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What shape of a bounded 2 C R™ admits the solvability of ODP?

@ Rigidity: g=0 = Q= B?

@ Stability: g~0 = Q ~ B?

v
Variational Structure ‘

ODP is the Euler-Lagrange equation of maximizing

u dx)?
Qs T(Q) = sup (fﬂiz)
u€HE(2)\{0} fg |Vul? dz

under the volume constraint |Q2| = const. for g = 0.
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A(a—u) =0 in Qy, Xo
{ a4 —u >0 on 9N,
implying 0 > 8, (@t — u)(xo) = 0, a contradiction.
_ (aw)?

@ Weinberger ('71): Integral Identity with d(u) = |D?ul|? o

du)=0 <& D*u=A & u= %lm—£|2+C’ifVu(£):0.
AP =d(u) >0 in€,
P = const. on 99Q.

= Either or P < const. = 0= AP = d(u).

2
u .
———— 4+ — satisfies {
n
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Domain deviation p € C(9B):
OB1+p, = {(1+p(¢))¢ | ¢ € 0B}

Neumann deviation:

du, 1 {—Aup =1 in Bigp,

— — with
n up =0 on dBi4p.

@ Magnanini, Poggesi ('19 — '23): Integral Identity with d(u)
=z — ¢
2n

1 du,\?| 8h
D?h|?de = = / 2 — 2 o
/Q doa|D"h|” dx 2 g {c o0 a0 do

= VR 2/t ey < CllgllZom)

h =u, satisfies

2/6n 2/6,,
= (oseh)" " ~ 1032 < Cligliizoms

@ Gilsbach and O. ('21) and O. ('22): Implicit Function Theorem

“lplloate < Cllgllorse”  (Main result) .
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Due to translational invariance of ODP, we set
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h (8B) = C>~(8B)
= (@1,...,2n) ®HYT*(OB),

where R (8B) is the L2-orthogonal complement of K = (x1,...,®x).
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Due to translational invariance of ODP, we set
ket _ _ckte
h (0B) = C>~(8B)
= (@1,...,2n) ®HYT*(OB),
where R (8B) is the L2-orthogonal complement of K = (x1,...,®x).

Theorem (Existence)

There exist €,8 > 0 such that, for any g1 € hi"’o‘ with ||g1||p3+a < 0,
there is a unique (p, g2) € h®T* x K with ||p||ps+« + |lg2]|x < € s:t.

@ ODP with g = g1 + g2 is solvable in Q = Bi,;
@ The barycenter of By, is the origin.

Theorem (Stability)

Moreover, there is a constant C > 0 such that

||P||h2+a(aB) + llg2llx < C||91||h1+a(aB)-
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Our problem is equivalent to finding a zero point p € h*+*(8B) of

« |0 1 a
F(o.9) =05 | 322] + L+ g € nt=(0B),

—Au, =1 inB
u, € h*T*(B1y,) : solution to i Lo
up, =0 on 8Bi4p,

0} € Isom (h'T*(8B14,), h"T*(8B)) : pull-back operator.
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@ F(p,g) =0 < ODP is solvable in 2 = Bi,.

2
e F(0,0) =8, (ﬂ) +Ll o

2n n
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e Fc C(h2-|—a % hl-l—a’hl—}—a) n Cl(h3+a % h1+a’h1+a).
Q@ 09,F(0,0)[p)] =Hop-p+p—p= %(N_ np

" Ap=0 in B, N : Dirichlet-to-Neumann map.
wi
p=—0,up-p ondB,

— Kerd,F(0,0) = K, Ranged,F(0,0) = h' T
@ 9,F € C(h*"™ x h'te, L(h*T>, h'*™)) (Extended operator).
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if F € C(h3T™ x h?t h2T) is differentiable at (0,0) and g € h?T<.
Now the limit p = lim p; € h®t* satisfies F((p,g) = 0 in h**=,

u<<1.

In fact, if g € R, then the solution p = p(g) € h®** is unique and
lollp2+e = |2(P) [ln2+e < ||B(P) — B(0)|[p2+e + [[2(0)||f2+e

1 -1
< Slipllnzte +1185F(0,0) ™ | £(prte 2o gl e
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Summary

@ Existence & (local) uniqueness:
3+ 3+a
g1 €T — (p,g2) €T X K.
@ Optimal stability estimate:

@ The same argument applies to other overdetermined problems.
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