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Combinatorial homogeneity vs. symmetry

Graphs may possess different types of combinatorial homogeneity.

• regularity: all vertices have the same number of neighbours;

• strong regularity: every edge lies on the sam number of
triangles and the same for the complement.

• walk regularity: the number of closed walks (of every fixed
length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

• vertex-transitivity ⇒ regularity and walk regularity

• edge-transitivity of the graph and its complement ⇒
strong-regularity.

HOWEVER:

Transitivity (almost) never follows from homogeneity.
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... almost never ...

• A connected 2-regular graph is vertex-transitive;
(because it is a cycle).

• Platonic solids: If X is a regular convex polyhedron (constant
valence, all faces congruent to a fixed regular polygon), then
Aut(X) acts transitively on vertices, edges, faces, flags.

• Maps of type {6, 3} on orientable surface are vertex-transitive.

Challenge: Find other instances of combinatorial homogeneity that
implies algebraic symmetry.
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Cycle regularity

• For k ∈ N, e ∈ E(Γ):

ck(e) = number of k-cycles that pass through e.

• Γ is k-cycle regular if ck(e) is constant for all e ∈ E(Γ).

• If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity ⇒ cycle-regularity.

QUESTION: Does cycle-regularity imply edge-transitivity?
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Of course not

A small counterexample (provided to us by Royle and McKay):

 

20 vertices, 2 orbits on edges, 2 orbits on vertices,
3-regular (cubic), girth = 6.



A question of Fouquet and Hahn

Question (Fouquet and Hahn, 2001):
Is every cycle-regular and vertex-transitive also edge-transitive?

NO! Answered by Marston Conder and Jin-Xin Zhou (JCTB’23):

Theorem. The line graph of a cubic locally-2-arc-transitive not
vertex-transitive graph is cycle-regular, vertex-transitive but not
edge-transitive.

Corollary. There are infinitely many tetravalent cycle-regular,
vertex-transitive but not edge-transitive graphs of girth 3.
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The peculiar case of cubic vertex-transitive graphs

So, we have tetravalent examples. Can one find examples of
valence 3?

Question (Conder, Jin-Xin): In the realm of connected cubic
vertex-transitive graphs:

Cycle-regularity
?
=⇒ edge-transitivity.

First reaction: SURELY NOT!
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The number of cubic vertex-transitive graphs
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Current status

Theorem 1. Every cubic vertex-transitive cycle-regular graph on at
most 1280 vertices is edge-transitive.

Theorem 2. Every cubic (vertex-transitive) cycle-regular graph of
girth at most 5 is edge-transitive.

Theorem 3. (Verret, PP, 2023) Every cubic vertex-transitive
cycle-regular graph of girth 6 is edge-transitive.
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Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth g ≤ 5. If Γ is
g-cycle-regular, then:

• g = 3 and Γ ∼= K4;

• g = 4 and Γ ∼= K3,3 or the cube Q3;

• g = 5 and Γ is either the Petersen graph or the
Dodecahedron.

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.
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Theorem 3: Girth 6

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive
graph of girth 6. If Γ is 6-cycle regular, then:

• c6(e) = 8 and Γ is the Heawood graph (on 14 vertices),

• c6(e) = 6 and Γ is the Möbius-Kantor graph (on 16 vertices),

• c6(e) = 4 and Γ is
• the Pappus graph (on 18 vertices); or
• the Desargues (on 20 vertices),

• c6(6) = 2 and Γ underlies a map of type {6, 3} on the torus.

Hence, it suffices to consider maps of type {6, 3} on the torus.
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Lifting to the Euclidean plane

• Γ ... cubic graph, embedded onto torus T as a {6, 3}-map.

• Consider the universal covering projection ℘ : R2 → T .

• Γ lifts to a hexagonal tessellation of R2.

• Fibres are orbits of some group of translations H.
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Trivial vs. non-trivial cycles
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Cycles in Γ are of two types:

• Trivial: Lift to cycles in H.

• Non-trivial: Lift to paths between vertices in the same fibre.



Short cycles
Important parameter:

dmin = shortest distance between two vertices in L

= length of shortest non-contractible cycle in Γ.

Observations:

• Every cycle of length < dmin is trivial.

• Γ is ℓ-cycle-regular for all ℓ < dmin.

• Critical cycle lengths: ℓ = dmin and ℓ = dmin + 2.

• In particular, we need to consider the number of ℓ-paths,
ℓ = dmin and dmin + 2 between two vertices in a fibre.

• First is easy. The second involves solving:

L(n, k) = L(n−1, k−1)+L(n−1, k)+

(
n− 1

k − 2

)
+

(
n− 1

k + 1

)
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dmin-cycle regular examples
 

i

• Infinite family of graphs Γ(s), s ≥ 1, that are k-cycle regular
for all k ≤ 3

2

√
|V |.

• Smallest example: Γ(s) = Möbius-Kantor graph (which is
edge-transitive).
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Symmetric case. |D| = 6 
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Conclusion

Within the realm of cubic vertex-transitive graphs:

• We proved: If girth ≤ 5, then:
cycle-regular ⇒ edge-transitive.

• Up to girth 5, there are only finitely many cubic VT graphs
with every edge on the same number of girth cycles — they
are all edge-transitive.

• We also proved: If girth = 6, then: cycle-regular ⇒
edge-transitive.

• Reduction to maps with faces of length 6;

• Analysis of the maps.



Higher girth

Girth 7 (still cubic VT):

• It seems that reduction to maps is possible:

Computational data: if every edge on the same number of 7
cycles, then either Coxeter graph or a {7, 3}-map.

• An easy group theory argument: Every vertex-transitive
{7, 3}-map is edge-transitive.

Girth = 8:

• Reduction to maps might be possible

• No idea how to deal with maps.


