Diffusion in arrays of obstacles: beyond homogenisation

Alexandra Tzella

School of Mathematics, University of Birmingham

with Yahya Farah, Daniel Loghin (Birmingham) and Jacques Vanneste (Edinburgh)

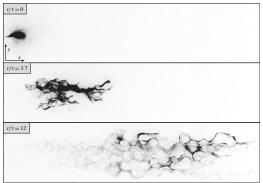
International Centre for Mathematical Sciences

Dispersion and mixing in media with obstacles

A multiscale problem with many science and engineering applications

- contaminant transport in soils and aquifers
- drug delivery and nutrient transport in biological tissues
- filtration devices ...

Challenge due to advection+diffusion+geometry.



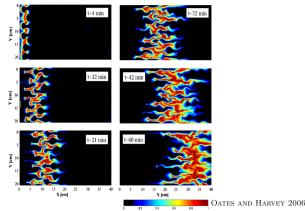
Souzy et al. 2020

Dispersion and mixing in media with obstacles

A multiscale problem with many science and engineering applications

- contaminant transport in soils and aquifers
- drug delivery and nutrient transport in biological tissues
- filtration devices ...

Challenge due to advection+diffusion+geometry.



Dispersion and mixing in media with obstacles

For $t \gg 1$, a Gaussian approximation is used to describe how a blob evolves:

$$\theta(\mathbf{x},t) \approx \frac{1}{\sqrt{2\pi}\mathsf{K}_{\mathsf{eff}}t} \exp\left(-\frac{1}{4t}(\mathbf{x}-\boldsymbol{\xi}_{\mathsf{eff}}t)^{\mathsf{T}}\mathsf{K}_{\mathsf{eff}}^{-1}(\mathbf{x}-\boldsymbol{\xi}_{\mathsf{eff}}t)\right)$$

where $\theta(\mathbf{x}, t)$ is the concentration and ξ_{eff} and K_{eff} are the mean velocity and the effective diffusivity tensor.

MAXWELL 1873, RAYLEIGH 1892, TAYLOR 1953, ARIS 1956, BRENNER 1981

• captures dispersion for
$$\|\boldsymbol{x} - \boldsymbol{\xi}_{\text{eff}} t\| = O(t^{1/2}).$$

PAVLIOTIS AND STUART 2007

► do better, with large deviations e.g. TOUCHETTE 2009:

$$\theta(\mathbf{x},t) \asymp \exp(-tg(\mathbf{x}/t)).$$

Haynes & Vanneste 2014

The basic problem: diffusion in the presence of obstacles

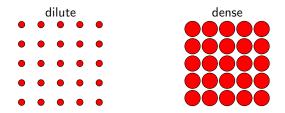


Figure: An example of a medium with circular obstacles arranged in square arrays (red).

$$\begin{aligned} \frac{\partial \theta}{\partial t} &= \nabla^2 \theta, \\ 0 &= \boldsymbol{n} \cdot \nabla \theta, \quad \boldsymbol{x} \text{ on } \mathcal{B}, \end{aligned}$$

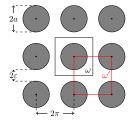
where \boldsymbol{n} is the unit normal to the boundaries of the obstacle \mathcal{B} .

Macroscopic behaviour: large deviations

To capture both the Gaussian core and the tales, take the two-scale form

 $heta(\mathbf{x},t) \sim t^{-1}\phi(\mathbf{x})e^{-tg(\boldsymbol{\xi})}, \quad ext{where } \boldsymbol{\xi} = rac{\mathbf{x}}{t} \in \mathbb{R}^2 ext{ and } \mathbf{x} \in \omega$

Haynes and Vanneste 2014



rate function g captures dispersion for |x| = O(t)
 find g by solving a family of cell eigenvalue problems

Cell eigenvalue problem

Leading-order problem satisfies

$$\nabla_{\mathbf{x}}^{2}\phi - 2\mathbf{q} \cdot \nabla_{\mathbf{x}}\phi + |\mathbf{q}|^{2}\phi = f(\mathbf{q})\phi,$$
$$\mathbf{n} \cdot [\nabla_{\mathbf{x}}\phi - \phi\mathbf{q}] = 0, \qquad \mathbf{x} \text{ on } \mathcal{B}$$
$$\phi \quad \text{periodic in } \mathbf{x}.$$

where

$$oldsymbol{q} =
abla_{oldsymbol{\xi}} g(oldsymbol{\xi}) \quad ext{and} \quad f(oldsymbol{q}) = \sup_{oldsymbol{\xi}} (oldsymbol{\xi} \cdot oldsymbol{q} - g(oldsymbol{\xi})).$$

Principal eigenvalue determines the rate function g(x/t) by taking a Legendre transform.

Macroscopic behaviour: effective diffusion

For
$$|\mathbf{x}| \ll t$$
,
 $g(\mathbf{x}/t) \sim \frac{1}{2} (\mathbf{x}/t)^T \nabla_{\mathbf{x}/t} \nabla_{\mathbf{x}/t} g(0)(\mathbf{x}/t) = \frac{1}{4} \kappa_{\text{eff}}^{-1} (|\mathbf{x}|/t)^2$, (1)

where $\kappa_{\rm eff}$ is the effective diffusivity.

Introducing (1) inside

$$\theta(\mathbf{x}, t) \asymp \exp(-tg(\mathbf{x}/t))$$

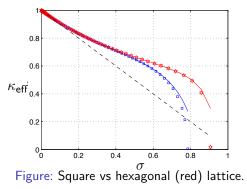
recovers Gaussian approximation for $\boldsymbol{\theta}$ obtained via homogenisation.

Effective diffusivity in the dilute limit

In periodic arrays κ_{eff} was first computed using Rayleigh's multipole method:

$$\kappa_{\mathsf{eff}} \sim 1 - \sigma, \quad \mathsf{as} \ \sigma o \mathsf{0}$$

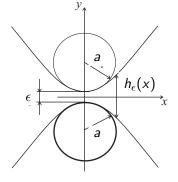
where σ is the solid area fraction.



Bruna and Chapman 2015

Effective diffusivity in the dense limit

Keller's total flux inside the narrow gaps between obstacles:



$$F = h_{\epsilon}(x) \frac{\partial \theta}{\partial x},$$

where the gap width

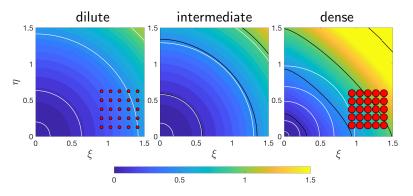
$$h_\epsilon(x)pprox rac{1}{\pi}x^2+\epsilon \quad ext{for} \quad \epsilon\ll 1.$$

Divide by h_{ϵ} and integrate:

$${\cal F}=lpha\Delta heta, ~~$$
 where $lpha=\sqrt{2\epsilon/\pi^3}.$

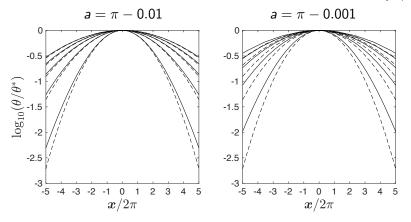
$$\kappa_{\mathrm{eff}}\sim rac{2\sqrt{2}\pi^2}{\mathscr{A}}lpha=rac{2}{\pi^{3/2}}rac{(\pi/4-\sigma)^{1/2}}{1-\sigma}, \quad \mathrm{as} \; \sigma
ightarrow \pi/4.$$

Circular obstacles in square lattices: rate function g(x/t)



- dilute case: quadratic (Gaussian) approximation (white lines) excellent for |x| = O(t)
- more generally: does not capture the anisotropic behaviour for $|\mathbf{x}| = O(t)$

Circular obstacles in square lattices: concentration $\theta(x/t)$



- tail concentrations much fatter than predicted by the effective diffusion approximation
- discrepancy largest at earlier times and bigger radii

Asymptotic analysis of the cell eigenvalue problem.

Let $\psi = e^{-q \cdot y} \phi$. The eigenvalue problem becomes the modified Helmholtz equation

$$\nabla_{\mathbf{y}}^{2}\psi = f(\mathbf{q})\psi, \qquad (2a)$$
$$0 = \frac{\partial\psi}{\partial r} \quad \text{on } r = a \quad (2b)$$
$$\psi e^{\mathbf{q}\cdot\mathbf{y}} \quad 2\pi \text{-periodic} \quad (2c)$$

Dilute limit

$$\Psi \sim 1 - a |\boldsymbol{q}|((R + R^{-1})\cos(\theta - \alpha)))$$

where $\boldsymbol{q} = |\boldsymbol{q}|(\cos \alpha, \sin \alpha)$. Multiply (1a) by $e^{\boldsymbol{q} \cdot \boldsymbol{y}}$ and integrate:

$$f(oldsymbol{q})\sim\kappa_{
m eff}|oldsymbol{q}|^2\Rightarrow g(oldsymbol{x}/t)\sim|oldsymbol{x}|^2/(4\kappa_{
m eff}t)$$

 \Rightarrow effective diffusion accurate for $|m{x}| \sim O(t)$

Asymptotic analysis of the cell eigenvalue problem.

Let $\psi = e^{-q \cdot y} \phi$. The eigenvalue problem becomes the modified Helmholtz equation

$$\nabla_{\mathbf{y}}^{2}\psi = f(\mathbf{q})\psi, \qquad (2a)$$
$$0 = \frac{\partial\psi}{\partial r} \quad \text{on } r = a \quad (2b)$$
$$\psi e^{\mathbf{q}\cdot\mathbf{y}} \quad 2\pi \text{-periodic} \quad (2c)$$

Dilute limit

where $\boldsymbol{q} = |\boldsymbol{q}|(\cos \alpha, \sin \alpha)$. Multiply (1a) by $e^{\boldsymbol{q} \cdot \boldsymbol{y}}$ and integrate:

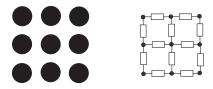
$$f(oldsymbol{q})\sim\kappa_{
m eff}|oldsymbol{q}|^2\Rightarrow g(oldsymbol{x}/t)\sim|oldsymbol{x}|^2/(4\kappa_{
m eff}t)$$

 \Rightarrow effective diffusion accurate for $|m{x}| \sim O(t)$

Dense limit: discrete network model

Use Keller's flux to build a discrete network model:

$$\mathscr{A}\frac{d\theta_{m,n}}{dt} = \alpha(\theta_{m+1,n} + \theta_{m,n+1} + \theta_{m-1,n} + \theta_{m,n-1} - 4\theta_{m,n}).$$



Taking $heta_{m,n} \sim t^{-1} \exp(-tg_{\mathrm{d}}(\textbf{\textit{r}}_{m,n}/t))$ yields

$$g_{\mathrm{d}}(\boldsymbol{\xi}) = rac{2lpha}{\mathscr{A}} \left(\mathsf{S}(eta \xi) + \mathsf{S}(eta \eta)
ight),$$

where $S(x) = 1 + x \sinh^{-1} x - \sqrt{1 + x^2}$ and $\beta = \mathscr{A}/(4\pi\alpha)$.

Dense limit: discrete network model

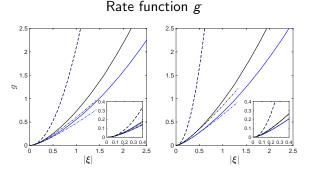
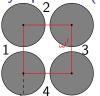


Figure: Rate function g against $|\boldsymbol{\xi}| = |\boldsymbol{x}|/t$ for (left) $\epsilon = 0.01$ and (right) 0.001 in the directions (1, 1) (black) and (1, 0) (blue). Numerical results (thick solid lines), quadratic (Gaussian) approximation (dashed lines) and the network approximation (dashed-dotted).

Captures part of the rate function and thus the tails

Dense limit: matched asymptotics (1)



Inner gap regions: $X = x/\sqrt{\epsilon} = O(1)$, $Y = (y + \pi)/\epsilon \sim \pm H(X)$

Leading-order inner solution satisfies $\partial_X(H(X)\Psi_0) = 0 \Rightarrow$

$$\Psi_0 = \alpha_1 \int_0^X \underbrace{\frac{dX}{X^2/(2\pi)+1}}_{H(X)} + \beta_1 = \alpha_1 \tan^{-1}(X/\sqrt{2\pi}) + \beta_1,$$

and similarly for the solution in the other 3 gaps. + "tilted" periodicity:

$$(\alpha_3, \beta_3) = e^{-2\pi p}(\alpha_1, \beta_1)$$
 and $(\alpha_4, \beta_4) = e^{-2\pi q}(\alpha_2, \beta_2)$

Dense limit: matched asymptotics (2)

Outer region: x = O(1), $y = \pm h(x)$ where $h(x) = x^2/(2\pi)$

Leading-order outer solution satisfies $\partial_x(h(x)\psi_0) = 0 \Rightarrow$

$$\psi_0 \sim \gamma_1 x^{-1} + \delta_1$$
 as $\pmb{x}
ightarrow \pmb{x}_1$

and similarly for the other 3 gaps.

Canonical problem: $abla^2\psi^*=f\psi^*, \quad x^2\partial_x\psi^* o 1 \quad \text{as} \quad \pmb{x} o \pmb{x}_1$

$$\psi^* \sim -x^{-1} - D_1(f)$$
 as $\mathbf{x} \to \mathbf{x}_1$
 $\psi^* \sim -D_i(f)$ as $\mathbf{x} \to \mathbf{x}_i$ for $i = 2, 3, 4$
 $\psi_0 = \gamma_1 \psi^* + \gamma_2 \Re_{\pi/2} \psi^* + \gamma_3 \Re_{\pi} \psi^* + \gamma_4 \Re_{3\pi/2} \psi^*$

Matching: Linear system, 12 unknowns \Rightarrow trans. equation $\Rightarrow f(q)_{16/18}$

Dense limit: matched asymptotics (2)

Outer region: x = O(1), $y = \pm h(x)$ where $h(x) = x^2/(2\pi)$

Leading-order outer solution satisfies $\partial_x(h(x)\psi_0) = 0 \Rightarrow$

$$\psi_0 \sim \gamma_1 x^{-1} + \delta_1$$
 as $\pmb{x} \to \pmb{x}_1$

and similarly for the other 3 gaps.

Canonical problem: $abla^2\psi^*=f\psi^*, \quad x^2\partial_x\psi^* o 1 \quad \text{as} \quad \pmb{x} o \pmb{x}_1$

$$\psi^* \sim -x^{-1} - D_1(f) \text{ as } \mathbf{x} \to \mathbf{x}_1$$

$$\psi^* \sim -D_i(f) \text{ as } \mathbf{x} \to \mathbf{x}_i \text{ for } i = 2, 3, 4$$

$$\psi_0 = \gamma_1 \psi^* + \gamma_2 \mathcal{R}_{\pi/2} \psi^* + \gamma_3 \mathcal{R}_{\pi} \psi^* + \gamma_4 \mathcal{R}_{3\pi/2} \psi^*$$

Matching: Linear system, 12 unknowns \Rightarrow trans. equation $\Rightarrow f(\mathbf{q})_{16/18}$

Dense limit: matched asymptotics

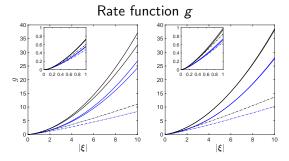


Figure: Numerical results (thick solid lines), matched asymptotic approximation (thin solid lines) and discrete-network approximation (dashed-dotted).

- discrete network approximation as a limit of the matched asymptotic prediction
- analysis breaks down for $|\mathbf{x}| \gg t$ when

$$heta \propto \exp(-d^2(\pmb{x})/4t)$$

where $d(\mathbf{x})$ is the distance along the shortest path $\approx L^1$.

Conclusions

- large deviations generalise scalar dispersion in arrays of obstacles.
- effective diffusion underestimates concentrations at large distances/short times from the point/time of release
- effect is strongest in the dense limit, when obstacles are nearly touching.
- explicit results capture anisotropic shape of the scalar patch.
- results relevant for chemical reactions e.g. FKPP.

$$\frac{\partial \theta}{\partial t} = \nabla^2 \theta + \alpha \theta (1 - \theta),$$

$$0 = \mathbf{n} \cdot \nabla \theta, \quad \mathbf{x} \text{ on } \mathcal{B},$$

The front speed is deduced from $g(c(e)e) = \alpha$.

FARAH, LOGHIN, TZELLA & VANNESTE, Proc. Royal Soc., 2020

Thank you for your attention!

Conclusions

- large deviations generalise scalar dispersion in arrays of obstacles.
- effective diffusion underestimates concentrations at large distances/short times from the point/time of release
- effect is strongest in the dense limit, when obstacles are nearly touching.
- explicit results capture anisotropic shape of the scalar patch.
- results relevant for chemical reactions e.g. FKPP.

$$\frac{\partial \theta}{\partial t} = \nabla^2 \theta + \alpha \theta (1 - \theta),$$

$$0 = \mathbf{n} \cdot \nabla \theta, \quad \mathbf{x} \text{ on } \mathcal{B},$$

The front speed is deduced from $g(c(e)e) = \alpha$.

FARAH, LOGHIN, TZELLA & VANNESTE, Proc. Royal Soc., 2020

Thank you for your attention!