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Cardiff University

Retreat for Women in Applied Mathematics
ICMS

11 January 2023



Outline

Dynamics of microstructure in solids
The viscoelastic model
Quasistatic case
Contributions

Strain-limiting viscoelasticity
Implicit constitutive modelling
Strain-rate type models & Contributions
Stress-rate type models & Contributions



Dynamics of microstructure in solids



Martensitic phase transformations

Microstructure in
CuZnAl (M.Morin)

Needles in CuAlNi
(Chu & James)

For more than a century, materials scien- 
tists have studied the micrometer-scale 
needles and platelets that occur in 

many materials. In martensitic materials- 
which undergo a reversible, difisionless 
solid-to-solid phase transformation in which 
the underlying crystal lattice spontaneously 
distorts the patterns of microstructure re- 
semble a jigsaw puzzle (see the first figure). 
Recent studies suggest that the characteris- 
tic distortions of such martensitic materials 
can be exploited to create tiny machines. 

Imagine that each piece of the puzzle un- 
dergoes one of several characteristic distor- 
tions. For example, take a crystal with atoms 
arranged on a cubic lattice and focus on a 
single cube (a unit cell) with atoms at each 
corner. In a simple cubic-to-tetragonal 
transformation, this cube spontaneously 
elongates along one cube edge. But, by 
symmetry, it could also elongate along an- 
other cube edge. In this case, there are three 
characteristic distortions and thus three vari- 
ants of martensite. Martensitic materials 
have the remarkable property that the puzzle 
fits together even after undergoing the char- 
acteristic distortion, thereby achieving a 
complex but coordinated motion. 

The typical size of the individual do- 
mains the pieces of the jigsaw puzzle- 
can range from nanometers to millimeters 
and is determined by a complex interplay 
between the bulk and interfacial energies 
(1w). This length scale is of interest to re- 
searchers trying to make smaller and small- 
er devices. These researchers have used mi- 

t- croelectromechanical systems technology to 
> create intricate patterns on silicon films and 
, multilayers that reproduce, in scaled-down 
z form, the gears, levers, cantilevers, and elec- 
O tromagnetic motors of everyday machines. 
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corona); the Solar Dynamics Observatory 
(to study solar activity with full-disc, 
TRACE-quality images captured every 10 s 
in a range of wavelengths), and Solar 
Orbiter (which will match the solar rotation 
and journey out of Earth's ecliptic plane to 
view the solar poles). The spatial, temporal, 
and spectral resolution of the spectrometers 
and atmospheric imagers used by these mis- 
sions (up to an order of magnitude higher 
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Orbiter (which will match the solar rotation 
and journey out of Earth's ecliptic plane to 
view the solar poles). The spatial, temporal, 
and spectral resolution of the spectrometers 
and atmospheric imagers used by these mis- 
sions (up to an order of magnitude higher 

than those of today's instruments) will be 
vital for finally solving the puzzle of how 
the solar corona is heated. 
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films of these materials. A powerful new 
mathematical method, called r conver- 
gence (l o), can answer precisely such ques- 
tions. The resulting theory for thin-film 
martensites (11) has led to a surprising pre- 
diction: The interfaces between phases (or, 
more precisely, between the variants of 
martensite) in a thin film are completely 
different from those in bulk material and 
have a much simpler structure. 

This prediction paves the way for the de- 
sign of a machine: One must pattern the film 
such that it is released along the predicted in- 
terfaces (see the second figure, left panel). In 
effect, one thus defines the jigsaw puzzle by 
patterning. This patterning must use the 
compatible interfaces between phases to se- 
lect a unique puzzle with a useful distortion. 

A proof-of-principle of these concepts 
has been demonstrated in a single-crystal 
thinned foil of CuAlNi by Cui and James (see 
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This approach has led to devices that can 
perform unique tasks. An example is digital 
light projection (5), where hundreds of mir- 
rors on a single chip are moved independ- 
ently to create images on a television or 
movie screen. But each mirror is made of 
multiple moving parts that are fabricated on 
silicon and driven by electrostatic actuators. 
The complexity thus increases with decreas- 
ing size, and there are inherent limitations 
on how small these devices can reliably be 
made. Martensitic materials may overcome 
this limitation. By depositing thin films of a 
martensitic material and patterning it appro- 
priately, one can control the characteristic 
distortions to make the domains perform as 
the components of the machine. 

Another potential advantage of marten- 
sitic materials was suggested by Krulevitch 
et al. (6). Among a broad array of actuator 
systems, the martensitic material NiTi ex- 
hibits the largest known work output per unit 
volume of the actuator. This performance re- 
sults from a unique feature of martensitic 
materials: The linear transformation that de- 
fines the distortion of each domain is exact- 
ly the same as that of the atomic unit cell of 
the lattice. The free energy of a domain 
equals the free energy of its smallest unit cell 
times the number of unit cells in that do- 
main. A large fraction of this free energy can 
be transferred to the environment via inter- 
action with a loading device. 

A martensitic material thus provides a di- 
rect link between the macroscopic environ- 
ment and its fundamental unit cell. Devices 
based on this property, such as micro- 
pumps, microvalves, and micropositioners, 
are now reaching commercialization (7-9). 
They use polycrystalline films on flexible 
substrates and exploit the properties aver- 
aged over the many domains. Their success 
motivates the more ambitious quest to use 
the individual domains as machines. 

The microstructure of bulk martensitic 
materials can be predicted from theory, but 
until recently this was not possible for thin 
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Martensite jigsaw puzzle. Bulk CuALNi con- 
tains six different variants of orthorhombic 
martensite that form a jigsaw puzzle. The hori- 
zontal dimension of this image is 1.4 mm. 
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the second figure, right panel) (12). The ori- 
entation of the foil was chosen so that or- 
thogonal interfaces predicted by the thin-film 
theory would separate the phases. The foil 
was then confined outside of a square bound- 
ed by these interfaces. This arrangement de- 
fined a rather simple jigsaw puzzle with four 
triangular pieces, which stood up like a tent 
when cooled and collapsed flat upon heating. 

In a similar manner, a film released on 
a strip defined by the predicted interfaces 
should form a "tunnel." Upon heating, the 
tunnel would collapse onto the substrate. 
One can envisage vast networks of such 
tents and tunnels, with collapsed and un- 
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Complex patterns in CuAlNi
(Cui & James)



Martensitic phase transformations
Martensitic transformations involve a change of shape of the
crystal lattice of some alloy at a critical temperature, e.g. cubic
to tetragonal;
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Microtwins in Ni65Al35 (Boullay & Schryvers)



The Model

The equation of nonlinear viscoelasticity is

ytt − Div DW (Dy) − Div S(Dy,Dyt) = 0

where 

F = Dy(x, t), Fiα = ∂yi
∂xα

deformation gradient

W : M3×3 → [0,∞] stored-energy function

TR(Dy,Dyt) = DW (Dy) + S(Dy,Dyt)
Piola-Kirchhoff stress tensor.



The Problem

Constitutive assumptions:

· detDy > 0 for x ∈ Ω

· W (Dy)→∞ as detDy → 0
W (Dy)→∞ as |Dy| → ∞

by the solid at any time in a given motion y.

Notation. We use Greek indices for the coordinates xÆ and Latin indices for the
coordinates yi.

The deformation gradient is the differential of y with respect to x, denoted

F = Dy; FiÆ = yi,Æ =
@yi

@xÆ
.

Invertibility

To avoid interpenetration of matter, we require that for each t, y(·, t) is invertible
on ≠, with sufficiently smooth inverse x(·, t). We also suppose that y(·, t) is
orientation preserving; hence

J = detF (x, t) > 0 for x 2 ≠. (1)

By the inverse function theorem, (1) implies that y(·, t) is locally invertible.

Examples.

not on ≠

locally invertible but not globally invertible

y

y(·, t) invertible on ≠

y

Everting a sphere (Smale) can be done without violating local invertibility (see
the video http://video.google.com/videoplay?docid=-6626464599825291409.

How can we verify that y(·, t) is invertible? A useful result for the case when
there is no self-contact is

4

· Frame-indifference:

W (RF ) = W (F ) for all R ∈ SO(3), F ∈M3×3

S(Dy,Dyt) = DyG(U,Ut)
· G is a symmetric matrix-valued function
· U = (DyTDy)1/2



Quasistatic Case - 1D

In one space dimension we have

ytt =
(
σ(yx) + S(yx, yxt)

)
x
, x ∈ (0, 1), t ∈ [0, T ].

The quasistatic equation takes the form(
σ(yx) + S(yx, yxt)

)
x

= 0,

where σ = W ′, x ∈ (0, 1), t ∈ [0, T ]. Boundary conditions:

y(0, t) = 0, (σ + S)(1, t) = 0 (one end stress free)

y(0, t) = 0, y(1, t) = µ, µ > 0 constant (both ends fixed)



Quasistatic case in 1D

We will consider the quasistatic case when S(yx, yxt) = yxt. We
have (

σ(yx) + yxt
)
x

= 0.

Using the boundary conditions and putting p = yx we get
pt(x, t) = −σ(p(x, t)) +

∫ 1

0
σ(p(y, t)) dy, x ∈ (0, 1)

p(x, 0) = p0(x) > 0 a.e.∫ 1

0
p0(x) dx = µ.



Our contributions

1. Well-posedness when W is λ-convex 1

using global upper and lower bounds to pass to the limit

2. Equivalence of the theory with that of gradient flows

following Brézis for the analysis of the gradient flow
equation.

following the metric gradient approach. 2

1
J. M. Ball, Y. Şengül, J. Dynam. Differential Equations, 27 (3), 405-442, 2015.

2
A. Mielke, C. Ortner, Y. Şengül, SIAM J. Math. Anal. 46 (2), 1317-1347, 2014.



Strain-limiting viscoelasticity



Example 1

An explicitly constituted material:

ON IMPLICITLY CONSTITUTED SOLIDS 3

2. Implicitly constituted materials

Vibrating lumped parameter systems. Before discussing implicit constitutive theories within
the context of continua, it is worth considering briefly the possibility of implicit equations to
describe the response of a vibrating lumped parameter system and of a mass-spring system. When
considering simple vibrating systems as represented in Figs. 1, 2 or 3, one invariably describes the
response of the spring and the dashpot by providing an expression for the forces that are developed
in the spring and the dashpot with respect to the displacement and velocity, respectively; that is,
one provides expressions for the spring force fs and the dashpot force fd as

(1) fs = g(x) and fd = h(ẋ),

where x and ẋ are the displacement and the velocity, respectively.

m

x = 0

m

x(t)

fext(t)

fs(t)

m

x = 0

m

x(t)

fext(t)

fd(t)

Figure 1. Mass-spring and mass-dashpot systems. The figures at the top depict a

mass-spring system and a mass-dashpot system in their equilibrium positions. When applying

an external force of magnitude fext in the x-direction the mass-spring system gets into motion;

there is a spring force acting in the opposite direction to the applied external force and having

magnitude fs, pushing the spring into its equilibrium position. As the outcome of these forces,

the mass is placed at the position x(t) at time t (see the figure at the bottom left corner).

Similarly, when applying an external force of magnitude fext in the x-direction, the mass-

dashpot system gets into motion and takes up the position x(t) as a result of two forces: the

external force and the force due to friction of the fluid in the dashpot; the latter force acts in

the opposite direction to the applied external force and has magnitude fd; see the figure at the

bottom right corner.

m

x = 0

m

x(t)

fext(t)

fs(t) fd(t)

Figure 2. Mass-spring-dashpot system. The figure at the top depicts a mass-spring-

dashpot system in its equilibrium position. When applying an external force of magnitude fext

in the x-direction, the system takes on the position x(t) at time t as a result of the relevant

forces.

In the case of a linear spring and a linear dashpot, we prescribe

(2) fs = kx and fd = cẋ,

where k is the spring constant and c the constant for the dashpot. The balance of linear momentum
(i.e., the equation of the motion of classical particle mechanics) then has the form

(3)
d(mv)

dt
= f ,

Figure: Applying an external force puts the system in motion

We can write the constitutive specification for the spring as

fs = g(x) =⇒
(linear spring)

fs = kx, k spring constant.

One then writes the balance of linear momentum and use this
relation to get an ODE in terms of the displacement.



Example 2
An implicitly constituted material:
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where f stands for all relevant forces acting on the particle having mass m and located at the
position x = (x, y, z), with velocity v = (ẋ, ẏ, ż). In our one-dimensional setting, (3) simplifies to
the form

(4) mẍ + fs + fd = fext,

where fext is the given external force (acting merely in the x-direction), and m is the mass of
the object. Equations (1) and (2) are essentially the constitutive specifications for the spring
and the dashpot. On inserting (1) into (4), one obtains an ordinary di↵erential equation for
the displacement x and this equation has been studied in great detail for a variety of nonlinear
functions g and h.

Recently, Rajagopal [50] has articulated the need for implicit relationships between the force
and the displacement/velocity for the spring/dashpot system. That one cannot specify a force-
displacement relation for the spring becomes obvious if the relationship is that portrayed in Fig.
3. Such a response corresponds to a spring placed in parallel with an inextensible string of fixed
length L, say, as also sketched in Fig. 3. Similarly, one cannot specify a force-velocity relation
corresponding to a Bingham-like dashpot as drawn in Fig. 4. In this case it is much more sensible
to prescribe the velocity ẋ in terms of the dashpot force fd. In general, one cannot explicitly
prescribe the appropriate kinematical quantity in terms of the force and one might only be able
to specify an implicit relations of the form

(5) g(fs, x) = 0 and g(fd, ẋ) = 0.

More general implicit relationships between the forces and kinematical quantities are possible but
we shall not discuss them here; the interested reader is referred to [50].

m

x = 0

L0

L

m

x(t)  L � L0

fext(t)

fs(t)

L 0 x

fs

L � L0

Figure 3. Mass-spring-wire system. The figure at the top (left) depicts a mass-spring-

wire system in its equilibrium position. The wire of the maximal length L cannot break whatever

force is applied to it. When applying an external force of magnitude fext in the x-direction the

system gets into motion, but the extension of the spring is limited by the maximal length of the

wire. Once the maximal length of the wire is attained, no change in the mass position occurs

with increasing fext and consequently fs. The corresponding response is depicted in the figure

on the right.

Let us consider the simpler subcase of the relation (5) when the spring and dashpot are described
respectively through

(6) x = '(fs) and ẋ =  (fd).

We notice that the responses drawn in Figs. 3 and 4 cannot be described by the second equation
in (1) but can be described by the second equation in (6). However, now we cannot substitute (6)
into (4) to obtain a single equation for the displacement. One has to solve the system of equations

Figure: A mass-spring-wire system in its equilibrium
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where f stands for all relevant forces acting on the particle having mass m and located at the
position x = (x, y, z), with velocity v = (ẋ, ẏ, ż). In our one-dimensional setting, (3) simplifies to
the form

(4) mẍ + fs + fd = fext,

where fext is the given external force (acting merely in the x-direction), and m is the mass of
the object. Equations (1) and (2) are essentially the constitutive specifications for the spring
and the dashpot. On inserting (1) into (4), one obtains an ordinary di↵erential equation for
the displacement x and this equation has been studied in great detail for a variety of nonlinear
functions g and h.

Recently, Rajagopal [50] has articulated the need for implicit relationships between the force
and the displacement/velocity for the spring/dashpot system. That one cannot specify a force-
displacement relation for the spring becomes obvious if the relationship is that portrayed in Fig.
3. Such a response corresponds to a spring placed in parallel with an inextensible string of fixed
length L, say, as also sketched in Fig. 3. Similarly, one cannot specify a force-velocity relation
corresponding to a Bingham-like dashpot as drawn in Fig. 4. In this case it is much more sensible
to prescribe the velocity ẋ in terms of the dashpot force fd. In general, one cannot explicitly
prescribe the appropriate kinematical quantity in terms of the force and one might only be able
to specify an implicit relations of the form

(5) g(fs, x) = 0 and g(fd, ẋ) = 0.

More general implicit relationships between the forces and kinematical quantities are possible but
we shall not discuss them here; the interested reader is referred to [50].
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L0

L

m

x(t)  L � L0

fext(t)

fs(t)

L 0 x

fs

L � L0

Figure 3. Mass-spring-wire system. The figure at the top (left) depicts a mass-spring-

wire system in its equilibrium position. The wire of the maximal length L cannot break whatever

force is applied to it. When applying an external force of magnitude fext in the x-direction the

system gets into motion, but the extension of the spring is limited by the maximal length of the

wire. Once the maximal length of the wire is attained, no change in the mass position occurs

with increasing fext and consequently fs. The corresponding response is depicted in the figure

on the right.

Let us consider the simpler subcase of the relation (5) when the spring and dashpot are described
respectively through

(6) x = '(fs) and ẋ =  (fd).

We notice that the responses drawn in Figs. 3 and 4 cannot be described by the second equation
in (1) but can be described by the second equation in (6). However, now we cannot substitute (6)
into (4) to obtain a single equation for the displacement. One has to solve the system of equations

Figure: Applying an external force puts the system in motion



· The wire of maximal length L cannot break whatever force
is applied to it.

· The extension of the spring is limited to L.

· Once the maximal length L is obtained, no change in the
position occurs.
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where f stands for all relevant forces acting on the particle having mass m and located at the
position x = (x, y, z), with velocity v = (ẋ, ẏ, ż). In our one-dimensional setting, (3) simplifies to
the form

(4) mẍ + fs + fd = fext,

where fext is the given external force (acting merely in the x-direction), and m is the mass of
the object. Equations (1) and (2) are essentially the constitutive specifications for the spring
and the dashpot. On inserting (1) into (4), one obtains an ordinary di↵erential equation for
the displacement x and this equation has been studied in great detail for a variety of nonlinear
functions g and h.

Recently, Rajagopal [50] has articulated the need for implicit relationships between the force
and the displacement/velocity for the spring/dashpot system. That one cannot specify a force-
displacement relation for the spring becomes obvious if the relationship is that portrayed in Fig.
3. Such a response corresponds to a spring placed in parallel with an inextensible string of fixed
length L, say, as also sketched in Fig. 3. Similarly, one cannot specify a force-velocity relation
corresponding to a Bingham-like dashpot as drawn in Fig. 4. In this case it is much more sensible
to prescribe the velocity ẋ in terms of the dashpot force fd. In general, one cannot explicitly
prescribe the appropriate kinematical quantity in terms of the force and one might only be able
to specify an implicit relations of the form

(5) g(fs, x) = 0 and g(fd, ẋ) = 0.

More general implicit relationships between the forces and kinematical quantities are possible but
we shall not discuss them here; the interested reader is referred to [50].

m

x = 0

L0

L

m

x(t)  L � L0

fext(t)

fs(t)

L 0 x

fs

L � L0

Figure 3. Mass-spring-wire system. The figure at the top (left) depicts a mass-spring-

wire system in its equilibrium position. The wire of the maximal length L cannot break whatever

force is applied to it. When applying an external force of magnitude fext in the x-direction the

system gets into motion, but the extension of the spring is limited by the maximal length of the

wire. Once the maximal length of the wire is attained, no change in the mass position occurs

with increasing fext and consequently fs. The corresponding response is depicted in the figure

on the right.

Let us consider the simpler subcase of the relation (5) when the spring and dashpot are described
respectively through

(6) x = '(fs) and ẋ =  (fd).

We notice that the responses drawn in Figs. 3 and 4 cannot be described by the second equation
in (1) but can be described by the second equation in (6). However, now we cannot substitute (6)
into (4) to obtain a single equation for the displacement. One has to solve the system of equations

In this case it is much more sensible to
prescribe an implicit relation between
the force and the displacement as

g(fs, x) = 0.



We are interested in 3 class of implicit models defined through

G(T,B) = 0.

Isotropy leads to

G(T,B) = α0I + α1T + α2B + α3T
2 + α4B

2 + α5(TB + BT)

+α6(T
2B + BT2) + α7(T

2B2 + B2T2) = 0,

where αi depend on the invariants

trT, trB, trT2, trB2, trT3, tr(TB), tr(T2B), tr(TB2), tr(T2B2).

Here: B = FFT is the left Cauchy-Green stretch tensor.

3Y. Şengül, Discrete Contin. Dyn. Syst. S, 14 (1), 57-70, 2021.



Under the assumption

max
x,t
‖∇u‖ � 1,

the linearization of the explicit model T = G(B) gives

T = Cε

where C is a fourth order tensor not depending on ε. Hence,
there is no way of justifying nonlinear elastic models involving a
linearized strain if one starts with a Cauchy elastic material.

Here: ε(u) = 1
2(∇u +∇uT ) is the linearized strain



On the other hand, for the implicit subclass, the smallness
assumption allows us to replace the CauchyGreen tensor

B by I + 2ε in B = F(T)

so that we obtain
ε = F̃(T),

which is a nonlinear relationship between the linearized strain
and the stress.



Strain-rate type models

We are interested in the viscoelastic version with the strain-rate
dependance. As a subclass of the general implicit constitutive
relations of the form G(T,B,D) = 0, we have

γB + νD = β0I + β1T + β2T
2,

where γ and ν are nonnegative constants.

Here: L = ∇v is the velocity gradient, D = 1
2(L + LT ) is the

symmetric part of L.



Linearizing the strain we get

γε + νεt = β0I + β1T + β2T
2,

where εt = ∂ε/∂t is the linearized counterpart of D and βi
depend on trT, trT2, trT3.

In general one can write

γε + νεt = g(T).



Our contributions in 1-D

1. Travelling wave solutions

by deriving the equation Txx + ν Txxt = g(T )tt, and
studying different forms of g 4

considering the arctangent type nonlinearity 5

2. The Cauchy problem

local-in-time existence of solutions 6

global existence 7

4
H. A. Erbay, Y. Şengül, Int. J. Nonlinear Mech., 77, 61-68, 2015.

5
Y. Şengül, Appl. Engin. Science, 7, 100058, 2021.

6
H. A. Erbay, A. Erkip, Y. Şengül, J. Diff. Eqns., 269, 9720-9739, 2020.

7
Y. Şengül, In: Espanol, M. et al. Research of Mathematics of Material Science, Vol. 31.

Association for Women in Mathematics Series Springer, 319-332, 2022.



Our contributions in 3-D

1. Higher-dimensional problem

global-in-time existence of weak solutions with periodic
boundary conditions 8

existence and uniqueness of weak solutions with Dirichlet
boundary conditions 9

8
M. Buĺıček, V. Patel, E. Süli, Y. Şengül, Commun. Pure Appl. Anal., 20 (5), 1931-1960,

2021.
9
M. Buĺıček, V. Patel, E. Süli, Y. Şengül, SIAM J. Math. Anal., 54 (6), 6186-6222, 2022.



Stress-rate type models

To model the stress-rate type viscoelastic fluids within the
context of implicit constitutive theories, we must consider the
relation

G(T, Ṫ,B) = 0.

Furthermore, we will restrict our attention to the case where
the Cauchy-Green stretch tensor is given as a nonlinear
function of the stress and its time derivative, namely,

B = H(T, Ṫ).



Under the assumption of isotropic materials, we have

B = α0I + α1T + α2Ṫ + α3T
2 + α4Ṫ

2 + α5(TṪ + ṪT)

+ α6(T
2Ṫ + ṪT2) + α7(Ṫ

2T + TṪ2) + α8(T
2Ṫ2 + Ṫ2T2)

with the scalar functions αi, i = 0, . . . , 8, depending on the
invariants

trT, trṪ, trT2, trṪ2, trT3, trṪ3, tr(TṪ), tr(T2Ṫ), tr(Ṫ2T), tr(T2Ṫ2).



Assuming
max
x,t
‖∇u‖ � 1, max

x,t
‖∇v‖ � 1,

as well as the convective terms in the expression of the material
time derivative of T can be neglected we obtain the relation

ε = H(T,Tt).

A subclass that is linear with respect to Tt is

ε = h(T)− γ(T)Tt

where h(·) and γ(·) are nonlinear functions of the Cauchy stress
T.



Our contributions

1. Introduction of a thermodynamically consistent model 10

as well as deriving the corresponding partial differential
equation as Txx + ν Tttt = g(T )tt and comparing it with the
strain-rate model

2. Travelling wave solutions 11

solving the corresponding ODE for the travelling wave
variable numerically with different choices of the
nonlinearity

10
H. A. Erbay, Y. Şengül, Z. Angew. Math. Phys., 71:94, 2020.

11
E. Duman Y. Şengül, Advances in Continuous and Discrete Models, to appear.
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6. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert, North-Holland, Amsterdam, 1973.
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