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Motivation: girth problem for undirected graphs

Q. What is the smallest possible order of a graph with degree d and
girth g?

Example: d = 3, g = 5:
From any fixed vertex:
• 1 vertex at distance 0
• d vertices at distance 1
• d(d − 1) vertices at distance 2
• To avoid cycles of lengths 3 or 4 all

these vertices must be distinct
So the lower bound (Moore bound) for graphs of girth 5 is d2 + 1.
This is only achieved if we can connect the vertices in the last level so
that the graph has girth 5.
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Degree geodecity problem

Anita Sillasen was the first to look into the following directed analogy of
the undirected degree/girth problem.

Def. A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length ≤ k between them.

This digraph is not 2-geodetic.

u w

vx

This digraph is not 3-geodetic.

u w

v
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The degree/geodecity problem

Q. What is the smallest possible order of a digraph with (out-)degree d
and geodecity k?

Example: d = 3, k = 2:
From any fixed vertex:
• 1 vertex at distance 0
• d vertices at distance 1
• d2 vertices at distance 2
• To avoid geodecity failures all these

vertices must be distinct; in general
n ≥ 1 + d + d2 + · · ·+ dk = M(d, k)

This is impossible for any d, k except in the trivial cases d = 1 or k = 1
(same argument as Bridges and Toueg)
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Definitions

The order of G will be M(d, k) + ε, where ε is the excess of G.

A k-geodetic digraph with minimum out-degree d and excess ε is a
(d, k; +ε)-digraph.

A smallest possible k-geodetic digraph with out-degree ≥ d a geodetic
cage.

The set of vertices that are at distance > k from u is the outlier set O(u)
of u.
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Results from the last IWONT

Theorem Sillasen
There are no diregular k-geodetic digraphs with degree d = 2 and
excess ε = 1.

Theorem Miller, Miret, Sillasen
All digraphs with excess one are diregular.

Theorem Miller, Miret, Sillasen
There are no (d, k; +1)-digraphs for k = 2, 3, 4.
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The outlier function

Lemma
The outlier function is a digraph automorphism!

Proof
Define a matrix P by setting the (u, v)-entry equal to one iff o(u) = v.
Let A be the adjacency matrix of G. Counting paths,

I + A + A2 + · · ·+ Ak = J − P.

G can be shown to be diregular, so A and J commute. Therefore
AP = PA, so o is an automorphism.
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Do geodetic cages exist?

The vertices of P(d, k) are all permutations of length k from the
alphabet [d + k]. We set x0x1 . . . xk−1 → x1x2 . . . xk−1xk iff
xk 6∈ {x1, x2, . . . , xk−1}.

10

31

12

01

13

21
03

23

20 30

32

02

Figure 1: P(2, 2)
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Cages for d = 2, k = 2

Figure 2: The two (2, 2)-geodetic-cages
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Cages with d = 2, k = 3

Figure 3: d = 2, k = 3, ε = 5
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Cages with d = 2, k = 3

Figure 4: d = 2, k = 3, ε = 5
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The unique cage with d = 3, k = 2
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What we know now

Theorem JT
There are no (2, k; +2)-digraphs for k ≥ 3 (diregular or otherwise).

Theorem JT
There are no diregular (2, k; +3)-digraphs for k ≥ 3.

Theorem JT
The structure of (3, k; +1)-digraphs is ‘highly constrained’ (i.e. we know
the permutation structure and there are divisibility conditions). There
are no ‘involutary’ (3, k; +1)-digraphs. (N.B. This approach also settles
the nonexistence of (d, 2; +1)-digraphs for 3 ≤ d ≤ 7).

Question
Where next for digraphs?
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Diregularity of (d, 2; +2)-digraphs

Let G be a 2-geodetic digraph with minimum out-degree d and excess
ε = 2. We can assume that d ≥ 4. Let S = {v ∈ V(G) : d−(v) < d} and
S′ = {v′ ∈ V(G) : d−(v′) > d}.

Definition
The deficiency σ−(v) of a vertex v ∈ S is σ−(v) = d − d−(v) and the
surplus σ+(v′) of a vertex v′ ∈ S′ is d−(v′)− d.

Our aim is to show that the ‘divergence’ from diregularity is confined to
a small range of values. We measure this divergence using the total
deficiency

σ =
∑
v∈S

σ−(v) =
∑
v′∈S′

σ+(v′).

We set ψ(u) =
∑

v∈N−(u) σ
−(v).
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Facts

Fact one
The largest possible in-degree is d + 2. Each vertex v′ ∈ S′ is the
outneighbour of at least σ+(v′) vertices of any outlier set O(u).

Corollary
As there are at most d out-neighbours of any outlier set, σ ≤ 2d.

Fact
If σ < 2d, then the largest possible in-degree is d + 1 and σ = |S′|.

Proof: Suppose that d−(v′) = d + 2. There are at least
1 + d + d2 + 2(d + 1)− σ vertices that can reach v′ by paths of length
≤ 2. Therefore

n = 3 + d + d2 ≥ d2 + 3d + 3− σ,
so σ ≥ 2d.
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Facts

Fact
σ ≥ d − 1.

Proof: Let v′ ∈ S′. If d−(v′) = d + 2 we are done, so take d−(v′) = d + 1.
Counting paths of length ≤ 2 again, Thus

n = 3 + d + d2 ≥ 1 + d + d2 + (d + 1)− ψ(v′) = 2 + 2d + d2 − ψ(v′).

Fact
If σ ≤ 2d − 2, then S′ is an independent set.

Proof: if N−(v′) ∩ S′ 6= ∅, then by the previous fact v′ has deficiency
≥ d − 1 in N−(v′) and ≥ d − 1 in N−2(v′).
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Facts

Fact
For d + 1 ≤ σ ≤ 2d − 2 or σ = d − 1, no vertex v′ ∈ S′ is an outlier.

Proof: Suppose that O(u) = {v′, x} for v′ ∈ S′. Each vertex of S′ is an
out-neighbour of at least one vertex of O(u) = {v′, x}. For this range of
σ, S′ is independent, so S′ ⊆ N+(x) and hence σ ≤ d.
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Finishing the proof

Fact
The total deficiency takes one of the following seven values:

σ ∈ {d − 1, d, d + 1, d + 2, 2d − 2, 2d − 1, 2d}.

Proof: suppose that d + 1 ≤ σ ≤ 2d − 3 and fix v′ ∈ S′. Every vertex in
S′ has surplus one. v′ is not an outlier, so every vertex of G is contained
once in T−2(v′). Also S′ is independent, so S′ − {v′} ⊂ N−2(v′).

Suppose that a vertex u has ≥ 2 vertices of S′ as in-neighbours. Then
we would have σ ≥ 2d − 2, contradicting our assumption. Therefore
each vertex in N−(v′) has at most one in-neighbour in S′. As there are
d + 1 in-neighbours of v′ and every vertex in S′ has surplus one, it
follows that σ ≤ d + 2.
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Mixed graphs

0

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 5: The Moore tree for z = 3, r = 3, k = 2
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Geodecity problem for mixed graphs

A mixed graph is k-geodetic if for any ordered pair of vertices (u, v)
there is at most one non-backtracking mixed walk of length ≤ k from u
to v.

The undirected degree of a vertex u is the number of edges incident to
u. The directed out-degree (in-degree) is the number of arcs from (to)
u.

What is the smallest order of a k-geodetic mixed graph with undirected
degree r and directed out-degree z? A minimum such graph is a mixed
cage. We can prove that cages exist by truncation.

A k-geodetic mixed graph with undirected degree r, directed
out-degree z and excess ε is an (r, z, k; +ε)-graph.
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The mixed Moore bound

M(r, z, k) = A
uk+1

1 − 1
u1 − 1

+ B
uk+1

2 − 1
u2 − 1

,

where v = (z + r)2 + 2(z− r) + 1 and

u1 =
z + r − 1−

√
v

2
, u2 =

z + r − 1 +
√

v
2

A =

√
v− (z + r + 1)

2
√

v
,B =

√
v + (z + r + 1)

2
√

v
,
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Mixed Moore graphs with k = 2

The mixed Moore bound for k = 2 is (r + z)2 + z + 1.

Theorem Nguyen, Miller, Gimbert, 2007
There are no mixed Moore graphs with k ≥ 3.

Theorem, after López & Miret
Let G be a totally regular (r, z, 2,+1)-graph. Then either:
• r = 2,
• 4r + 1 = c2 for some c ∈ N and c|(16z2 − 24z + 25), or
• 4r − 7 = c2 for some c ∈ N and c|(16z2 + 40z + 9).
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Total regularity

Definition
A mixed graph is totally regular if there exist r and z such that every
vertex has undirected degree r and directed in- and out-degree z.

Theorem
Almost mixed Moore graphs are out-regular with undirected degree r
and directed out-degree z.

Question
Are almost mixed Moore graphs totally regular?
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Total regularity

Definition
A mixed graph is totally regular if there exist r and z such that every
vertex has undirected degree r and directed in- and out-degree z.

Theorem
Almost mixed Moore graphs are out-regular with undirected degree r
and directed out-degree z.

Question
Are almost mixed Moore graphs totally regular?

Definition
S = {v ∈ V(G) : d→(v) < z}, S′ = {v′ ∈ V(G) : d→(v′) > z}.
N+(u) = {w ∈ V(G) : u ∼ w or u→ w},
N−(u) = {w ∈ V(G) : u ∼ w or w→ u}.
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Lemma 1

Lemma

For all u ∈ V(G) we have S ⊆ N+(r(u)) and S′ ⊆ r(N+(u)).
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Lemma 1

Lemma

For all u ∈ V(G) we have S ⊆ N+(r(u)) and S′ ⊆ r(N+(u)).

u

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6: The labelled Moore tree for z = 3, r = 3, k = 2
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Corollary

Corollary
All vertices in S have directed in-degree z− 1.
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Corollary

Corollary
All vertices in S have directed in-degree z− 1.

As the average directed in-degree is z,

∑
v′∈S′

(d→(v′)− z) =
∑
v∈S

(z− d→(v)) = |S|.
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There are r + z vertices in S

Lemma
|S| = r + z.

Proof.
Let v ∈ S. By the preceding lemma d→(v) = z− 1. We obtain an upper
bound for |V(G)| by assuming that S′ ⊆ N−(v).

|V(G)| ≤ 1 + r + (z− 1) + r(r − 1) + rz + (z− 1)(r + z) + |S|.

Rearranging, |S| ≥ r + z. Combined with S ⊆ N+(r(u)), we see that
|S| = r + z.
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There are r + z vertices in S

Lemma
|S| = r + z.

Proof.
Let v ∈ S. By the preceding lemma d→(v) = z− 1. We obtain an upper
bound for |V(G)| by assuming that S′ ⊆ N−(v).

|V(G)| ≤ 1 + r + (z− 1) + r(r − 1) + rz + (z− 1)(r + z) + |S|.

Rearranging, |S| ≥ r + z. Combined with S ⊆ N+(r(u)), we see that
|S| = r + z.

Corollary

S = N+(r(u)) for all u ∈ V(G).
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The undirected degree

Theorem
The undirected degree of G is two.

R1

v1 v2 v3 v4 v5 v6

R2
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There are exactly two repeats

Theorem
There are exactly two repeats.

R1

v1 v2 v3 v4 v5 v6

R2
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Completing the argument

Now is we count paths we obtain the equation

I + A + A2 = J + 2I + P,

where we can choose all non-zero entries to lie in the first two columns.

The matrix J + P has spectrum {n + 1,−1, 0(n−2)}, so I + A + A2 has
spectrum {n + 3, 1, 2(n−2)}.

As the trace of A is zero, the sum of these eigenvalues must be zero.
However, this is impossible!
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A graph with excess one

Figure 7: The unique mixed graph with r = 2, z = 1, k = 2 and excess ε = 1.
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What do we know about excess one?

Theorem
Let G be a totally regular (r, z, 2,+1)-graph. Then either
r = 2
4r + 1 = c2 for some c ∈ N and c|(16z2 − 24z + 25) or
4r − 7 = c2 for some c ∈ N and c|(16z2 + 40z + 9).

Theorem JT
Any (r, z, k; +1)-graph with k = 2 or z = 1 is totally regular.
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A counting argument

u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 8: The Moore tree for r = z = 1 and k = 5.
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u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 9: The Moore tree for r = z = 1 and k = 5.
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A counting argument

u0

u1 u2

u3 u4 u5

u6 u7 u8 u9 u10

u11 u12 u13 u14 u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31

Figure 10: The Moore tree for r = z = 1 and k = 5.
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Result

Theorem
For k ≥ 3, the excess ε of a totally regular (r, z, k; +ε)-graph satisfies

ε ≥ r
φ

[λk−1
1 − 1
λ1 − 1

−
λk−1

2 − 1
λ2 − 1

]
=

A(k)
z
,

where

φ =
√
(r + z− 1)2 + 4z,

λ1 =
1
2
(r + z− 1 + φ)

and

λ2 =
1
2
(r + z− 1− φ).
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All (r, z, k; +1)-graphs

Theorem
The excess of any (r, z, k)-cage satisfies

ε ≥ rz
(2r + 3z)φ

[λk−1
1 − 1
λ1 − 1

−
λk−1

2 − 1
λ2 − 1

]
.

Result
With (quite a lot) more work, this implies that any (r, z, k; +1)-graph has
k = 2.
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Cages for r = z = 1, k = 3
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Cages for r = z = 1, k = 3
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Cage for r = z = 1, k = 4
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Application to degree/diameter

1
(a)

2
(b)

3
(a)

4
(c)

5
(d)

6
(b)

7
(e)

8
(a)

9
(f)

10
(g)

11
(c)

12
(h)

13
(i)

14
(d)

15
(k)

16
(b)

17
(j)

18
(l)

19
(e)

20
(m)

21
(a)

22 23 24
(f)

25 26 27
(g)

28 29
(c)

30 31 32
(h)

33

34 35
(i)

36 37
(d)

38 39 40
(k)

41 42
(b)

43 44 45
(j)

46 47 48
(l)

49 50
(e)

51 52 53
(m)

54

Figure 11: The chain decomposition for k = 8 44 / 47



Application to degree/diameter

Theorem
For k ≥ 1 we have

δ(k + 6) = δ(k) + Fk−1 + Fk+4,

where F0 = F1 = 1,F2 = 2,F3 = 3,F4 = 5, . . . is the Fibonacci
sequence.

45 / 47



Some open problems

• Are geodetic cages totally regular/diregular?
• Are (d, 2; +2)- and (2, k; +3)-digraphs diregular?
• Are there (r, z, k;−1)-graphs with k ≥ 3? In particular, are they

totally regular?
• Are (r, z, k; +2)-graph totally regular?
• Find smallest arc-transitive (d, k; +ε)-digraphs.
• Can we extend the new bound for defect of totally regular mixed

graphs to other degree parameters?
• Connectivity of geodetic cages.
• Geodetic colourings and game colourings.

Thank you!
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