Cycle regularity of cubic vertex-transitive graphs

Primož Potočnik (University of Ljubljana)

JOINT WORK WITH Gabriel Verret (University of Auckland)

Edinburgh, 21st July, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

HOWEVER:

Graphs may possess different types of combinatorial homogeneity.

- regularity: all vertices have the same number of neighbours;
- strong regularity: every edge lies on the sam number of triangles and the same for the complement.
- walk regularity: the number of closed walks (of every fixed length) starting at a vertex does not depend on the vertex.

Combinatorial homogeneity follows from transitivity.

- vertex-transitivity \Rightarrow regularity and walk regularity
- edge-transitivity of the graph and its complement \Rightarrow strong-regularity.

HOWEVER:

• A connected 2-regular graph is vertex-transitive; (because it is a cycle).

- Platonic solids: If X is a *regular convex polyhedron* (constant valence, all faces congruent to a fixed regular polygon), then Aut(X) acts transitively on vertices, edges, faces, flags.
- Maps of type $\{6,3\}$ on orientable surface are vertex-transitive.

Challenge: Find other instances of combinatorial homogeneity that implies algebraic symmetry.

人口 医水黄 医水黄 医水黄素 化甘油

• A connected 2-regular graph is vertex-transitive;

(because it is a cycle).

- Platonic solids: If X is a *regular convex polyhedron* (constant valence, all faces congruent to a fixed regular polygon), then Aut(X) acts transitively on vertices, edges, faces, flags.
- Maps of type $\{6,3\}$ on orientable surface are vertex-transitive.

Challenge: Find other instances of combinatorial homogeneity that implies algebraic symmetry.

• A connected 2-regular graph is vertex-transitive;

(because it is a cycle).

- Platonic solids: If X is a *regular convex polyhedron* (constant valence, all faces congruent to a fixed regular polygon), then Aut(X) acts transitively on vertices, edges, faces, flags.
- Maps of type $\{6,3\}$ on orientable surface are vertex-transitive.

Challenge: Find other instances of combinatorial homogeneity that implies algebraic symmetry.

• A connected 2-regular graph is vertex-transitive;

(because it is a cycle).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Platonic solids: If X is a *regular convex polyhedron* (constant valence, all faces congruent to a fixed regular polygon), then Aut(X) acts transitively on vertices, edges, faces, flags.
- Maps of type $\{6,3\}$ on orientable surface are vertex-transitive.

Challenge: Find other instances of combinatorial homogeneity that implies algebraic symmetry.

• For $k \in \mathbb{N}$, $e \in E(\Gamma)$:

 $c_k(e) =$ number of k-cycles that pass through e.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Γ is *k*-cycle regular if $c_k(e)$ is constant for all $e \in E(\Gamma)$.
- If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity \Rightarrow cycle-regularity. QUESTION: Does cycle-regularity imply edge-transitivity?

• For $k \in \mathbb{N}$, $e \in E(\Gamma)$:

 $c_k(e) =$ number of k-cycles that pass through e.

- ロ ト - 4 回 ト - 4 □ - 4

- Γ is k-cycle regular if $c_k(e)$ is constant for all $e \in E(\Gamma)$.
- If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity \Rightarrow cycle-regularity. QUESTION: Does cycle-regularity imply edge-transitivity?

• For $k \in \mathbb{N}$, $e \in E(\Gamma)$:

 $c_k(e) =$ number of k-cycles that pass through e.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Γ is *k*-cycle regular if $c_k(e)$ is constant for all $e \in E(\Gamma)$.
- If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity \Rightarrow cycle-regularity. QUESTION: Does cycle-regularity imply edge-transitivity

• For $k \in \mathbb{N}$, $e \in E(\Gamma)$:

 $c_k(e) =$ number of k-cycles that pass through e.

- Γ is k-cycle regular if $c_k(e)$ is constant for all $e \in E(\Gamma)$.
- If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity \Rightarrow cycle-regularity. QUESTION: Does cycle-regularity imply edge-transitivity

• For $k \in \mathbb{N}$, $e \in E(\Gamma)$:

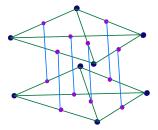
 $c_k(e) =$ number of k-cycles that pass through e.

- Γ is k-cycle regular if $c_k(e)$ is constant for all $e \in E(\Gamma)$.
- If Γ is k-cycle regular for all k, then it is cycle-regular.

Clearly: Edge-transitivity \Rightarrow cycle-regularity. QUESTION: Does cycle-regularity imply edge-transitivity?

Of course not

A small counterexample (provided to us by Royle and McKay):



20 vertices, 2 orbits on edges, 2 orbits on vertices, 3-regular (cubic), girth = 6.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A question of Fouquet and Hahn

Question (Fouquet and Hahn, 2001):

Is every cycle-regular and vertex-transitive also edge-transitive?

NO! Answered by Marston Conder and Jin-Xin Zhou (JCTB'23):

Theorem. The line graph of a cubic locally-2-arc-transitive not vertex-transitive graph is cycle-regular, vertex-transitive but not edge-transitive.

Corollary. There are infinitely many tetravalent cycle-regular, vertex-transitive but not edge-transitive graphs of girth 3.

A question of Fouquet and Hahn

Question (Fouquet and Hahn, 2001): Is every cycle-regular and vertex-transitive also edge-transitive? NO! Answered by Marston Conder and Jin-Xin Zhou (JCTB'23):

Theorem. The line graph of a cubic locally-2-arc-transitive not vertex-transitive graph is cycle-regular, vertex-transitive but not edge-transitive.

Corollary. There are infinitely many tetravalent cycle-regular, vertex-transitive but not edge-transitive graphs of girth 3.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A question of Fouquet and Hahn

Question (Fouquet and Hahn, 2001): Is every cycle-regular and vertex-transitive also edge-transitive? NO! Answered by Marston Conder and Jin-Xin Zhou (JCTB'23):

Theorem. The line graph of a cubic locally-2-arc-transitive not vertex-transitive graph is cycle-regular, vertex-transitive but not edge-transitive.

Corollary. There are infinitely many tetravalent cycle-regular, vertex-transitive but not edge-transitive graphs of girth 3.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The peculiar case of cubic vertex-transitive graphs

So, we have tetravalent examples. Can one find examples of valence 3?

Question (Conder, Jin-Xin): In the realm of connected cubic vertex-transitive graphs:

Cycle-regularity $\stackrel{?}{\Rightarrow}$ edge-transitivity.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

First reaction: SURELY NOT!

The peculiar case of cubic vertex-transitive graphs

So, we have tetravalent examples. Can one find examples of valence 3?

Question (Conder, Jin-Xin): In the realm of connected cubic vertex-transitive graphs:

Cycle-regularity $\stackrel{?}{\Rightarrow}$ edge-transitivity.

First reaction: SURELY NOT!

The peculiar case of cubic vertex-transitive graphs

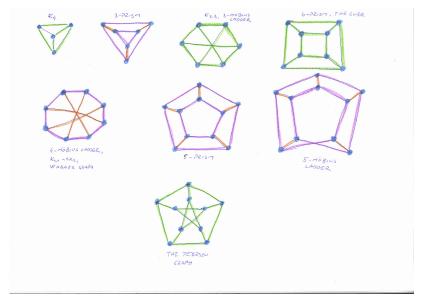
So, we have tetravalent examples. Can one find examples of valence 3?

Question (Conder, Jin-Xin): In the realm of connected cubic vertex-transitive graphs:

Cycle-regularity $\stackrel{?}{\Rightarrow}$ edge-transitivity.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

First reaction: SURELY NOT!



- All cubic vertex-transitive graphs up to order 1280 are known. (Spiga, Verret, PP)
- There are 111360 of them.
- Only 482 of them are edge-transitive.
- Surprise: None of the 110878 non-edge-transitive ones is cycle-regular!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- All cubic vertex-transitive graphs up to order 1280 are known. (Spiga, Verret, PP)
- There are 111 360 of them.
- Only 482 of them are edge-transitive.
- Surprise: None of the 110878 non-edge-transitive ones is cycle-regular!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

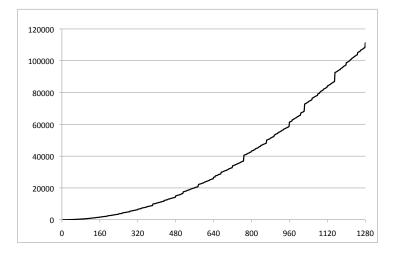
- All cubic vertex-transitive graphs up to order 1280 are known. (Spiga, Verret, PP)
- There are 111 360 of them.
- Only 482 of them are edge-transitive.
- Surprise: None of the 110878 non-edge-transitive ones is cycle-regular!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- All cubic vertex-transitive graphs up to order 1280 are known. (Spiga, Verret, PP)
- There are 111360 of them.
- Only 482 of them are edge-transitive.
- Surprise: None of the 110878 non-edge-transitive ones is cycle-regular!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The number of cubic vertex-transitive graphs



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Current status

Theorem 1. Every cubic vertex-transitive cycle-regular graph on at most 1280 vertices is edge-transitive.

Theorem 2. Every cubic (vertex-transitive) cycle-regular graph of girth at most 5 is edge-transitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 3. (Verret, PP, 2023) Every cubic vertex-transitive cycle-regular graph of girth 6 is edge-transitive.

Current status

Theorem 1. Every cubic vertex-transitive cycle-regular graph on at most 1280 vertices is edge-transitive.

Theorem 2. Every cubic (vertex-transitive) cycle-regular graph of girth at most 5 is edge-transitive.

Theorem 3. (Verret, PP, 2023) Every cubic vertex-transitive cycle-regular graph of girth 6 is edge-transitive.

Current status

Theorem 1. Every cubic vertex-transitive cycle-regular graph on at most 1280 vertices is edge-transitive.

Theorem 2. Every cubic (vertex-transitive) cycle-regular graph of girth at most 5 is edge-transitive.

Theorem 3. (Verret, PP, 2023) Every cubic vertex-transitive cycle-regular graph of girth 6 is edge-transitive.

Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth $g \leq 5.$ If Γ is g-cycle-regular, then:

- g = 3 and $\Gamma \cong K_4$;
- g = 4 and $\Gamma \cong K_{3,3}$ or the cube Q_3 ;

• g = 5 and Γ is either the Petersen graph or the Dodecahedron.

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.

Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth $g\leq 5.$ If Γ is g-cycle-regular, then:

- g = 3 and $\Gamma \cong K_4$;
- g = 4 and $\Gamma \cong K_{3,3}$ or the cube Q_3 ;

• g = 5 and Γ is either the Petersen graph or the Dodecahedron.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.

Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth $g\leq 5.$ If Γ is g-cycle-regular, then:

- g = 3 and $\Gamma \cong K_4$;
- g = 4 and $\Gamma \cong K_{3,3}$ or the cube Q_3 ;
- g = 5 and Γ is either the Petersen graph or the Dodecahedron.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.

Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth $g \leq 5$. If Γ is g-cycle-regular, then:

- g = 3 and $\Gamma \cong K_4$;
- g = 4 and $\Gamma \cong K_{3,3}$ or the cube Q_3 ;
- g = 5 and Γ is either the Petersen graph or the Dodecahedron.

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.

Theorem 2: Girth at most 5

As observed independently by many authors:

Theorem. Let Γ be a cubic graph of girth $g\leq 5.$ If Γ is g-cycle-regular, then:

- g = 3 and $\Gamma \cong K_4$;
- g = 4 and $\Gamma \cong K_{3,3}$ or the cube Q_3 ;
- g = 5 and Γ is either the Petersen graph or the Dodecahedron.

In particular, Γ is vertex- and edge-transitive.

This takes care of girth at most 5.

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

• $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),

- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

- $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),
- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

- $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),
- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

- $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),
- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

The starting point is the following classification:

Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

- $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),
- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

The starting point is the following classification:

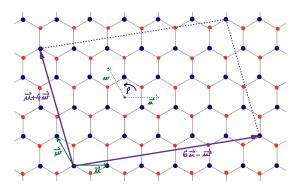
Theorem. (P., Vidali, 2022) Let Γ be a cubic vertex-transitive graph of girth 6. If Γ is 6-cycle regular, then:

- $c_6(e) = 8$ and Γ is the Heawood graph (on 14 vertices),
- $c_6(e) = 6$ and Γ is the Möbius-Kantor graph (on 16 vertices),
- $c_6(e) = 4$ and Γ is
 - the Pappus graph (on 18 vertices); or
 - the Desargues (on 20 vertices),

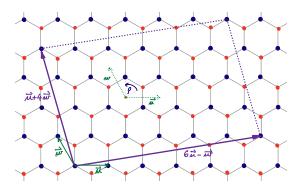
• $c_6(6) = 2$ and Γ underlies a map of type $\{6,3\}$ on the torus.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

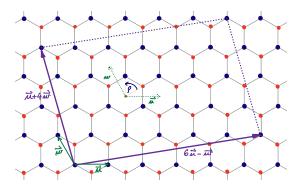
- Γ ... cubic graph, embedded onto torus T as a $\{6,3\}$ -map.
- Consider the universal covering projection $\wp \colon \mathbb{R}^2 \to T$.
- Γ lifts to a hexagonal tessellation of \mathbb{R}^2 .
- Fibres are orbits of some group of translations *H*.



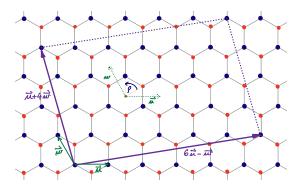
- Γ ... cubic graph, embedded onto torus T as a $\{6,3\}$ -map.
- Consider the universal covering projection $\wp \colon \mathbb{R}^2 \to T$.
- Γ lifts to a hexagonal tessellation of \mathbb{R}^2 .
- Fibres are orbits of some group of translations *H*.



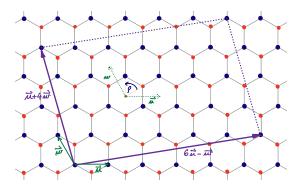
- Γ ... cubic graph, embedded onto torus T as a $\{6,3\}$ -map.
- Consider the universal covering projection $\wp \colon \mathbb{R}^2 \to T$.
- Γ lifts to a hexagonal tessellation of \mathbb{R}^2 .
- Fibres are orbits of some group of translations *H*.



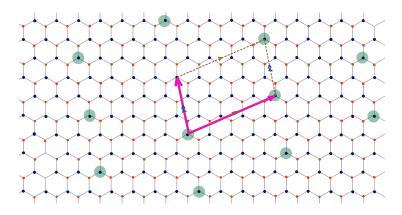
- Γ ... cubic graph, embedded onto torus T as a $\{6,3\}$ -map.
- Consider the universal covering projection $\wp \colon \mathbb{R}^2 \to T$.
- Γ lifts to a hexagonal tessellation of \mathbb{R}^2 .
- Fibres are orbits of some group of translations *H*.



- Γ ... cubic graph, embedded onto torus T as a $\{6,3\}$ -map.
- Consider the universal covering projection $\wp \colon \mathbb{R}^2 \to T$.
- Γ lifts to a hexagonal tessellation of \mathbb{R}^2 .
- Fibres are orbits of some group of translations *H*.



Trivial vs. non-trivial cycles



Cycles in Γ are of two types:

- Trivial: Lift to cycles in \mathcal{H} .
- Non-trivial: Lift to paths between vertices in the same fibre.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Important parameter:

d_{\min} = shortest distance between two vertices in L

= length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

Important parameter:

- d_{\min} = shortest distance between two vertices in L
 - = length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

Important parameter:

- d_{\min} = shortest distance between two vertices in L
 - = length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

Important parameter:

 d_{\min} = shortest distance between two vertices in L

= length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

Important parameter:

 d_{\min} = shortest distance between two vertices in L

= length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

Important parameter:

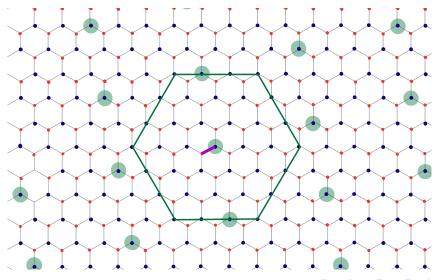
 d_{\min} = shortest distance between two vertices in L

= length of shortest non-contractible cycle in Γ .

- Every cycle of length $< d_{\min}$ is trivial.
- Γ is ℓ -cycle-regular for all $\ell < d_{\min}$.
- Critical cycle lengths: $\ell = d_{\min}$ and $\ell = d_{\min} + 2$.
- In particular, we need to consider the number of ℓ -paths, $\ell = d_{\min}$ and $d_{\min} + 2$ between two vertices in a fibre.
- First is easy. The second involves solving:

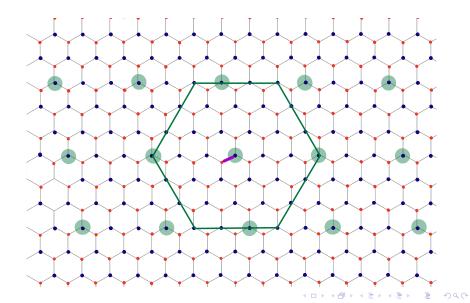
$$L(n,k) = L(n-1,k-1) + L(n-1,k) + \binom{n-1}{k-2} + \binom{n-1}{k+1}.$$

|D| = 2

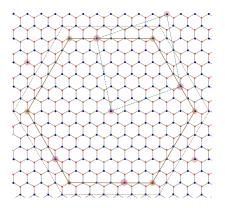


(ロトメ母トメミトメミト ヨーののぐ)

|D| = 4

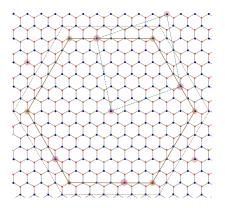


 d_{\min} -cycle regular examples



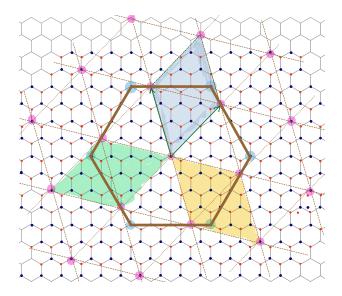
- Infinite family of graphs $\Gamma(s)$, $s \ge 1$, that are k-cycle regular for all $k \le \frac{3}{2}\sqrt{|V|}$.
- Smallest example: $\Gamma(s) = M$ öbius-Kantor graph (which is edge-transitive).

 d_{\min} -cycle regular examples



- Infinite family of graphs $\Gamma(s)$, $s \ge 1$, that are k-cycle regular for all $k \le \frac{3}{2}\sqrt{|V|}$.
- Smallest example: $\Gamma(s) = M$ öbius-Kantor graph (which is edge-transitive).

Symmetric case. |D| = 6



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusion

Within the realm of cubic vertex-transitive graphs:

• We proved: If girth \leq 5, then:

cycle-regular \Rightarrow edge-transitive.

- Up to girth 5, there are only finitely many cubic VT graphs with every edge on the same number of girth cycles they are all edge-transitive.
- We also proved: If girth = 6, then: cycle-regular ⇒ edge-transitive.
 - Reduction to maps with faces of length 6;
 - Analysis of the maps.

Higher girth

Girth 7 (still cubic VT):

• It seems that reduction to maps is possible:

Computational data: if every edge on the same number of 7 cycles, then either Coxeter graph or a $\{7,3\}$ -map.

• An easy group theory argument: Every vertex-transitive {7,3}-map is edge-transitive.

Girth = 8:

- Reduction to maps might be possible
- No idea how to deal with maps.