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Introduction to McKay-Miller-Širáň (MMS) graphs

In 1998, McKay, Miller and Širáň defined an infinite family of graphs Hq where
q > 2 is a prime power.

The construction is motivated by the degree-diameter problem.

These graphs have diameter 2, degree (3q− δ)/2 and order 2q2 = 8
9 (d+ δ/2)2

where q = 4k + δ, δ ∈ {1,0,−1}.

For δ = 1 they are vertex-transitive and non-Cayley. For q ≥ 7, δ = −1 and δ = 0
they are not vertex-transitive but they are still highly symmetric.

H5 is the Hoffman-Singleton graph which meets the Moore bound. H4 is one of
the graphs with degree 6, diameter 2 and order 32. This is known to be the
largest possible size with those parameters.
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Constructions of MMS graphs

In the original paper Hq are constructed as lifts of Kq,q.

In 2001, Šiagiová constructed graphs for q = 4k + 1 as lifts of dipoles.

In 2004, Hafner described them geometrically by using incidence graphs of finite
biaffine planes and used this description to obtain their automorphism groups.

Using ideas from both Šiagiová and Hafner, we will show that all
McKay-Miller-Širáň graphs are lifts of dipoles.
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Voltage graph and their lifts

We need:

Base graph: Γ is a directed graph and D(Γ) is the set of its arcs (darts). Multiple
edges, loops and semiedges are allowed.

Voltage group: G is a finite group.

Voltage assignment: A function α : D(Γ) → G that satisfies the condition: for
each pair of opposite arcs e, e−1 we have α(e−1) = α(e)−1.
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Voltage graph and their lifts

Given these three things we can construct the graph Γα called the lift of Γ by G or
the derived graph.

Its set of vertices is V(Γ)× G and its set of arcs is D(Γ)× G.

The adjacency in the lift is defined as follows: If e is an arc connecting u to v,
then (e, g) connects the vertex (u, g) to the vertex (v, gα(e)).

If the original graph Γ is undirected, then its lift is undirected as well because
(e, g) and (e−1, gα(e)) are mutually reverse arcs.

The function p : Γα → Γ defined as p(v, g) = v is a regular covering projection.

5



Examples of lifts

Each Cayley graph is a lift of a graph with one vertex, loops and semiedges. The
voltages on a loop are a pair of different inverse elements in the generating set
while the voltage on a semiedge is an element from the generating set, whose
order is 2.

The Petersen graph is a lift of a dipole with one edge and two loops, one on each
vertex. The voltage group is Z5. The voltages on loops are ±1 and ±2, while the
voltage on the edge is 0.

The bipartite double cover is a lift by the group Z2 where all arcs are assigned
the voltage 1.
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Theorem concerning lifts and graph automorphisms

This is a theorem that will be used later to prove our result.

Graph Γ is a lift with voltages in a group G if and only if there exists a
semiregular action of G on vertices of Γ.
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Original construction of MMS graphs

Let q > 2 be a prime power of the form q = 4k + δ where δ ∈ {−1,0, 1}, let F
denote the field GF(q) and let ξ be a primitive element of (F∗, ·).

Base graph is the complete bipartite graph Kq,q with either k loops attached at
each vertex when δ = ±1 or 2k semiedges attached at each vertex when δ = 0.

Label the vertices with elements of Z2 × F.

The voltage group is the additive group of F.
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Original construction of MMS graphs

The voltage on arc going from (0, x) to (1, y) is defined as the product xy.

The voltages on loops or semiedges are defined using the following sets:

δ = 1: X = {1, ξ2, . . . , ξ2k−2}; X′ = {ξ, ξ3, . . . , ξ2k−1}

δ = −1: X = {1, ξ2, . . . , ξ2k−2}; X′ = {1, ξ, ξ3, . . . , ξ2k−3}

δ = 0: X = {1, ξ2, . . . , ξ4k−2}; X′ = {ξ, ξ3, . . . , ξ4k−1}

For any vertex (0, x) we assign the elements of X to the attached
loops/semiedges in any 1 to 1 way.

Similarly, for any vertex (1, y) we assign the elements of X′ to the attached
loops/semiedges in any 1 to 1 way.

The associated lift is the McKay-Miller-Širáň graph Hq.
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Šiagiová’s dipole construction

Let q be a prime power of the form q = 4k + 1, let F denote the field GF(q) and
let ξ be a primitive element of (F∗, ·). Let p(x) be a quadratic polynomial over F.

The base graph contains just two vertices u and v, q edges between them and k
loops attached to each vertex.

The voltage group is F × F with addition as the operation, i.e vectors of length 2
over F.
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Šiagiová’s dipole construction

The voltages on q arcs from u to v are of the form (x, p(x)) for x ∈ F.

The voltages on loops are defined using the following sets. These are the same
as X,X′ in the original construction for δ = 1.

X = {1, ξ2, . . . , ξ2k−2}; X′ = {ξ, ξ3, . . . , ξ2k−1}

To all the loops attached to u assign voltages of the form (0, x) where x ∈ X.

To all the loops attached to v assign voltages of the form (0, x′) where x′ ∈ X′.

Theorem (Šiagiová 2001)

The associated lift is isomorphic to the graph Hq.
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Hafner’s results

Now we will discuss Hafner’s work on the family of McKay-Miller-Širáň graphs.

First, let’s quickly introduce some concepts from affine geometry.
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Affine and biaffine planes

Let q > 2 be a prime power and let F denote the field GF(q). The classical affine
plane of order q has points (x, y) where x, y ∈ F and lines defined by equations
of the form ax + by = c where a, b, c ∈ F. These lines split into q+ 1 parallel
classes.

If we remove a class of lines, then we obtain a structure called the biaffine plane.
We will remove the class of vertical lines of the form x = c.

For both the affine plane and the biaffine plane we can construct an incidence
graph in the usual way.
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Collineations of the classical affine plane

A bijective map between two planes that transforms collinear points into
collinear points is called a collineation.

Examples of collineations in the classical affine plane are translations, linear
transfromations and field automorphisms.

Theorem

Every collineation in the classical affine plane can be uniquely written as

f
(
x
y

)
=

(
a11 a12
a21 a22

)(
xρ
yρ

)
+

(
v1
v2

)
.

If the field automorphism ρ is equal to identity, then we call f an affine
transformation (linear transformations together with a translation).
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Collineations of the biaffine plane

These are those collineations of the underlying affine plane which preserve the
parallel class of lines x = c.

All translations and field automorphisms meet this criteria but only some linear
transformations.

The general form is

f
(
x
y

)
=

(
a11 0
a21 a22

)(
xρ
yρ
)
+

(
v1
v2

)
.

When working with the incidence graph of the biaffine plane, there are also
graph automorphisms which exchange the vertices belonging to points and
lines. These automorphism are called correlations and they can exist because in
the biaffine plane there equal number of points and lines.
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Hafner’s construction

Let q > 2 be a prime power, let F denote the field GF(q) and let ξ be a primitive
element of (F∗, ·).

Also define the sets X and X′ as before.

Let Vq = Z2 × F × F be the vertex set and define the edges as:

(0, x, y) is adjacent to (1,m, c) if and only if y = mx + c.

This construction is precisely the incidence graph of the biaffine plane over F.

The vertex (0, x, y) corresponds to the point (x, y) while the vertex (1,m, c)
corresponds to the line y = mx + c.
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Hafner’s construction

To obtain MMS graphs we need to define additional edges within partitions:

(0, x, y) is adjacent to (0, x, y′) if and only if y − y′ ∈ X ∪ −X;

(1,m, c) is adjacent to (1,m, c′) if and only if c− c′ ∈ X′ ∪ −X′.

Theorem (Hafner 2004)

The resulting graph is isomorphic to Hq.
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Hafner’s results about automorphism groups

Let q = pn > 2 be a power of prime p.

The graph H3 is vertex transitive and its automorphism group has order 216.

The graph H4 is vertex transitive and its automorphism group has order 1920.

The graph H5 (the Hoffman–Singleton graph) is vertex transitive, its affine
automorphism group has order 2000 while the full automorphism group has
order 252000.

If q = 4k − 1 and q > 3 the automorphism group of Hq is not transitive. It is
transitive on point vertices and on line vertices and has order 2(q− 1)q3; all
automorphisms are induced by affine transformations of the point vertices.

If q = 4k and q > 4 the automorphism group of Hq is not transitive. It is
transitive on point vertices and on line vertices and has order (q− 1)q3; all
automorphisms are induced by affine transformations of the point vertices.

If q = 4k + 1 and q > 5 the automorphism group of Hq is transitive. Its order is
n(q− 1)2q3; all automorphisms are induced by collineations and correlations of
the underlying biaffine plane.

18



Our results

Šiagiová’s simpler construction is defined only for MMS graphs with q = 4k + 1.
It would be convenient to extend it to all MMS graphs.

According to the previously mentioned theorem, we need to find an
automorphism group that acts semiregularly on the vertices of MMS graphs.

Hq has 2q2 vertices and we want a base graph with just 2 vertices. It follows that
the automorphism group should have order q2.

Using Hafner’s description of MMS graphs, we need a collineation group of order
q2 that acts semiregularly on both points and lines of the biaffine plane.
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Some subgroups of Aut(Hq)

From results of Hafner it follows that all MMS graphs have an automorphism
group of order q3 comprised of collineations of the following type:

f(x) =
(
1 0
a 1

)
x +

(
b
c

)
This is basically the Heisenberg group.

An obvious subgroup of order q2 is the subgroup of all translations. But it
doesn’t work since a non-trivial translation can map a line to itself.

What does meet our criteria is a group consisting of collineations of the form:

f(x) =
(
1 0
a 1

)
x +

(
a
c

)
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A group with semiregular action

Theorem

Let q > 2 be a prime power and let F = GF(q). For a, c ∈ F let [a, c] be the collineation

f(x) =
(
1 0
a 1

)
x +

(
a
c

)
.

Then these collineations form a group

Gq = {[a, c]; a, c ∈ F}

and it acts semiregularly on the vertices of the graph Hq as group of automorphisms with
2 orbits: points and lines.

Corollary

Each McKay-Miller-Širáň graph Hq is a lift of a dipole by the group Gq.
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The structure of Gq

The group Gq has different structure depending on whether q is odd or even.

Theorem

Gq is abelian for all q.

If q = pn for some odd prime p then Gq ∼= (F × F,+) ∼= (Zp)2n.

If q = 2n , then Gq ∼= (Z4)
n.
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Voltage assignments on dipoles

From the correspondence between semiregular actions and voltage
assignments we can obtain the voltage assignments on dipole that lift to Hq.

Voltages on loops or semiedges attached to the first vertex u are [0, x] for x ∈ X.

Voltages on loops or semiedges attached to the second vertex v are [0, x′] for
x′ ∈ X′.

Voltages on edges going from u to v are [a, a2] where a ∈ F.
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Thank you for your attention.
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