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Motivation: girth problem for undirected graphs g £
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From any fixed vertex:
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e 1 vertex at distance 0
e d vertices at distance 1
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e To avoid cycles of lengths 3 or 4 all
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Motivation: girth problem for undirected graphs g
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Q. What is the smallest possible order of a graph with degree 4 and
girth ¢? Example: d = 3,g = 5:

From any fixed vertex:

1 vertex at distance 0

d vertices at distance 1
d(d — 1) vertices at distance 2

To avoid cycles of lengths 3 or 4 all
these vertices must be distinct

So the lower bound (Moore bound) for graphs of girth 5 is d> + 1.

This is only achieved if we can connect the vertices in the last level so
that the graph has girth 5.
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Anita Sillasen was the first to look into the following directed analogy of
the undirected degree/girth problem.
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Anita Sillasen was the first to look into the following directed analogy
the undirected degree/girth problem.

Def. A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length < k between them.
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Degree geodecity problem g

Anita Sillasen was the first to look into the following directed analogy of
the undirected degree/girth problem.

Def. A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length < k between them.

@ O

This digraph is not 2-geodetic.
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This digraph is not 3-geodetic.
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Q. What is the smallest possible order of a digraph with (out-)degree d
and geodecity k?
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The degree/geodecity problem g

Q. What is the smallest possible order of a digraph with (out-)degree d
and geodecity k? Example: d = 3,k = 2:
From any fixed vertex:
e 1 vertex at distance 0
e d vertices at distance 1
* d° vertices at distance 2

e To avoid geodecity failures all these
vertices must be distinct; in general
n>1+d+d*+--+d=M(dk)
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The degree/geodecity problem g

Q. What is the smallest possible order of a digraph with (out-)degree d
and geodecity k? Example: d = 3,k = 2:
From any fixed vertex:
e 1 vertex at distance 0
e d vertices at distance 1
d’ vertices at distance 2

To avoid geodecity failures all these
vertices must be distinct; in general
n>1+d+d*+--+d=M(dk)

This is impossible for any d, k except in the trivial casesd = 1 ork =1
(same argument as Bridges and Toueg)
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Definitions g 52
The order of G will be M(d, k) + ¢, where € is the excess of G.

A k-geodetic digraph with minimum out-degree d and excess ¢ is a
(d, k; +-¢)-digraph.

A smallest possible k-geodetic digraph with out-degree > d a geodetic
cage.

The set of vertices that are at distance > k from u is the outlier set O(u)
of u.
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Theorem Sillasen
There are no diregular k-geodetic digraphs with degree d = 2 and
excess € = 1. )

Theorem Miller, Miret, Sillasen
All digraphs with excess one are diregular.

Theorem Miller, Miret, Sillasen
There are no (d, k; +1)-digraphs for k = 2,3, 4.
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Lemma
The outlier function is a digraph automorphism!

Proof

Define a matrix P by setting the (u, v)-entry equal to one iff o(u) = v.
Let A be the adjacency matrix of G. Counting paths,

I+A+A>+ ... +AF=J—P.

G can be shown to be diregular, so A and J commute. Therefore
AP = PA, so0 o is an automorphism.
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Do geodetic cages exist? g
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The vertices of P(d, k) are all permutations of length & from the
alphabet [d + k]. We set xox; ... xk—1 — x1x2 . . . X1 X% iff
X & X1, X2, Xp—1 -

Figure 1: P(2,2)
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Cagesford =2,k=2 g
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Figure 2: The two (2,2)-geodetic-cages
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Cageswithd =2,k =3 g

Figure 4:d =2,k=3,e =5
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The unique cage withd =3,k =2
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What we know now g

The Open

Unive

Theorem JT
There are no (2, k; +2)-digraphs for k > 3 (diregular or otherwise).

Theorem JT
There are no diregular (2, k; +3)-digraphs for k > 3.

Theorem JT

The structure of (3, k; +1)-digraphs is ‘highly constrained’ (i.e. we know
the permutation structure and there are divisibility conditions). There
are no ‘involutary’ (3, k; +1)-digraphs. (N.B. This approach also settles
the nonexistence of (d,2; +1)-digraphs for 3 < d < 7).
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Theorem JT
There are no (2, k; +2)-digraphs for k > 3 (diregular or otherwise).

Theorem JT
There are no diregular (2, k; +3)-digraphs for k > 3.

Theorem JT

The structure of (3, k; +1)-digraphs is ‘highly constrained’ (i.e. we know
the permutation structure and there are divisibility conditions). There
are no ‘involutary’ (3, k; +1)-digraphs. (N.B. This approach also settles
the nonexistence of (d,2; +1)-digraphs for 3 < d < 7).

Question
Where next for digraphs?
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Let G be a 2-geodetic digraph with minimum out-degree d and excess
e =2. We canassume thatd > 4. LetS={v € V(G) : d~(v) < d} and
S'={/eV(G):d (V) >d}.

Definition

The deficiency o~ (v) of a vertex v € Sis 0~ (v) =d — d~ (v) and the
surplus o (V') of a vertex v/ € §"is d~ (V') — d.

Our aim is to show that the ‘divergence’ from diregularity is confined to
a small range of values. We measure this divergence using the total
deficiency

o= Zaf(v) = Z ot (V).

veS v'es’

We set (u) =3 cn—y o (v)-
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Facts g
Fact one

The largest possible in-degree is d + 2. Each vertex v € §' is the
outneighbour of at least o™ (') vertices of any outlier set O(u).
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As there are at most d out-neighbours of any outlier set, o < 2d.
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Fact one

The largest possible in-degree is d + 2. Each vertex v/ € S’ is the
outneighbour of at least o™ (') vertices of any outlier set O(u).
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Corollary
As there are at most d out-neighbours of any outlier set, o < 2d.

Fact
If o < 2d, then the largest possible in-degree is d + 1 and o = |§'|.

v

Proof: Suppose that d— (V') = d + 2. There are at least
1+d+d*+2(d+ 1) — o vertices that can reach ' by paths of length
< 2. Therefore

n=3+d+d*>d*+3d+3—o,

SO o > 2d.
15/47
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Facts g :;

Fact
o>d—1. J

Proof: LetVv € §'. If d~ (V') = d + 2 we are done, so take d~ (V') =d + 1.
Counting paths of length < 2 again, Thus

n=3+d+d*>1+d+d*+d+1)—¢()=2+2d+d*— (V).
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Proof: LetVv € §'. If d~ (V') = d 4+ 2 we are done, so take d~ (V') = d + 1.
Counting paths of length < 2 again, Thus

n=3+d+d>1+d+d*+d+1)—¢()=2+2d+d*> — ().

Fact
If o <2d — 2, then §' is an independent set. J

Proof: if N~ (v') N S" # (), then by the previous fact v/ has deficiency
>d—1inN-(v)and >d — 1in N~2(/).

16/47
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Fact
Ford+1<o<2d—2o0oro=d—1,novertexV € S is an outlier. J

The Open
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Proof: Suppose that O(u) = {V/,x} for v/ € §'. Each vertex of &’ is an
out-neighbour of at least one vertex of O(u) = {V/, x}. For this range of
o, S is independent, so S’ C N*(x) and hence o < d.
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Fact
The total deficiency takes one of the following seven values:

ce{d—1,d,d+1,d+2,2d—2,2d—1,2d}.

Proof: suppose thatd + 1 < o < 2d — 3 and fix v/ € §’. Every vertex in
S" has surplus one. V' is not an outlier, so every vertex of G is contained
once in T_,(v'). Also §' is independent, so &' — {V'} € N=2(V/).

Suppose that a vertex u has > 2 vertices of S’ as in-neighbours. Then
we would have o > 2d — 2, contradicting our assumption. Therefore
each vertex in N~ (V') has at most one in-neighbour in §'. As there are
d + 1 in-neighbours of v and every vertex in S’ has surplus one, it
follows that o < d + 2.
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Geodecity problem for mixed graphs g

A mixed graph is k-geodetic if for any ordered pair of vertices (u,v)
there is at most one non-backtracking mixed walk of length < k from u
to v.

The undirected degree of a vertex u is the number of edges incident to
u. The directed out-degree (in-degree) is the number of arcs from (to)
u.

What is the smallest order of a k-geodetic mixed graph with undirected
degree r and directed out-degree z? A minimum such graph is a mixed
cage. We can prove that cages exist by truncation.

A k-geodetic mixed graph with undirected degree r, directed

out-degree z and excess e is an (r, z, k; +¢)-graph.
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The mixed Moore bound

k+1 k+1
u —1 " —1
M(r,z,k) = A-L B-2 ,
(FZ ) Ml—l + u2—1

where v = (z+r)> +2(z—r) + 1 and

_zkr=l=yWw o zdr—14W

uy B y U2 D)
A Vv tr+l) o ()
N 2\/v o 2\/v

)l

The Open
University
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Mixed Moore graphs with k = 2 0
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The mixed Moore bound for k = 2 is (r +z)? +z + 1.

Theorem Nguyen, Miller, Gimbert, 2007
There are no mixed Moore graphs with k£ > 3. J

22/47



Mixed Moore graphs with k = 2

The Open
University

The mixed Moore bound for k = 2 is (r +z)? +z + 1.

Theorem Nguyen, Miller, Gimbert, 2007
There are no mixed Moore graphs with £ > 3.

Theorem, after Lopez & Miret

Let G be a totally regular (r,z,2,+1)-graph. Then either:
o r=2,
e 4r + 1 = ¢? for some ¢ € N and ¢|(16z*> — 24z + 25), or
o 4r —7 = ¢ for some ¢ € N and ¢|(16z2 + 40z + 9).
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Total regularity g

Definition
A mixed graph is totally regular if there exist r and z such that every
vertex has undirected degree r and directed in- and out-degree z.

Theorem

Almost mixed Moore graphs are out-regular with undirected degree r
and directed out-degree z.

Question
Are almost mixed Moore graphs totally regular?
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Total regularity g

Definition
A mixed graph is totally regular if there exist r and z such that every
vertex has undirected degree r and directed in- and out-degree z.

Theorem

Almost mixed Moore graphs are out-regular with undirected degree r
and directed out-degree z.

Question
Are almost mixed Moore graphs totally regular?

Definition

S={veV(G):d7(v)<z},S={/eV(G) :d7(V) >z}
Nt(u)={we V(G):u~woru— w},

N (u) ={weV(G):u~worw— u}.
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Lemma
For allu € V(G) we have S C N*(r(u)) and S’ C r(N*(u)). J
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Corollary
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Corollary
All vertices in S have directed in-degree z — 1. J
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Corollary
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Corollary
All vertices in S have directed in-degree z — 1. J

As the average directed in-degree is z,

D @)= =) (z—d7 () =Sl

ves! veSs
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There are r + z vertices in S g
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Lemma
IS| =r+z.

Proof.

Let v € S. By the preceding lemma d~*(v) = z — 1. We obtain an upper
bound for |V(G)| by assuming that &' C N~ (v).

VG <1+r+Gz-1)+rr=1)+rz+ (-1 +2)+1].

Rearranging, |S| > r + z. Combined with S C N*(r(u)), we see that
IS| =r+z. O

4
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There are r + z vertices in S g

The Open

Lemma
IS| =r+z.

Proof.

Let v € S. By the preceding lemma d~(v) = z — 1. We obtain an upper
bound for |V(G)| by assuming that S’ C N~ (v).

VO <T+r+z=D+rr=1)+rz+ (-1 +2)+[S]

Rearranging, |S| > r + z. Combined with S C N*(r(u)), we see that
IS| =r+z. O

Corollary

S =NT"(r(u)) forallu € V(G).




The undirected degree g 5z

Theorem
The undirected degree of G is two. J
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There are exactly two repeats g
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Theorem
There are exactly two repeats. J
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Completing the argument
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Now is we count paths we obtain the equation

I+A+A>=J+21+P,

where we can choose all non-zero entries to lie in the first two columns.
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Now is we count paths we obtain the equation
I+A+A>=J+2+P,

where we can choose all non-zero entries to lie in the first two columns.

The matrix J + P has spectrum {n+ 1, —1,0"=2} so I + A 4+ A% has
spectrum {n +3,1,2(*=2)},
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Completing the argument g

The Open

Unive

Now is we count paths we obtain the equation
I+A+A>=J+2+P,

where we can choose all non-zero entries to lie in the first two columns.

The matrix J + P has spectrum {n+ 1, —1,0"=2} so I + A 4+ A% has
spectrum {n +3,1,2(*=2)},

As the trace of A is zero, the sum of these eigenvalues must be zero.
However, this is impossible!
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A graph with excess one g
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Figure 7: The unique mixed graph with r =2,z = 1,k = 2 and excess ¢ = 13‘.”47



What do we know about excess one?

Theorem

Let G be a totally regular (r,z,2,+1)-graph. Then either
r=2

4r + 1 = ¢* for some ¢ € N and ¢|(16z> — 24z + 25) or
4r — 7 = ¢? for some ¢ € N and ¢[(16z% + 40z +9).

The Open
University

Theorem JT

Any (r,z,k;+1)-graph with k = 2 or z = 1 is totally regular.
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Figure 8: The Moore tree forr =z=1and k = 5.
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A counting argument g :

Figure 9: The Moore tree for r =z =1and k = 5.
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A counting argument g

Figure 10: The Moore tree forr =z =1and k = 5.
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Result
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Theorem
For k > 3, the excess ¢ of a totally regular (r, z, k; +¢)-graph satisfies

[A’;—l -1 M'-17 A®

>
=5l =1 A — 1 7

AR

where

p=1/(rtz—172+4

1
M=5(rt+z—1+49)

and

)\zzé(r—l—z—l—gb).
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All (r,z, k;+1)-graphs
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Theorem
The excess of any (r, z, k)-cage satisfies

S rz [)\'1‘_1 — |l )\15—1 — 1]
Sl -1 -1l
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All (r,z, k;+1)-graphs g

Theorem
The excess of any (r, z, k)-cage satisfies

k—1 k—1
Al —l_)\2 —1]
A —1 A —1 1

rz
o= (2r +32)¢ [

Result
With (quite a lot) more work, this implies that any (r, z, k; +1)-graph has

4

k=2.
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Cagesforr=z=1,k=3 g

The Open
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Application to degree/diameter g :

@ ‘® "
(f) ? (g) ? (C) ‘ ?@?
S EGED @ SESEOES

Eiriire 11 The ~rhain decomnnceitinn for 2 — R
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@
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Application to degree/diameter
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Theorem
For k > 1 we have

d(k+6) = 0(k) + Fr—1 + Fit4,

where Fy =F, =1,F, =2,F3 =3,F, =5, ... is the Fibonacci
sequence.
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» Are geodetic cages totally regular/diregular?

e Are (d,2;+2)- and (2, k; +3)-digraphs diregular?

 Are there (r,z,k; —1)-graphs with k > 3? In particular, are they
totally regular?

 Are (r,z, k;+2)-graph totally regular?

» Find smallest arc-transitive (d, k; +¢)-digraphs.

» Can we extend the new bound for defect of totally regular mixed
graphs to other degree parameters?

* Connectivity of geodetic cages.
* Geodetic colourings and game colourings.
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» Are geodetic cages totally regular/diregular?

e Are (d,2;+2)- and (2, k; +3)-digraphs diregular?

 Are there (r,z,k; —1)-graphs with k > 3? In particular, are they
totally regular?

 Are (r,z, k;+2)-graph totally regular?
» Find smallest arc-transitive (d, k; +¢)-digraphs.

» Can we extend the new bound for defect of totally regular mixed
graphs to other degree parameters?

* Connectivity of geodetic cages.
» Geodetic colourings and game colourings.

Thank you!
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