On the algebra of token graphs

M. A. Fiol Universitat Politècnica de Catalunya (Barcelona), Catalonia

joint work with C. Dalfó M. A. Reyes Universitat de Lleida, Lleida, Catalonia

> IWONT 2023, Edinburgh, 17-21 July 2023

> > イロン イロン イヨン イヨン 三日

1/35

On the Laplacian spectra of token graphs

On the algebra of token graphs

Abstract

Given a graph G = (V, E) and an integer $k \in [1, n - 1]$, its token graph $F_k(G)$ has vertices corresponding to the k-subsets of V, and two vertices are adjacent when its symmetric difference are the end-vertices of an edge in E.

In this talk, we describe some properties of the Laplacian matrices of $F_k(G)$ and $F_k(\overline{G})$. In particular, we study the closed relationship between the algebra of the pair $(F_k(G), F_k(\overline{G})$ with the Bose-Mesner algebra of the Johnson graph J(n, k).

Graphs, spectra, and orthogonal polynomials

Given a graph G with adjacency matrix \boldsymbol{A} and spectrum

$$\operatorname{sp} \boldsymbol{A} = \{\theta_0^{m_0}, \theta_1^{m_1}, \dots, \theta_d^{m_d}\},\$$

where $\theta_0 > \theta_1 > \cdots > \theta_d$.

The *predistance polynomials* p_0, p_1, \ldots, p_d , are a sequence of orthogonal polynomials, deg $p_i = i$, with respect to the scalar product

$$\langle f,g\rangle_A = \frac{1}{n}\operatorname{tr}(f(A)g(A)) = \frac{1}{n}\sum_{i=0}^d m_i f(\theta_i)g(\theta_i),$$

normalized in such a way that

 $||p_i||_A^2 = p_i(0).$

4 / 35

The Laplacian predistance polynomials

Let G be a graph on n vertices, with Laplacian matrix $\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{A}$ and spectrum

$$\operatorname{sp} \boldsymbol{L} = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\}.$$

where $\lambda_0(=0) < \lambda_1 < \cdots < \lambda_d$. The Laplacian predistance polynomials q_0, q_1, \ldots, q_d are a sequence of orthogonal polynomials, $\operatorname{dgr} q_i = i$, with respect to the scalar product

$$\langle f,g\rangle_L = \frac{1}{n}\sum_{i=0}^d m_i f(\theta_i)g(\theta_i),$$

normalized in such a way that

 $||q_i||_L^2 = q_i(0).$

In both cases,

- ► $||1||_A = ||1||_L = 1.$
- ► To find them, apply Gram-Schmidt to 1, x, x²,..., x^d and normalize accordingly.

Why 'predistance' polynomials?

Token graphs

Let G be a (simple) graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set E(G). For a given integer k such that $1 \le k \le n$, the k-token graph $F_k(G)$ of G is the graph in which

- the **vertices** of $F_k(G)$ correspond to configurations of k indistinguishable tokens placed at distinct vertices of G,
- two configurations are adjacent whenever one configuration can be reached from the other by moving one token along an edge from its current position to an unoccupied vertex.

An example of 2-token graph

- $F_0(G) := \{u\}.$
- $\blacktriangleright F_1(G) = G.$
- $F_k(G) = F_{n-k}(G).$
- $F_k(K_n) = J(n,k)$ (The Johnson graph).
- ▶ J(n,1)?, J(4,2)?, J(5,2)?,...

The Johnson graph $J(5,2) = F_2(K_5)$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ (* 10 / 35

Distance-regular graphs

A graph G with diameter d is distance-regular if, for any pair of vertices u, v, the intersection parameters $a_i(u) = |G_i(u) \cap G(v)|$, $b_i(u) = |G_{i+1}(u) \cap G(v)|$, and $c_i(u) = |G_{i+1}(u) \cap G(v)|$, for $i = 0, 1, \ldots, d$, only depend on the distance $\operatorname{dist}(u, v) = i$. Then, we have the intersection array

$$\iota(G) = \left\{ \begin{array}{cccc} - & c_1 & \cdots & c_{d-1} & c_d \\ a_0 & a_1 & \cdots & a_{d-1} & a_d \\ b_0 & b_1 & \cdots & b_{d-1} & - \end{array} \right\}$$
(1)

11/35

Distance-regular graphs

 A graph Γ with diameter d and distance matrices

$$\boldsymbol{A}_0(=I), \boldsymbol{A}_1(=\boldsymbol{A}), \ldots, \boldsymbol{A}_d,$$

is distance-regular if and only if there exists sequence of (orthogonal) polynomials p_0, p_1, \ldots, p_d such that

$$\boldsymbol{A}_i = p_i(\boldsymbol{A}), \qquad i = 0, 1, \dots, d.$$

イロン イヨン イヨン イヨン 三日

The Bose-Mesner algebra

Let G be a graph with diameter D, distance matrices $A_0(=I), A_1(=A), A_2, \ldots, A_D$, and d+1 distinct eigenvalues. Consider the vector spaces

$$\mathcal{A} = ext{span}\{I, A, A^2, \dots, A^d\},$$

 $\mathcal{D} = ext{span}\{I, A, A_2, \dots, A_D\},$

with dimensions d+1 and D+1, respectively.

- ► A is an algebra with the ordinary product of matrices, known as the adjacency algebra of G.
- ▶ \mathcal{D} is an algebra with the entrywise (or Hadamard product) of matrices, defined by $(\mathbf{X} \circ \mathbf{Y})_{uv} = \mathbf{X}_{uv}\mathbf{Y}_{uv}$, called the distance o-algebra of G.

Theorem

Let G, A, and D as above. Then, G is distance-regular if and only if

$$\mathcal{A} = \mathcal{D},$$

so that A is an algebra with both, the ordinary product and the Hadamard product of matrices, and it is known as the Bose-Mesner algebra associated to G.

Johnson graphs again

- If G is the complete graph K_n , then $F_k(K_n) \simeq J(n,k)$, is the Johnson graph.
- The Johnson graph J(n,k), with $k \le n-k$ is a distance-regular graph with degree k(n-k), diameter d = k, and intersection parameters

$$b_j = (k-j)(n-k-j); \quad c_j = j^2, \quad j = 0, 1, \dots, d.$$

• The Laplacian spectrum of J(n,k) is

$$\lambda_j = j(n+1-j), \quad m_j = \binom{n}{j} - \binom{n}{j-1}, \quad j = 0, 1, \dots, k$$

For instance, the Laplacian eigenvalues of J(n, 4) are

$$0, \quad n, \quad 2(n-1), \quad 3(n-2), \quad 4(n-3).$$

Some properties of Johnson graphs

- J(n,k) is isomorphic to J(n,n-k)
- Any pair of vertices are at distance j, with $0 \le j \le k$, if and only if they share k j elements in common.
- $\circ~$ The Johnson graph J(n,k) is maximally connected, that is, $\kappa=k(n-k).$

The (n, k)-binomial matrix

Given integers n and $k \le n$, the (n; k)-binomial matrix is an $\binom{n}{k} \times n$ matrix whose rows are the characteristic vectors of the k-subsets of $[n] = \{1, \ldots, n\}$ in a given order. For instance, for n = 4 and k = 2,

If J is the all-1 matrix,

$$oldsymbol{B}^{ op}oldsymbol{B} = inom{n-2}{k-1}oldsymbol{I} + inom{n-2}{k-2}oldsymbol{J}.$$

The Laplacian spectra of token graphs

Theorem (Dalfó, Duque, Fabila-Monroy, F., Huemer, Trujillo-Negrete, Zaragoza, 2021)

Let G be a graph with Laplacian matrix L_1 . Let $F_k = F_k(G)$ be its token graph with Laplacian L_k . Then, the following holds:

• $\boldsymbol{B}\boldsymbol{L}_1 = \boldsymbol{L}_k\boldsymbol{B}$,

•
$$\boldsymbol{L}_1 = (\boldsymbol{B}^\top \boldsymbol{B})^{-1} \boldsymbol{B}^\top \boldsymbol{L}_k \boldsymbol{B} = \frac{1}{\binom{n-2}{k-1}} \boldsymbol{B}^\top \boldsymbol{L}_k \boldsymbol{B}$$
,

 The column space (and its orthogonal complement) of B is L_k-invariant.

- ► The characteristic polynomial of L₁ divides the characteristic polynomial of L_k. Thus, sp L₁ ⊆ sp L_k.
- If v is a λ-eigenvector of L₁, then Bv is a λ-eigenvector of L_k.
- If u is a λ-eigenvector of L_k such that B^Tu ≠ 0, then B^Tu is a λ-eigenvector of L₁.

The Laplacians of a graph and its complement

Proposition (DDFFHTZ, 2021)

Let G = (V, E) be a graph on n = |V| vertices, and let \overline{G} be its complement. For a given k. Then the Laplacian matrices of their token graphs $L_k = L(F_k(G) \text{ and } \overline{L}_k = L(F_k(\overline{G}) \text{ commute})$

$$L_k \overline{L}_k = \overline{L}_k L_k.$$

In general, this does NOT hold for the respective adjacency matrices.

Corollary (by a theorem of Frobenius)

The $\binom{n}{k}$ eigenvalues of L_k and \overline{L}_k , can be matched up as $\lambda_i \leftrightarrow \overline{\lambda}_i$ in such a way that the *n* eigenvalues of any polynomial $p(L_k, \overline{L}_k)$ in the two matrices is the multiset of the values $p(\lambda_i, \overline{\lambda}_i)$.

Moreover, since the Laplacian matrix of J(n,k) is $L_J = L_k + \overline{L}_k$, L_J commutes with both L and \overline{L} , and every eigenvalue λ_J of J(n,k) is the sum of one eigenvalue λ of $F_k(G)$ and one eigenvalue $\overline{\lambda}$ of $F_k(\overline{G})$.

Pairing eigenvalues

Proposition

Let L_k and \overline{L}_k be the Laplacian matrices of $F_k(G)$ and $F_k(\overline{G})$, respectively. For j = 0, 1, ..., k,

- ► Let $\lambda_j = j(n+1-j)$ and $m_j = \binom{n}{j} \binom{n}{j-1}$ be the eigenvalues and multiplicities of J(n,k).
- Let $\lambda_{j1} \leq \lambda_{j2} \leq \cdots \leq \lambda_{jm_j}$ be the eigenvalues in $\operatorname{sp} F_j(G) \setminus \operatorname{sp} F_{j-1}(G)$.
- Let $\overline{\lambda}_{j1} \ge \overline{\lambda}_{j2} \ge \cdots \ge \overline{\lambda}_{jm_j}$ be the eigenvalues in $\operatorname{sp} F_j(\overline{G}) \setminus \operatorname{sp} F_{j-1}(\overline{G}).$

Then,

$$\lambda_{jr} + \overline{\lambda}_{jr} = \lambda_j \quad r = 0, 1, \dots, m_j \tag{2}$$

Example 1

Spectrum	ev G	ev \overline{G}	ev Johnson
$\operatorname{sp}(F_0) = \operatorname{sp}(K_1)$	0	0	0
$\operatorname{sp}(F_1) - \operatorname{sp}(F_0)$	1	3	4
	3	1	4
	4	0	4
$\operatorname{sp}(F_2) - \operatorname{sp}(F_1)$	3	3	6
	5	1	6

Example 2

Spectrum	ev G	ev \overline{G}	ev Johnson
$\operatorname{sp}(F_0) = \operatorname{sp}(K_1)$	0	0	0
	2	4	6
$\operatorname{sp}(F_1) - \operatorname{sp}(F_0)$	4	2	6
	4	2	6
	4	2	6
	6	0	6
	4	6	10
	4	6	10
	6	4	10
	6	4	10
$\operatorname{sp}(F_2) - \operatorname{sp}(F_1)$	6	4	10
	8	2	10
	8	2	10
	8	2	10
	10	0	10
	4	8	12
	8	4	12
$\operatorname{sp}(F_3) - \operatorname{sp}(F_2)$	8	4	12
	10	2	12
	10	2	12

24 / 35

Lemma

Let B be the (n, k)-binomial matrix, and let $A_0(=I), A_1, \ldots, A_k$ be the distance matrices of the Johnson graph J(n, k), $k \leq n - k$. Then

$$\boldsymbol{M} = \boldsymbol{B}\boldsymbol{B}^{\top} = \sum_{i=0}^{k-1} (k-i)\boldsymbol{A}_i.$$

Corollary

The matrices M, L_k , \overline{L}_k , and L_J commute with each other.

On the algebra of token graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

26 / 35

Theorem

Let G and \overline{G} be a graph and its complement on n vertices. For some $k \leq n/2$, let L_k and $\overline{L_k}$ be Laplacian matrices of the token graphs $F_k(G)$ and $F_k(\overline{G})$, respectively.

Let $\mathcal{L}(G) = \mathbb{R}[\mathbf{L}_k, \overline{\mathbf{L}}_k]$ be the \mathbb{R} -vector space of the $\binom{n}{k} \times \binom{n}{k}$ matrices $M_n(\mathbb{R})$ generated by \mathbf{L}_k and $\overline{\mathbf{L}}_k$. Then, the following hold:

- (i) $\mathcal{L}(G)$ is a unitary commutative algebra.
- (*ii*) The Bose-Mesner algebra of the Johnson graph J(n,k) is a subalgebra of $\mathcal{L}(G)$.

Theorem (cont.)

- (*iii*) The dimension of $\mathcal{L}(G)$ is the number of different pairs $(\lambda_{jr}, \overline{\lambda}_{jr})$, for j = 0, ..., k and $r = 0, ..., m_j$, defined in Proposition 2.
- (iv) If dim $(\mathcal{L}(G)) = r$, then there exists a (non-unique) matrix such that

$$\{ \boldsymbol{I}, \boldsymbol{R}, \boldsymbol{R}^2, \dots, \boldsymbol{R}^r \}$$
 and $\{ \boldsymbol{E}_1, \boldsymbol{E}_2, \dots, \boldsymbol{E}_r \},$

(where the E_i 's are the idempotents of R) are bases of $\mathcal{L}(G)$.

From (ii) and (iii), notice that

$$k+1 \le \dim(\mathcal{L}(G)) \le \binom{n}{k}.$$

(In fact Gerstenhaber (1961) as well as Motzkin and Taussky-Todd (1955) proved independently that the variety of a commuting pair of matrices A, B is irreducible, so that its dimension is also bounded above by the size of the matrices)

The pair (L_k, \overline{L}_k) generates an algebraic variety (that is, the collection of all common eigenvectors shared by the two matrices).

Example 1

ev $oldsymbol{L}_2$	ev $\overline{oldsymbol{L}_2}$	ev $oldsymbol{L}_J$	ev $oldsymbol{R}=2oldsymbol{L}_2+\overline{oldsymbol{L}}_2$
0	0	0	0
1	3	4	5
3	1	4	7
4	0	4	8
3	3	6	9
5	1	6	11

・ロン ・四 と ・ ヨ と ・ ヨ と

Then, for every matrix $M \in \mathcal{L}(G)$, there exists a polynomial $p \in \mathbb{R}^6[x]$ such that $p(\mathbf{R}) = \mathbf{M}$. In particular $H_L(\mathbf{R}) = \mathbf{J}$.

The Laplacian predistance polynomials of $oldsymbol{R}$ are

$$p_{0}(x) = 1,$$

$$p_{1}(x) = \frac{1}{11}(-6x + 40),$$

$$p_{2}(x) = \frac{1}{9097}(825x^{2} - 8700x + 11250),$$

$$p_{3}(x) = \frac{1}{205747676}(-2691885x^{3} + 46442340x^{2} - 193990839x + 25428060),$$

$$p_{4}(x) = \cdots$$

$$p_{5}(x) = \cdots$$

Problems and (possible) future work

- Use this algebra in the context of codes or designs.
- Prove (or disprove) that all distance-regular graphs with the same parameters have cospectral 2-token (symmetric square) graphs.
- What about $L_1 + L_2 + L_3 = L_J$?
- ► Consider the case when G and \overline{G} are strongly regular or self-complementary graphs.

Payley graphs

Bibliography

- K. Audenaert, C. Godsil, G. Royle, and T. Rudolph, Symmetric squares of graphs, *J. Combin. Theory B* 97 (2007) 74–90.
- C. Dalfó, F. Duque, R. Fabila-Monroy, M. A. Fiol, C. Huemer, A. L. Trujillo-Negrete, F. J. Zaragoza Martínez, On the Laplacian spectra of token graphs, submitted, 2020, https://arxiv.org/abs/2012.00808.
- R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood, Token graphs, *Graphs Combin.* 28 (2012), no. 3, 365–380.
- 4. V. Nikiforov, The spectral radius of subgraphs of regular graphs, *Electron. J. Combin.* **14** (2007), #N20.

Thanks for your attention

