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Dispersion and mixing in media with obstacles
A multiscale problem with many science and engineering

applications
» contaminant transport in soils and aquifers

» drug delivery and nutrient transport in biological tissues

> filtration devices ...
Challenge due to advection+diffusion+geometry.
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Dispersion and mixing in media with obstacles
A multiscale problem with many science and engineering
applications
» contaminant transport in soils and aquifers
» drug delivery and nutrient transport in biological tissues
> filtration devices ...
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Dispersion and mixing in media with obstacles

For t > 1, a Gaussian approximation is used to describe how a
blob evolves:

O(x,t) = —l(x — Lerrt) K (x — Eefft)>

1
— eX
V2 Kegrt P < 4t

where 0(x, t) is the concentration and & and K are the mean
velocity and the effective diffusivity tensor.

MAXWELL 1873, RAYLEIGH 1892, TAYLOR 1953, ARIS 1956, BRENNER 1981

> captures dispersion for ||x — &t| = O(tY/?).

PAVLIOTIS AND STUART 2007

P do better, with large deviations eg. Tovcuerrs 2009:

0(x,t) < exp(—tg(x/t)).
HAYNES & VANNESTE 2014
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The basic problem: diffusion in the presence of obstacles
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Figure: An example of a medium with circular obstacles arranged in
square arrays (red).
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0=n-VH, xonB,

where n is the unit normal to the boundaries of the obstacle B.
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Macroscopic behaviour: large deviations

To capture both the Gaussian core and the tales, take the
two-scale form

O(x,t) ~ t 1p(x)e B where £ = % €ER?and x cw
A
2a

HAYNES AND VANNESTE 2014
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» rate function g captures dispersion for |x| = O(t)

» find g by solving a family of cell eigenvalue problems

5/18



Cell eigenvalue problem

Leading-order problem satisfies

Vi —2q-Vxé+q|*6 = f(q)s,
n-[Vxp— ¢q] =0, xonB

¢ periodic in  x.

where

q=Veg(§) and f(q)= sup (& q—g(&)).

» Principal eigenvalue determines the rate function g(x/t) by
taking a Legendre transform.
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Macroscopic behaviour: effective diffusion

» For |x| < t,

80x/1) ~ 3 (x/0) VeV g (O)(x/2) = i (x1/27, (1)

where ke is the effective diffusivity.

» Introducing (1) inside

0(x, t) < exp(—tg(x/t))

recovers Gaussian approximation for 6 obtained via
homogenisation.
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Effective diffusivity in the dilute limit

In periodic arrays kg was first computed using Rayleigh's
multipole method:
K}effN].—O', aso — 0

where o is the solid area fraction.
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Figure: Square vs hexagonal (red) lattice.

BRUNA AND CHAPMAN 2015

8/18



Effective diffusivity in the dense limit
Keller's total flux inside the nar-
row gaps between obstacles:

00

F = he(X)a,

where the gap width

1
he(x) = =x*>+e€ for e< 1.
T

Divide by h. and integrate:

F =alf, where a = /2¢/m3.

2\@71'2 2 (1/4— o)l/2
Feff ~ — a=ﬂ3/2(/1_a) , as o — /4.
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Circular obstacles in square lattices: rate function g(x/t)

dilute intermediate dense
1.

» dilute case: quadratic (Gaussian) approximation (white lines)
excellent for |x| = O(t)

» more generally: does not capture the anisotropic behaviour for

x| = O(t)
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Circular obstacles in square lattices: concentration 6(x/t)
a=m—001 a=m—0.001
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» tail concentrations much fatter than predicted by the effective
diffusion approximation

> discrepancy largest at earlier times and bigger radii
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Asymptotic analysis of the cell eigenvalue problem.

Let [¢) = e"9Y¢ | The eigenvalue problem becomes the modified
Helmholtz equation
Vit = f(q), (2a)
®
= g—lf onr=a (2b) w

ey  2m-periodic  (2c)
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Asymptotic analysis of the cell eigenvalue problem.
Let [¢) = e"9Y¢ | The eigenvalue problem becomes the modified
Helmholtz equation

Vi = f(aq)y, (22)
_ o _ ®
0= 5 onr=a (2b) w
ey  2m-periodic  (2c)
Dilute limit

» outer region: r = O(1), ¢ ~ e~ TY
» inner region: R =r/a= 0(1),

W~ 1 alg|((R +[ R cos(6 — a),

where g = |q|(cos a, sin «).
Multiply (1a) by e9Y and integrate:
F(q) ~ rerrlal® = g(x/t) ~ |x|?/(4resit)

= effective diffusion accurate for |x| ~ O(t)
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Dense limit: discrete network model

Use Keller's flux to build a discrete network model:

dem,n

JZ{dt

= a(9m+1,n + 9m,n+1 + em—l,n + 9m,n—1 - 4Hm,n)-

Taking Om.n ~ t~Lexp(—tgq(rmn/t)) yields

81(€) = > (S(5) + S(6m)

where S(x) = 1+ xsinh 1 x — /14 x2 and 8 = o7 /(4na).

13/18



Dense limit: discrete network model
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Figure: Rate function g against |£| = |x|/t for (left) ¢ = 0.01 and (right)
0.001 in the directions (1, 1) (black) and (1,0) (blue). Numerical results
(thick solid lines), quadratic (Gaussian) approximation (dashed lines) and

the network approximation (dashed-dotted).

» Captures part of the rate function and thus the tails
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Dense limit: matched asymptéotics (1)

4

Inner gap regions: X = x/y/e = O(1), Y = (y + m)/e ~ £H(X)

Leading-order inner solution satisfies

X

Ix(H(X)Wo) =0

=

U :Ozl/Xd——i-ﬁl :altan_l(X/\/Z)+61
0o X?/(2m)+1 ’

H(X)

and similarly for the solution in the other 3 gaps.

+ “tilted” periodicity:

(a3,83) = € 2™P(a1,B1) and (a4, Bs) = e ™ (ag, B2)
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Dense limit: matched asymptzotics (2)

A
Outer region: x = O(1), y = £h(x) where h(x) = x?/(27)

Leading-order outer solution satisfies

Po ~y1x T+ 0
and similarly for the other 3 gaps.

Ox(h(x)tho) = 0

as X — X1

=
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Dense limit: matched asymptzotics (2)

A
Outer region: x = O(1), y = £h(x) where h(x) = x?/(27)

Leading-order outer solution satisfies | Oy (h(x)1o) = 0| =
o ~yix P40 as x — x1
and similarly for the other 3 gaps.
Canonical problem: V2i* = fi)*,  x?0x* =1 as x — x;

Y* ~ —x"1 = Di(f) as x — x3

Y* ~ —Dj(f) asx —

x; for i =2,3,4

Yo = MY + 2R 2" + VRV + 1aRag 20"

Matching: Linear system, 12 unknowns = trans. equation = f(q)
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Dense limit: matched asymptotics
Rate function g
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Figure: Numerical results (thick solid lines), matched asymptotic
approximation (thin solid lines) and discrete-network approximation
(dashed-dotted).

> discrete network approximation as a limit of the matched
asymptotic prediction
» analysis breaks down for |x| > t when

6 o exp(—d?(x)/4t)

where d(x) is the distance along the shortest path ~ L. 17/18



Conclusions
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large deviations generalise scalar dispersion in arrays of
obstacles.

effective diffusion underestimates concentrations at large
distances/short times from the point/time of release

effect is strongest in the dense limit, when obstacles are nearly
touching.

explicit results capture anisotropic shape of the scalar patch.
results relevant for chemical reactions e.g. FKPP.

00

— =V%9+ab(1-6
ot + af( ),

0=n-V6O, xon3B,

The front speed is deduced from | g(c(e)e) = «|.

FARAH, LOGHIN, TZELLA & VANNESTE, Proc. Royal Soc., 2020
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9,
— = 0 0(1 -6
o V<0 + ab( )

0=n-V6O, xon3B,
The front speed is deduced from | g(c(e)e) = «|.
FARAH, LOGHIN, TZELLA & VANNESTE, Proc. Royal Soc., 2020

Thank you for your attention!
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