347	8476048	13588848
9 19 156 722 2696 9652 31440 99420 258040 652004 1416256 3101860 6100520 11797684 21659528 38328220 66601304	8	17	1	<mark>30</mark>	570	1954	6468	20360	57684	136512	321780	659464	1350820	2479104	4557364	7729000	13275108	21252864
	9	18	1	<mark>38</mark>	655	2645	8425	27273	80940	208872	492776	1078280	2202955	4388640	8068383	14718984	25609955	43068508
10 20 171 815 3175 12396 42252 132720 371400 930184 2232648 4947880 10238745 20452920 38155632 70612644 12696700	9	19	1	56	722	2696	9652	31440	99420	258040	652004	1416256	3101860	6100520	11797684	21659528	38328220	66601304
	10	20	1	71	815	3175	12396	42252	132720	371400	930184	2232648	4947880	10238745	20452920	38155632	70612644	126967008

Key: Dimension f, degree d, diameter k

Table from Combinatorics Wiki

Largest-known Abelian Cayley graphs of even degree

The largest-known Abelian Cayley graphs of any given even degree d = 2n, with diameter k above a critical value for each degree, belong to graph families and have order defined by a polynomial of degree n in the diameter k.

Degree	Dimensio	n Order	a common expression
d = 2n	n		$1/4)^{n}$
2	1	2k + 1	$\frac{1}{2}\left(\frac{4}{n}\right)^n$.
4	2	$2k^2 + O(k)$	
6	3	$(32/27) k^3 + O(k^2)$	For odd degree $2n+1$, the
8	4	$(1/2) k^4 + O(k^3)$	largest-known families all have a
10	5	$(512/3125) k^5 + O(k^4)$	leading coefficient twice as large:
12	6	$(32/729) k^6 + O(k^5)$	$(\frac{4}{-})^{n}$.
14	7	$(8192/823543) k^7 + O(k^6)$	$\langle n \rangle$
16	8	$(1/512) k^8 + O(k^7)$	Conjecture: This is also true for

extremal graph families.

These leading coefficients share

A *lattice* in *n*-dimensional real space \mathbb{R}^n is the set of all integer linear combinations of a basis of \mathbb{R}^n . That is, to each basis $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ of \mathbb{R}^n we associate the lattice $\Lambda = \{a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n : a_i \in \mathbb{Z}\}.$

A unit cell of the lattice

A *unit cell* of the lattice is the set of points defined by all linear combinations of a set of lattice generating vectors with coefficients between 0 and 1 inclusive. If the vectors are $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ then the unit cell $U = \{a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n : 0 \le a_i \le 1\}$.

The volume of the unit cell $V(U) = |\det(M)|$, where M is the lattice generator matrix, $M = (\mathbf{v}_1, ..., \mathbf{v}_n)^T$.

Let Λ be a lattice in \mathbb{R}^n , and K a set of points in \mathbb{R}^n .

\mathcal{C} A lattice covering \mathcal{K} of a lattice Λ with a set K

Let Λ be a lattice in \mathbb{R}^n , and K a set of points in \mathbb{R}^n .

Let $\mathcal{K} = \{K + \lambda : \lambda \in \Lambda\}$ be the system of translates of K by the lattice points of Λ .

If every point of \mathbb{R}^n lies in at least one of the sets of the system \mathcal{K} , then \mathcal{K} forms a *lattice covering* of \mathbb{R}^n . If, also, the interiors of the translates of K do not overlap, then the covering is a *lattice tiling*.

The density of a lattice covering \mathcal{K} is the volume of a unit cell of the set K divided by the volume of a unit cell

Let Λ be a lattice in \mathbb{R}^n and K a set of points in \mathbb{R}^n such that $\mathcal{K} = \{K + \lambda : \lambda \in \Lambda\}$ is a lattice covering of \mathbb{R}^n .

Let U be a unit cell of Λ , also V(U) and V(K) be the volume of U and K respectively. Then the *density* of the covering \mathcal{K} is: $\rho(\mathcal{K}) = V(K)/V(U)$.

Clearly, $\rho(\mathcal{K}) \geq 1$. For a tiling, $\rho(\mathcal{K}) = 1$.

In *n*-dimensional integer space \mathbb{Z}^n , a *Lee sphere* $S_{n,k}$ of radius *k* is the set of points distant at most *k* from the origin under the Manhattan norm (Rook moves):

$$S_{n,k} = \{ (m_1, \dots, m_n) \in \mathbb{Z}^n : |m_1| + \dots + |m_n| \le k \}.$$

It may be represented visually by replacing each point of the Lee sphere by a unit cube centred on the point:

Coverings of integer space with Lee spheres

The parameters that define an Abelian Cayley graph can also vertex-label the points of a Lee sphere. Cayley graphs are vertex transitive, so the centre vertex is arbitrary.

The number of inverse pairs in the connection set determines the dimension of the graph and the Lee sphere. The diameter of the graph is equal to the radius of the Lee sphere.

Example: Abelian group \mathbb{Z}_{13} , connection set (self-inverse) $\{\pm 1, \pm 5\}$.

Circulant graph

Dimension 2 Diameter 2

Coverings of integer space with Lee spheres

The parameters that define an Abelian Cayley graph can also vertex-label the points of a Lee sphere. Cayley graphs are vertex transitive, so the centre vertex is arbitrary.

The number of inverse pairs in the connection set determines the dimension of the graph and the Lee sphere. The diameter of the graph is equal to the radius of the Lee sphere.

Example: Abelian group \mathbb{Z}_{13} , connection set (self-inverse) $\{\pm 1, \pm 5\}$.

Circulant graph

Lee sphere

Dimension 2 Diameter 2 Dimension 2

Coverings of integer space with Lee spheres

The parameters that define an Abelian Cayley graph can also vertex-label the points of a Lee sphere. Cayley graphs are vertex transitive, so the centre vertex is arbitrary.

The number of inverse pairs in the connection set determines the dimension of the graph and the Lee sphere. The diameter of the graph is equal to the radius of the Lee sphere.

Example: Abelian group \mathbb{Z}_{13} , connection set (self-inverse) $\{\pm 1, \pm 5\}$.

Circulant graph

Dimension 2 Diameter 2

Lee sphere

Dimension 2 Radius 2

This equivalence provides an upper bound for the order of an Abelian Cayley graph

The order of an extremal Abelian Cayley graph of even degree d = 2n and diameter k does not exceed the volume of an n-dimensional Lee sphere of radius k:

$$Ext(d,k) \le |S_{n,k}| = \sum_{i=0}^{n} 2^{i} {n \choose i} {k \choose i} = \frac{2^{n}}{n!} k^{n} + O(k^{n-1})$$

For odd degree d = 2n + 1, the extremal order does not exceed the sum of the volumes of *n*-dimensional Lee spheres of radius *k* and radius k - 1:

$$Ext(d,k) \le |S_{n,k}| + |S_{n,k-1}| = \frac{2^{n+1}}{n!}k^n + O(k^{n-2})$$

+5

+1

These Lee spheres form a perfect lattice tiling of \mathbb{Z}^2 .

										_				_				_			
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101
75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81
55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Note that for dimension n > 2, the Lee spheres of any lattice covering will overlap (Golomb-Welch conjecture)

For \mathbb{Z}_{13} with connection set $\{\pm 1, \pm 5\}$ the Lee spheres form a lattice tiling of \mathbb{Z}^2 (modulo 13)

Lattice generating vectors for diameter k = 2

$$\mathbf{v}_1 = (3, 2)$$
$$\mathbf{v}_2 = (-2, 3)$$

So we have the lattice generator matrix (LGM):

$$M = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix}.$$

Area of the lattice unit cell, $|\det M| = 13$, the order of the graph.

Area of Lee sphere is also 13. So the covering density is 1 (tiling)

Largest-known Abelian Cayley graph families correspond to lattice coverings with density that is exponential in the dimension

In each case, the lattice is an integer approximation to a standard body-centred cubic format.

Upper bounds on the order of Abelian Cayley graphs of degree *d* and diameter *k*

Moore bound

Example:
$$(d, k) = (10, 10)$$

$$1 + d \sum_{i=0}^{k-1} (d-1)^{i} = d^{k} - (k-2) d^{k-1} + O(d^{k-2}) \qquad 3,874,204,890 \quad (1)$$

Abelian Cayley Moore bound (d = 2n)

$$\sum_{i=0}^{n} 2^{i} \binom{n}{i} \binom{k}{i} = \frac{2^{n}}{n!} k^{n} + \frac{2^{n-1}}{(n-1)!} k^{n-1} + O(k^{n-2})$$
 36,365 (2)

Largest-known Abelian Cayley graph families (d = 2n)

$$= \frac{1}{2} \left(\frac{4}{n}\right)^n k^n + \left(\frac{4}{n}\right)^{n-1} k^{n-1} + O(k^{n-2})$$
 22,805 (3)

The ratio, (2)/(3), of leading coefficients gives the asymptotic density of the corresponding lattice covering for large diameter

$$\frac{n^n}{2^{n-1}n!} \simeq \sqrt{\frac{2}{\pi n} \left(\frac{e}{2}\right)^n} \approx 1.359^n$$

Largest-known graphs and lattice coverings of lowest-known density

Largest-known circulant graphs correspond to lattice coverings of n-dimensional integer space with Lee spheres having an asymptotic density of about 1.359^n .

is the orthoplex

In *n*-dimensional real space \mathbb{R}^n , an *orthoplex* is the dual of the hypercube. It is a highly symmetric convex body.

An orthoplex of radius r, centred at the origin, is the set of points distant at most r from the origin under the Manhattan norm:

$$C_{n,r} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le r \}.$$

From this definition, it is clear that the orthoplex is the real analogue of the Lee sphere:

$$S_{n,k} = \{ (m_1, \dots, m_n) \in \mathbb{Z}^n : |m_1| + \dots + |m_n| \le k \}.$$

In 2 dimensions, an orthoplex is a square diamond, and in 3, a regular octahedron.

The Open University

The Voronoi cells of a body-centred cubic lattice are orthoplexes that touch at faces, truncated by hypercubes

In a lattice, the *Voronoi cell* of a lattice point is defined to be the closure of the set of all points in space that are closer to that lattice point than to any other. Thus Voronoi cells achieve a lattice tiling of space.

For an *n*-dimensional body-centred cubic lattice with cubes of edge length 2a, the Voronoi cell (centred at the origin) is the polyhedron formed by the intersection of:

- an orthoplex of radius r = na/2 with vertices $(\pm na/2, 0, ..., 0)$ in all combinations.
- a hypercube of edge length 2a with vertices $(\pm a, \dots, \pm a)$ in all combinations.

For dimension $n \leq 2$, the orthoplex lies fully within its hypercube.

For dimension $n \ge 3$, the orthoplex is truncated by its hypercube to an increasing extent, corresponding to the density of the orthoplex covering.

The Voronoi cells of a body-centred cubic lattice are orthoplexes that touch, truncated by hypercubes

Largest-known graphs are consistent with lattice coverings of lowest-known density

We have considered lattice coverings of real and integer n-dimensional space with lowest-known density, having a common asymptotic density of about 1.359^n .

Upper bounds UB(n) for the lattice covering density $\theta_L(K)$ of an arbitrary convex body K in \mathbb{R}^n

From 1949 to 1958, various authors published improved upper bounds UB(n) for the lattice covering density $\theta_L(K)$ of an arbitrary convex body K in \mathbb{R}^n .

Year	UB(n)	Author
1949	n^n	Hlawka
1950	3^{n-1}	Rogers
1952	e^n	Bambah & Roth (for certain symmetric bodies)
1958	2^n	Rogers
1958 *	1.8774^{n}	Rogers

All these results are exponential in the dimension.

As they all exceed 1.359^n , they are consistent with the conjecture that the body-centred cubic lattice is the optimal lattice for a lattice covering with orthoplexes.

Upper bounds UB(n) for the lattice covering density $\theta_L(K)$ of an arbitrary convex body K in \mathbb{R}^n

Since 1959, Rogers and other authors have published upper bounds UB(n) for the lattice covering density $\theta_L(K)$ of an arbitrary convex body K in \mathbb{R}^n that are sub-exponential in the dimension.

Year	UB(n)	Author
1959	$n^{\log_2 \log_e n+c}$	Rogers
1964	$n^{\log_2 n + c\log_2 \log_2 n}$	Rogers (weaker, but easier to prove)
1985	$cn(\log_e n)^{1+\log_2 e}$	Gritzmann (for certain symmetric bodies)
2020 [♥]	cn^2	Ordentlich, Regev & Weiss

These results contradict the conjecture that the body-centred cubic lattice covering with an orthoplex (with asymptotic density 1.359^n) is optimal.

They imply that much larger Abelian Cayley graphs exist. However, none of these proofs is constructive.

The Open University

All four sub-exponential upper bounds depend in part on theorems by Rogers

The proof of both of Rogers' theorems depend on a hierarchy of other theorems.

The proof by Gritzmann is a refinement of Rogers' proofs.

Ordentlich, Regev & Weiss's proof takes a different approach but also depends on a theorem in Rogers' proof.

The result in Rogers' 1964 book is presented as Theorem 5.8

The key to Rogers' approach involves the definition of a *hypercylinder* inscribed within the convex body K.

This hypercylinder is formed as the Cartesian product $H \times C$ of a convex body H in (n - m)-dimensional space and a hypercube C in m-dimensional space, where $m = \lceil \log_2 n + \log_2 \log_2 n + 1 \rceil$.

There appear to be inconsistencies in the proof of Roger's theorem that relate to the edge length of the hypercube

The proof of Theorem 5.8 depends on Theorem 5.6, and the proof of Theorem 5.6 includes iteration of Theorem 5.5.

An inconsistency within Theorem 5.6

In the statement of Theorem 5.6, the hypercube has arbitrary edge length, as required in support of the main theorem, Theorem 5.8. However, the proof assumes the edge length has a fixed value of 1.

An inconsistency between Theorems 5.5 and 5.6

- The proof of Theorem 5.6 invokes Theorem 5.5 with the assumption that the edge length of the hypercube is 1.
- However, in the statement of Theorem 5.5, the edge length has the value 2.

Is the statement of Rogers' Theorem 5.8 valid?

It appears that the *proof* of Rogers' Theorem 5.8 may be invalid. But perhaps the *statement* of the theorem remains valid?

Orthoplexes are highly symmetric convex bodies, arguably the most symmetric polyhedra alongside hypercubes.

So if Theorem 5.8 were correct, then it should be relatively straightforward to construct a lattice covering with orthoplexes that has sub-exponential density.

But this has not been achieved during the 64 years since Rogers' work was published.

So perhaps the body-centred cubic lattice is optimal for orthoplexes?

The Open University

Open question in two equivalent formats

What is the order of extremal Abelian Cayley graph families of dimension n?

- As for largest-known families, with order defined by a polynomial of degree nin the diameter k with leading term $\frac{1}{2} \left(\frac{4}{n}\right)^n k^n$, corresponding to lattice covering densities of 1.359^n ?
- Or significantly larger, closer to the Abelian Cayley Moore bound, corresponding to lattice covering densities below cn^2 for some constant c?

What is the minimum-density lattice covering of \mathbb{R}^n with orthoplexes?

- A body-centred cubic lattice, with lattice covering density of 1.359ⁿ, corresponding to extremal Abelian Cayley graphs with order defined by a polynomial with the same leading term as for largest-known graphs?
- Or with significantly lower density, below cn^2 for some constant c?

R.P. Bambah and K.F. Roth, Lattice coverings, Indian Math. Soc., 16 (1952) 7-12.

R. Dougherty and V. Faber, *The degree-diameter problem for several varieties of Cayley graphs, I: The Abelian case,* SIAM Journal on Discrete Mathematics, 17 (2004) no. 3, 478-519.

P. Erdős and C.A. Rogers, *Covering space with convex bodies*, Acta Arith., 7 (1962) 281-285.

G. Fejes Tóth, A note on covering by convex bodies, Canad. Math. Bull. 52(3) (2009) 361-365.

G. Fejes Tóth, *Packing and Covering*. In: J.E Goodman, J. O'Rourke and C.D. Tóth, editors, *Handbook of discrete and computational geometry*, CRC Press, Boca Raton, FL, (2017) 27-66.

Z. Füredi and J.-H. Kang, *Covering the n-space by convex bodies and its chromatic number*, Discrete Mathematics, 308 (2008) 4495-4500.

S.W. Golomb and L.R. Welch, *Perfect codes in the Lee metric and the packing of polyominoes*, SIAM Journal on Applied Mathematics, 18(2) (1970) 302-317.

P. Gritzmann, Lattice covering of space with symmetric convex bodies, Mathematika, 32 (1985) 311-315.

E. Hlawka, Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper, Monatshefte für Mathematik Bd, 53/2 (1949) 81-131.

O. Ordentlich, O. Regev and B. Weiss, New bounds on the density of lattice coverings, J. Amer. Math. Soc. (2021).

C.A. Rogers, A note on coverings and packings, J. London Math. Soc., 25 (1950) 327-331.

C.A. Rogers, A note on coverings, Mathematika, 4 (1957) 1-6.

C.A. Rogers, *Lattice coverings of space with convex bodies*, J. London Math. Soc., 33 (1958) 208-212.

C.A. Rogers, Lattice coverings of space: the Minkowski-Hlawka theorem, Proc. London Math. Soc., 3 (1958) 447-465.

C.A. Rogers, Lattice coverings of space, Mathematika, 6 (1959) 33-39.

C.A. Rogers, *Packing and Covering*, Cambridge, UK, Cambridge University Press (1964).