Diffusion in arrays of obstacles: beyond homogenisation

Alexandra Tzella
School of Mathematics, University of Birmingham

with
Yahya Farah, Daniel Loghin (Birmingham) and Jacques Vanneste (Edinburgh)

Dispersion and mixing in media with obstacles

A multiscale problem with many science and engineering applications

- contaminant transport in soils and aquifers
- drug delivery and nutrient transport in biological tissues
- filtration devices ...

Challenge due to advection+diffusion+geometry.

Dispersion and mixing in media with obstacles

A multiscale problem with many science and engineering applications

- contaminant transport in soils and aquifers
- drug delivery and nutrient transport in biological tissues
- filtration devices ...

Challenge due to advection+diffusion+geometry.

Dispersion and mixing in media with obstacles

For $t \gg 1$, a Gaussian approximation is used to describe how a blob evolves:

$$
\theta(\boldsymbol{x}, t) \approx \frac{1}{\sqrt{2 \pi} \mathrm{~K}_{\text {eff }} t} \exp \left(-\frac{1}{4 t}\left(\boldsymbol{x}-\boldsymbol{\xi}_{\text {eff }} t\right)^{T} \mathrm{~K}_{\text {eff }}^{-1}\left(\boldsymbol{x}-\boldsymbol{\xi}_{\text {eff }} t\right)\right)
$$

where $\theta(\boldsymbol{x}, t)$ is the concentration and $\boldsymbol{\xi}_{\text {eff }}$ and $\mathrm{K}_{\text {eff }}$ are the mean velocity and the effective diffusivity tensor.

Maxwell 1873, Rayleigh 1892, Taylor 1953, Aris 1956, Brenner 1981

- captures dispersion for $\left\|\boldsymbol{x}-\boldsymbol{\xi}_{\text {eff }} t\right\|=O\left(t^{1 / 2}\right)$.

PaVliotis and Stuart 2007

- do better, with large deviations e.g. Touchette 2009:

$$
\theta(\boldsymbol{x}, t) \asymp \exp (-\operatorname{tg}(\boldsymbol{x} / t))
$$

The basic problem: diffusion in the presence of obstacles

Figure: An example of a medium with circular obstacles arranged in square arrays (red).

$$
\begin{aligned}
\frac{\partial \theta}{\partial t} & =\nabla^{2} \theta, \\
0 & =\boldsymbol{n} \cdot \nabla \theta, \quad x \text { on } \mathcal{B},
\end{aligned}
$$

where \boldsymbol{n} is the unit normal to the boundaries of the obstacle \mathcal{B}.

Macroscopic behaviour: large deviations

To capture both the Gaussian core and the tales, take the two-scale form

$$
\theta(\boldsymbol{x}, t) \sim t^{-1} \phi(\boldsymbol{x}) e^{-\operatorname{tg}(\boldsymbol{\xi})}, \quad \text { where } \boldsymbol{\xi}=\frac{\boldsymbol{x}}{t} \in \mathbb{R}^{2} \text { and } \boldsymbol{x} \in \omega
$$

- rate function g captures dispersion for $|\boldsymbol{x}|=O(t)$
- find g by solving a family of cell eigenvalue problems

Cell eigenvalue problem

Leading-order problem satisfies

$$
\begin{aligned}
\nabla_{\boldsymbol{x}}^{2} \phi-2 \boldsymbol{q} \cdot \nabla_{\boldsymbol{x}} \phi+|\boldsymbol{q}|^{2} \phi & =f(\boldsymbol{q}) \phi, & \\
\boldsymbol{n} \cdot\left[\nabla_{\boldsymbol{x}} \phi-\phi \boldsymbol{q}\right] & =0, & \boldsymbol{x} \text { on } \mathcal{B} \\
\phi \quad \text { periodic in } \quad \boldsymbol{x} & &
\end{aligned}
$$

where

$$
\boldsymbol{q}=\nabla_{\xi} g(\xi) \quad \text { and } \quad f(\boldsymbol{q})=\sup _{\xi}(\boldsymbol{\xi} \cdot \boldsymbol{q}-g(\boldsymbol{\xi}))
$$

- Principal eigenvalue determines the rate function $g(\boldsymbol{x} / t)$ by taking a Legendre transform.

Macroscopic behaviour: effective diffusion

- For $|\boldsymbol{x}| \ll t$,

$$
\begin{equation*}
g(\boldsymbol{x} / t) \sim \frac{1}{2}(\boldsymbol{x} / t)^{T} \nabla_{\boldsymbol{x} / t} \nabla_{\boldsymbol{x} / t} g(0)(\boldsymbol{x} / t)=\frac{1}{4} \kappa_{\mathrm{eff}}^{-1}(|\boldsymbol{x}| / t)^{2} \tag{1}
\end{equation*}
$$

where $\kappa_{\text {eff }}$ is the effective diffusivity.

- Introducing (1) inside

$$
\theta(\boldsymbol{x}, t) \asymp \exp (-\operatorname{tg}(\boldsymbol{x} / t))
$$

recovers Gaussian approximation for θ obtained via homogenisation.

Effective diffusivity in the dilute limit

In periodic arrays $\kappa_{\text {eff }}$ was first computed using Rayleigh's multipole method:

$$
\kappa_{\mathrm{eff}} \sim 1-\sigma, \quad \text { as } \sigma \rightarrow 0
$$

where σ is the solid area fraction.

Figure: Square vs hexagonal (red) lattice.

Effective diffusivity in the dense limit

Keller's total flux inside the nar-
 row gaps between obstacles:

$$
F=h_{\epsilon}(x) \frac{\partial \theta}{\partial x},
$$

where the gap width

$$
h_{\epsilon}(x) \approx \frac{1}{\pi} x^{2}+\epsilon \quad \text { for } \quad \epsilon \ll 1
$$

Divide by h_{ϵ} and integrate:
$F=\alpha \Delta \theta, \quad$ where $\alpha=\sqrt{2 \epsilon / \pi^{3}}$.

$$
\kappa_{\text {eff }} \sim \frac{2 \sqrt{2} \pi^{2}}{\mathscr{A}} \alpha=\frac{2}{\pi^{3 / 2}} \frac{(\pi / 4-\sigma)^{1 / 2}}{1-\sigma}, \quad \text { as } \sigma \rightarrow \pi / 4 .
$$

Circular obstacles in square lattices: rate function $g(x / t)$

- dilute case: quadratic (Gaussian) approximation (white lines) excellent for $|\boldsymbol{x}|=O(t)$
- more generally: does not capture the anisotropic behaviour for $|\boldsymbol{x}|=O(t)$

Circular obstacles in square lattices: concentration $\theta(x / t)$

$$
a=\pi-0.01
$$

$a=\pi-0.001$

- tail concentrations much fatter than predicted by the effective diffusion approximation
- discrepancy largest at earlier times and bigger radii

Asymptotic analysis of the cell eigenvalue problem.
Let $\psi=e^{-\boldsymbol{q} \cdot \boldsymbol{y}} \phi$. The eigenvalue problem becomes the modified Helmholtz equation

$$
\begin{align*}
& \nabla_{\boldsymbol{y}}^{2} \psi=f(\boldsymbol{q}) \psi, \tag{2a}\\
& 0=\frac{\partial \psi}{\partial r} \quad \text { on } r=a \tag{2b}\\
& \psi e^{\boldsymbol{q} \cdot \boldsymbol{y}} \quad 2 \pi \text {-periodic }
\end{align*}
$$

Dilute limit

where $\boldsymbol{q}=|\boldsymbol{q}|(\cos \alpha, \sin \alpha)$.
Multiply (1a) by $e^{\boldsymbol{q} \cdot \boldsymbol{y}}$ and integrate

$$
f(\boldsymbol{q}) \sim \kappa_{\text {eff }}|\boldsymbol{q}|^{2} \Rightarrow g(\boldsymbol{x} / t) \sim|\boldsymbol{x}|^{2} /\left(4 \kappa_{\text {eff }} t\right)
$$

Asymptotic analysis of the cell eigenvalue problem.

Let $\psi=e^{-\boldsymbol{q} \cdot \boldsymbol{y}} \phi$. The eigenvalue problem becomes the modified Helmholtz equation

$$
\begin{align*}
& \nabla_{\boldsymbol{y}}^{2} \psi=f(\boldsymbol{q}) \psi, \tag{2a}\\
& 0=\frac{\partial \psi}{\partial r} \quad \text { on } r=a \tag{2b}\\
& \psi e^{\boldsymbol{q} \cdot \boldsymbol{y}} \quad 2 \pi \text {-periodic } \tag{2c}
\end{align*}
$$

Dilute limit

- outer region: $r=O(1), \psi \sim e^{-\boldsymbol{q} \cdot \boldsymbol{y}}$
- inner region: $R=r / a=O(1)$,

$$
\Psi \sim 1-a|\boldsymbol{q}|\left(\left(R+R^{-1}\right) \cos (\theta-\alpha),\right.
$$

where $\boldsymbol{q}=|\boldsymbol{q}|(\cos \alpha, \sin \alpha)$.
Multiply (1a) by $e^{\boldsymbol{q} \cdot \boldsymbol{y}}$ and integrate:

$$
f(\boldsymbol{q}) \sim \kappa_{\text {eff }}|\boldsymbol{q}|^{2} \Rightarrow g(\boldsymbol{x} / t) \sim|\boldsymbol{x}|^{2} /\left(4 \kappa_{\text {eff }} t\right)
$$

\Rightarrow effective diffusion accurate for $|\boldsymbol{x}| \sim O(t)$

Dense limit: discrete network model

Use Keller's flux to build a discrete network model:

$$
\mathscr{A} \frac{d \theta_{m, n}}{d t}=\alpha\left(\theta_{m+1, n}+\theta_{m, n+1}+\theta_{m-1, n}+\theta_{m, n-1}-4 \theta_{m, n}\right) .
$$

Taking $\theta_{m, n} \sim t^{-1} \exp \left(-\operatorname{tg}_{\mathrm{d}}\left(\boldsymbol{r}_{m, n} / t\right)\right)$ yields

$$
g_{\mathrm{d}}(\boldsymbol{\xi})=\frac{2 \alpha}{\mathscr{A}}(\mathrm{~S}(\beta \xi)+\mathrm{S}(\beta \eta))
$$

where $\mathrm{S}(x)=1+x \sinh ^{-1} x-\sqrt{1+x^{2}}$ and $\beta=\mathscr{A} /(4 \pi \alpha)$.

Dense limit: discrete network model

Rate function g

Figure: Rate function g against $|\boldsymbol{\xi}|=|\boldsymbol{x}| / t$ for (left) $\epsilon=0.01$ and (right) 0.001 in the directions $(1,1)$ (black) and $(1,0)$ (blue). Numerical results (thick solid lines), quadratic (Gaussian) approximation (dashed lines) and the network approximation (dashed-dotted).

- Captures part of the rate function and thus the tails

Dense limit: matched asymptotics (1)

Inner gap regions: $X=x / \sqrt{\epsilon}=O(1), Y=(y+\pi) / \epsilon \sim \pm H(X)$
Leading-order inner solution satisfies $\partial_{X}\left(H(X) \Psi_{0}\right)=0 \Rightarrow$

$$
\Psi_{0}=\alpha_{1} \int_{0}^{X} \underbrace{\frac{d X}{X^{2} /(2 \pi)+1}}_{H(X)}+\beta_{1}=\alpha_{1} \tan ^{-1}(X / \sqrt{2 \pi})+\beta_{1}
$$

and similarly for the solution in the other 3 gaps.

+ "tilted" periodicity:

$$
\left(\alpha_{3}, \beta_{3}\right)=e^{-2 \pi p}\left(\alpha_{1}, \beta_{1}\right) \quad \text { and } \quad\left(\alpha_{4}, \beta_{4}\right)=e^{-2 \pi q}\left(\alpha_{2}, \beta_{2}\right)
$$

Dense limit: matched asymptotics (2)

Outer region: $x=O(1), y= \pm h(x)$ where $h(x)=x^{2} /(2 \pi)$
Leading-order outer solution satisfies $\partial_{x}\left(h(x) \psi_{0}\right)=0 \Rightarrow$

$$
\psi_{0} \sim \gamma_{1} x^{-1}+\delta_{1} \quad \text { as } \boldsymbol{x} \rightarrow \boldsymbol{x}_{1}
$$

and similarly for the other 3 gaps.

Dense limit: matched asymptotics (2)

Outer region: $x=O(1), y= \pm h(x)$ where $h(x)=x^{2} /(2 \pi)$
Leading-order outer solution satisfies $\partial_{x}\left(h(x) \psi_{0}\right)=0 \Rightarrow$

$$
\psi_{0} \sim \gamma_{1} x^{-1}+\delta_{1} \quad \text { as } \boldsymbol{x} \rightarrow \boldsymbol{x}_{1}
$$

and similarly for the other 3 gaps.
Canonical problem: $\nabla^{2} \psi^{*}=f \psi^{*}, \quad x^{2} \partial_{x} \psi^{*} \rightarrow 1 \quad$ as $\quad \boldsymbol{x} \rightarrow \boldsymbol{x}_{1}$

$$
\begin{gathered}
\psi^{*} \sim-x^{-1}-D_{1}(f) \quad \text { as } \boldsymbol{x} \rightarrow \boldsymbol{x}_{1} \\
\psi^{*} \sim-D_{i}(f) \quad \text { as } \boldsymbol{x} \rightarrow \boldsymbol{x}_{i} \text { for } i=2,3,4 \\
\psi_{0}=\gamma_{1} \psi^{*}+\gamma_{2} \mathcal{R}_{\pi / 2} \psi^{*}+\gamma_{3} \mathcal{R}_{\pi} \psi^{*}+\gamma_{4} \mathcal{R}_{3 \pi / 2} \psi^{*}
\end{gathered}
$$

Matching: Linear system, 12 unknowns \Rightarrow trans. equation $\Rightarrow f(\boldsymbol{q})$

Dense limit: matched asymptotics

Figure: Numerical results (thick solid lines), matched asymptotic approximation (thin solid lines) and discrete-network approximation (dashed-dotted).

- discrete network approximation as a limit of the matched asymptotic prediction
- analysis breaks down for $|\boldsymbol{x}| \gg t$ when

$$
\theta \propto \exp \left(-d^{2}(\boldsymbol{x}) / 4 t\right)
$$

where $d(\boldsymbol{x})$ is the distance along the shortest path $\approx L^{1}$.

Conclusions

- large deviations generalise scalar dispersion in arrays of obstacles.
- effective diffusion underestimates concentrations at large distances/short times from the point/time of release
- effect is strongest in the dense limit, when obstacles are nearly touching.
- explicit results capture anisotropic shape of the scalar patch.
- results relevant for chemical reactions e.g. FKPP.

$$
\begin{aligned}
\frac{\partial \theta}{\partial t} & =\nabla^{2} \theta+\alpha \theta(1-\theta) \\
0 & =\boldsymbol{n} \cdot \nabla \theta, \quad \boldsymbol{x} \text { on } \mathcal{B}
\end{aligned}
$$

The front speed is deduced from $g(c(\boldsymbol{e}) \boldsymbol{e})=\alpha$.
Farah, Loghin, Tzella \& Vanneste, Proc. Royal Soc., 2020
Thank you for your attention!

Conclusions

- large deviations generalise scalar dispersion in arrays of obstacles.
- effective diffusion underestimates concentrations at large distances/short times from the point/time of release
- effect is strongest in the dense limit, when obstacles are nearly touching.
- explicit results capture anisotropic shape of the scalar patch.
- results relevant for chemical reactions e.g. FKPP.

$$
\begin{aligned}
\frac{\partial \theta}{\partial t} & =\nabla^{2} \theta+\alpha \theta(1-\theta) \\
0 & =\boldsymbol{n} \cdot \nabla \theta, \quad \boldsymbol{x} \text { on } \mathcal{B}
\end{aligned}
$$

The front speed is deduced from $g(c(\boldsymbol{e}) \boldsymbol{e})=\alpha$.
Farah, Loghin, Tzella \& Vanneste, Proc. Royal Soc., 2020
Thank you for your attention!

