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Dynamics of microstructure in solids
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crystal lattice of some alloy at a critical temperature, e.g. cubic
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The Model

The equation of nonlinear viscoelasticity is

where

yuw — Div DW(Dy) — Div S(Dy, Dy;) = 0

( F = Dy(x,t), F; 9i Jeformation gradient

a = Bz,
W: M3*3 = [0, 00] stored-energy function

L Piola-Kirchhoff stress tensor.



The Problem

Constitutive assumptions: ,
T

- det Dy > 0 for x € Q (4 7] ‘

- W(Dy) — oo as det Dy — 0 =

locally invertible but not globally invertible
W (Dy) — oo as |Dy| — o0

Frame-indifference:

e W(RF) = W(F) for all Re€ SO(3), F € M33
e S(Dy,Dy,) = DyG(U,Uy)

G is a symmetric matrix-valued function
U = (Dy"Dy)'?



Quasistatic Case - 1D

In one space dimension we have
Yy = (a(yx) + S(yx,yxt))x, z e (0,1), t €[0,T].

The quasistatic equation takes the form

(0(52) + Srsye)) = 0.

where o = W', z € (0,1), t € [0, T]. Boundary conditions:

e y(0,t) =0, (0 4+ 9)(1,t) = 0 (one end stress free)
e y(0,t) =0, y(1,t) = p, > 0 constant (both ends fixed)



Quasistatic case in 1D

We will consider the quasistatic case when S(yz, Yzt) = Y. We
have

(U(ym) + ywt)x =0.
Using the boundary conditions and putting p = y, we get

1
Pl 1) = —o(p(z, 1)) + /0 o(p(y.1)) dy, = € (0.1)
p(z,0) = po(x) >0 a.e.

1
/Po
0



Our contributions

1. Well-posedness when W is A-convex !

@ using global upper and lower bounds to pass to the limit
2. Equivalence of the theory with that of gradient flows

o following Brézis for the analysis of the gradient flow

equation.

e following the metric gradient approach. 2

1J. M. Ball, Y. Sengiil, J. Dynam. Differential Equations, 27 (3), 405-442, 2015.
2A4 Mielke, C. Ortner, Y. Sengiil, SIAM J. Math. Anal. 46 (2), 1317-1347,72014.



Strain-limiting viscoelasticity



Example 1

An explicitly constituted material:

/

Jext (t)

£u(0) «(t)

Figure: Applying an external force puts the system in motion

We can write the constitutive specification for the spring as

fs =g(x) = fs = kx, k spring constant.

(linear spring)

One then writes the balance of linear momentum and use this
relation to get an ODE in terms of the displacement.



Example 2
An implicitly constituted material:
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Figure: A mass-spring-wire system in its equilibrium
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Figure: Applying an external force puts the system in motion



s

- The wire of maximal length L cannot break whatever force

is applied to it.

- The extension of the spring is limited to L.

- Once the maximal length L is obtained, no change in the

position occurs.

In this case it is much more sensible to
prescribe an implicit relation between
the force and the displacement as

g(fs, ) = 0.




We are interested in 3 class of implicit models defined through
G(T,B) =0.
Isotropy leads to

G(T,B) = apl + a1 T + asB + a3T? + ayB? + a;5(TB + BT)
+a6(T?B + BT?) + a7 (T?B? + B2T?) = 0,

where «; depend on the invariants

tr'T, trB, trT?, trB?, tr'T3, tr(TB), tr(T2B), tr(TB?), tr(T*B?).

Here: B = FF7 is the left Cauchy-Green stretch tensor.

Y. Sengiil, Discrete Contin. Dyn. Syst. S, 14 (1), 5770, 2021.



Under the assumption
max [Vul| < 1,
the linearization of the explicit model T = G(B) gives
T = Ce
where C is a fourth order tensor not depending on €. Hence,

there is no way of justifying nonlinear elastic models involving a
linearized strain if one starts with a Cauchy elastic material.

Here: €(u) = 1(Vu+ Vu’) is the linearized strain



On the other hand, for the implicit subclass, the smallness
assumption allows us to replace the CauchyGreen tensor

B by I+2 in B=F(T)

so that we obtain .
e =F(T),

which is a nonlinear relationship between the linearized strain
and the stress.



Strain-rate type models

We are interested in the viscoelastic version with the strain-rate
dependance. As a subclass of the general implicit constitutive
relations of the form G(T,B,D) = 0, we have

B +vD = Bol + /1T + B T2,

where v and v are nonnegative constants.

Here: L = Vv is the velocity gradient, D = 1(L + L) is the
symmetric part of L.



Linearizing the strain we get
ve+ver = Bol + 1T + ,82T2,

where €; = J€/0t is the linearized counterpart of D and f;
depend on tr'T, trT?, tr'T3.

In general one can write

ve+ve, = g(T).



Our contributions in 1-D

1. Travelling wave solutions

@ by deriving the equation Ty, + v Typpr = g(T)4, and
studying different forms of ¢ *
e considering the arctangent type nonlinearity °
2. The Cauchy problem

@ local-in-time existence of solutions ©

e global existence 7

4H4 A. Erbay, Y. Sengiil, Int. J. Nonlinear Mech., 77, 61-68, 2015.
Y. Sengiil, Appl. Engin. Science, 7, 100058, 2021.

SH. A. Erbay, A. Eckip, Y. Sengiil, J. Diff. Eqns., 269, 9720-9739, 2020.

7Y4 Sengiil, In: Espanol, M. et al. Research of Mathematics of Material Science, Vol. 31.
Association for Women in Mathematics Series Springer, 319-332,02022:

ot



Our contributions in 3-D

1. Higher-dimensional problem

@ global-in-time existence of weak solutions with periodic
boundary conditions &

@ existence and uniqueness of weak solutions with Dirichlet
boundary conditions °

8M. Bulicek, V. Patel, E. Siili, Y. Sengiil, Commun. Pure Appl. Anal., 20 (5), 1931-1960,
2021.

9M. Bulicek, V. Patel, E. Siili, Y. Sengil, SIAM J. Math. Anal., 545(6), 6186-6222;, 2022:



Stress-rate type models

To model the stress-rate type viscoelastic fluids within the
context of implicit constitutive theories, we must consider the
relation

G(T,T,B) =0.

Furthermore, we will restrict our attention to the case where
the Cauchy-Green stretch tensor is given as a nonlinear
function of the stress and its time derivative, namely,

B = H(T,T).



Under the assumption of isotropic materials, we have

B = aol + T + T + a3T? + a,T? + a5 (TT + TT)
+ a6 (T?T 4 TT?) + a7(T?T + TT?) + ag(T*T? + T2T?)

with the scalar functions ay,7 =0, ...,8, depending on the
invariants

trT, trT, trT2, trT2, trT2, trT°, tr(TT), tr(TQT), tr(TZT), tr(TQTQ).



Assuming
max [ Vu| <1, max ||Vv]| <1,
xz, Z,

as well as the convective terms in the expression of the material
time derivative of T can be neglected we obtain the relation

e=H(T,Ty).
A subclass that is linear with respect to T is
€ =h(T) —~(T)T,

where h(-) and 7(-) are nonlinear functions of the Cauchy stress
T.



Our contributions

1. Introduction of a thermodynamically consistent model 1°

o as well as deriving the corresponding partial differential
equation as Ty, + v Ty = g(T)y and comparing it with the
strain-rate model

2. Travelling wave solutions '

@ solving the corresponding ODE for the travelling wave
variable numerically with different choices of the

nonlinearity

IOH, A. Erbay, Y. Sengiil, Z. Angew. Math. Phys., 71:94, 2020.
11E. Duman Y. Sengiil, Advances in Continuous and DiscretetModels] to appear.
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