Linear stability analysis of overdetermined problems

Michiaki Onodera (Tokyo Institute of Technology)

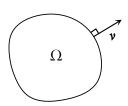
Shape Optimisation and Geometric Spectral Theory ICMS, Edinburgh September 20–23, 2022

- Introduction
 - Serrin's overdetermined problem
 - Previous Studies

- Result and Proof
 - Main result
 - Proof

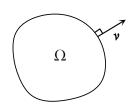
Introduction

ODP
$$\begin{cases} -\Delta u = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ -\frac{\partial u}{\partial \nu} = \frac{1}{n} & \text{on } \partial \Omega. \end{cases}$$



$$egin{aligned} egin{aligned} -\Delta u &= 1 & & ext{in} \quad \Omega, \ u &= 0 & & ext{on} \ \partial \Omega, \ -rac{\partial u}{\partial
u} &= rac{1}{n} + oldsymbol{g}\left(rac{x}{|x|}
ight) & ext{on} \ \partial \Omega. & & (oldsymbol{g}:\partial B
ightarrow \mathbb{R}) \end{aligned}$$

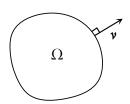
Question What shape of a bounded $\Omega \subset \mathbb{R}^n$ admits the solvability of ODP?



$$egin{aligned} egin{aligned} -\Delta u &= 1 & & ext{in } & \Omega, \ u &= 0 & & ext{on } \partial \Omega, \ -rac{\partial u}{\partial
u} &= rac{1}{n} + oldsymbol{g}\left(rac{oldsymbol{x}}{|oldsymbol{x}|}
ight) & ext{on } \partial \Omega. & & (oldsymbol{g}: \partial B
ightarrow \mathbb{R}) \end{aligned}$$

Question What shape of a bounded $\Omega \subset \mathbb{R}^n$ admits the solvability of ODP?

- Rigidity: $g = 0 \Rightarrow \Omega = B$?
- Stability: $g \sim 0 \Rightarrow \Omega \sim B$?



$$egin{aligned} egin{aligned} -\Delta u &= 1 & & ext{in} \quad \Omega, \ u &= 0 & & ext{on} \ \partial \Omega, \ -rac{\partial u}{\partial
u} &= rac{1}{n} + g\left(rac{x}{|x|}
ight) & ext{on} \ \partial \Omega. & & (g:\partial B
ightarrow \mathbb{R}) \end{aligned}$$

Question What shape of a bounded $\Omega \subset \mathbb{R}^n$ admits the solvability of ODP?

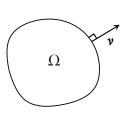
- Rigidity: $g = 0 \Rightarrow \Omega = B$?
- Stability: $g \sim 0 \Rightarrow \Omega \sim B$?

Variational Structure

ODP is the Euler-Lagrange equation of maximizing

$$\Omega \mapsto T(\Omega) = \sup_{u \in H^1_0(\Omega) \setminus \{0\}} \frac{(\int_\Omega u \, dx)^2}{\int_\Omega |\nabla u|^2 \, dx}$$

under the volume constraint $|\Omega| = \text{const.}$ for g = 0.



• Polya ('48): Rearrangement

$$T(\Omega) = rac{(\int_\Omega u \, dx)^2}{\int_\Omega |
abla u|^2 \, dx} \leq rac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |
abla u^*|^2 \, dx} \leq T(\Omega^*).$$

• Polya ('48): Rearrangement

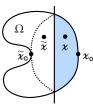
$$T(\Omega) = rac{(\int_\Omega u \, dx)^2}{\int_\Omega |
abla u|^2 \, dx} \leq rac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |
abla u^*|^2 \, dx} \leq T(\Omega^*).$$

Serrin ('71): Moving Plane Method

If Ω is not symmetric, $ilde{u}(x)=u(ilde{x})$ satisfies

$$\left\{egin{aligned} \Delta(ilde{u}-u) &= 0 & ext{in } \Omega_{\lambda}, \ ilde{u}-u &\geq 0 & ext{on } \partial\Omega_{\lambda}, \end{aligned}
ight.$$

implying $0 > \partial_{\nu}(\tilde{u} - u)(x_0) = 0$, a contradiction.



Polya ('48): Rearrangement

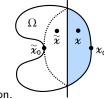
$$T(\Omega) = rac{(\int_\Omega u \, dx)^2}{\int_\Omega |
abla u|^2 \, dx} \leq rac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |
abla u^*|^2 \, dx} \leq T(\Omega^*).$$

• Serrin ('71): Moving Plane Method

If
$$\Omega$$
 is not symmetric, $ilde{u}(x)=u(ilde{x})$ satisfies

$$\left\{egin{aligned} \Delta(ilde{u}-u) &= 0 & ext{in } \Omega_{\lambda}, \ ilde{u}-u &\geq 0 & ext{on } \partial\Omega_{\lambda}, \end{aligned}
ight.$$

implying $0>\partial_{
u}(\tilde{u}-u)(x_0)=0$, a contradiction.



• Weinberger ('71): Integral Identity with $d(u) = |D^2 u|^2 - \frac{(\Delta u)^2}{n}$ $d(u) \equiv 0 \Leftrightarrow D^2 u = \lambda I \Leftrightarrow u = \frac{\lambda}{2}|x - \xi|^2 + C \text{ if } \nabla u(\xi) = 0.$

$$\begin{split} P(u) := \frac{|\nabla u|^2}{2} + \frac{u}{n} \quad \text{satisfies} \quad & \begin{cases} \Delta P = d(u) \geq 0 & \text{in } \Omega, \\ P = \text{const.} & \text{on } \partial \Omega. \end{cases} \\ \Rightarrow \quad & \text{Either } \boxed{P \equiv \text{const.}} \quad \text{or } P < \text{const.} \quad \Rightarrow \quad 0 = \Delta P = d(u). \end{split}$$

• Polya ('48): Rearrangement

$$T(\Omega) = \frac{(\int_\Omega u \, dx)^2}{\int_\Omega |\nabla u|^2 \, dx} \leq \frac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |\nabla u^*|^2 \, dx} \leq T(\Omega^*).$$

• Serrin ('71): Moving Plane Method

If Ω is not symmetric, $\tilde{u}(x) = u(\tilde{x})$ satisfies

$$\left\{egin{aligned} \Delta(ilde{u}-u) &= 0 & ext{in } \Omega_{\lambda}, \ ilde{u}-u &\geq 0 & ext{on } \partial\Omega_{\lambda}, \end{aligned}
ight.$$

implying $0 > \partial_{\nu}(\tilde{u} - u)(x_0) = 0$, a contradiction.

- Weinberger ('71): Integral Identity with $d(u) = |D^2 u|^2 \frac{(\Delta u)^2}{n}$
- Payne, Schaefer ('89): Dual Formulation (Quadrature Identity)

• Polya ('48): Rearrangement

$$T(\Omega) = \frac{(\int_\Omega u \, dx)^2}{\int_\Omega |\nabla u|^2 \, dx} \leq \frac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |\nabla u^*|^2 \, dx} \leq T(\Omega^*).$$

• Serrin ('71): Moving Plane Method

If Ω is not symmetric, $\tilde{u}(x) = u(\tilde{x})$ satisfies

$$egin{cases} \Delta(ilde{u}-u)=0 & ext{in } \Omega_{\lambda}, \ ilde{u}-u\geq 0 & ext{on } \partial\Omega_{\lambda}, \end{cases}$$

implying $0>\partial_{
u}(\tilde{u}-u)(x_0)=0$, a contradiction.

- Weinberger ('71): Integral Identity with $d(u) = |D^2 u|^2 \frac{(\Delta u)^2}{n}$
- Payne, Schaefer ('89): Dual Formulation (Quadrature Identity)
- Brock, Henrot ('02): Continuous Steiner Symmetrization

• Polya ('48): Rearrangement

$$T(\Omega) = \frac{(\int_\Omega u \, dx)^2}{\int_\Omega |\nabla u|^2 \, dx} \leq \frac{(\int_{\Omega^*} u^* \, dx)^2}{\int_{\Omega^*} |\nabla u^*|^2 \, dx} \leq T(\Omega^*).$$

• Serrin ('71): Moving Plane Method

If Ω is not symmetric, $\tilde{u}(x) = u(\tilde{x})$ satisfies

$$\left\{egin{aligned} \Delta(ilde{u}-u) &= 0 & ext{in } \Omega_{\lambda}, \ ilde{u}-u &\geq 0 & ext{on } \partial\Omega_{\lambda}, \end{aligned}
ight.$$

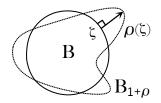
implying $0>\partial_{
u}(ilde{u}-u)(x_0)=0$, a contradiction.

- Weinberger ('71): Integral Identity with $d(u) = |D^2 u|^2 \frac{(\Delta u)^2}{n}$
- Payne, Schaefer ('89): Dual Formulation (Quadrature Identity)
- Brock, Henrot ('02): Continuous Steiner Symmetrization
- Brandolini, Nitsch, Salani, Trombetti ('08): Newton Inequalities

.....

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$



.....

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $egin{cases} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{cases}$

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_{
ho}}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{ll} -\Delta u_{
ho}=1 & ext{in } B_{1+
ho}, \ u_{
ho}=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

• Aftalion, Busca, Reichel ('99): Quantitative MPM

$$\|
ho\|_{L^\infty} \leq C \left|\log \|g\|_{C^1(\partial B_{1+
ho})}
ight|^{-1/n}$$
 (up to translation)

В

Previous Studies (Stability)

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{cccc} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

• Aftalion, Busca, Reichel ('99): Quantitative MPM

$$\|
ho\|_{L^\infty} \leq C \left|\log \|g\|_{C^1(\partial B_{1+
ho})}
ight|^{-1/n}$$
 (up to translation)

Brandolini, Nitsch, Salani, Trombetti ('08): Newton Inequalities

$$\|\rho\|_{L^{\infty}} \le C \|g\|_{L^{2}}^{\theta} \quad (0 < \theta = \theta_{n} < 1)$$

 $\|\rho\|_{L^{1}} \le C \|g\|_{L^{2}}^{\theta} \quad (\theta = 1 \text{ by Feldman ('18)})$

В

Previous Studies (Stability)

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{cccc} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

• Aftalion, Busca, Reichel ('99): Quantitative MPM

$$\|
ho\|_{L^\infty} \leq C \left|\log \|g\|_{C^1(\partial B_{1+
ho})}
ight|^{-1/n}$$
 (up to translation)

• Brandolini, Nitsch, Salani, Trombetti ('08): Newton Inequalities

$$\|\rho\|_{L^{\infty}} \le C \|g\|_{L^{2}}^{\theta} \quad (0 < \theta = \theta_{n} < 1)$$

 $\|\rho\|_{L^{1}} \le C \|g\|_{L^{2}}^{\theta} \quad (\theta = 1 \text{ by Feldman ('18)})$

• Ciraolo, Magnanini, Vespri ('16): Quantitative Harnack inequality \longrightarrow Improvement of θ_n .

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+
ho} = \{(1+
ho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{ll} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

$$\|\rho\|_{L^\infty}^{2/\theta_n} \le C\|g\|_{L^2(\partial\Omega)}^2,$$
 where $\theta_2=1$, $\theta_3=1-arepsilon$, $\theta_n=4/(n+1)$ $(n\ge 4)$.

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{cccc} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

$$h=u_
ho-rac{r^2-|x-\xi|^2}{2n}$$
 satisfies $\int_\Omega d_{\partial\Omega} ig|D^2 hig|^2 \, dx =rac{1}{2}\int_{\partial\Omega} \left\{c^2-\left(rac{\partial u_
ho}{\partial
u}
ight)^2
ight\}rac{\partial h}{\partial
u} \, d\sigma$

$$\|\rho\|_{L^{\infty}}^{2/\theta_n} \le C\|g\|_{L^2(\partial\Omega)}^2,$$

where
$$\theta_2=1$$
, $\theta_3=1-arepsilon$, $\theta_n=4/(n+1)$ $(n\geq 4)$.

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+
ho} = \{(1+
ho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{ll} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

where $\theta_2=1$, $\theta_3=1-\varepsilon$, $\theta_n=4/(n+1)$ $(n\geq 4)$.

$$\begin{split} h &= u_\rho - \frac{r^2 - |x - \xi|^2}{2n} \text{ satisfies} \\ & \int_{\Omega} d_{\partial\Omega} |\textbf{\textit{D}}^2 \textbf{\textit{h}}|^2 \, dx = \frac{1}{2} \int_{\partial\Omega} \left\{ c^2 - \left(\frac{\partial u_\rho}{\partial \nu} \right)^2 \right\} \frac{\partial \textbf{\textit{h}}}{\partial \nu} \, d\sigma \\ & \to \quad \|\nabla \textbf{\textit{h}}\|_{L^{2n/(n-1)}(\Omega)}^2 \leq C \|g\|_{L^2(\partial\Omega)}^2 \\ & \|\rho\|_{L^\infty}^{2/\theta_n} \leq C \|g\|_{L^2(\partial\Omega)}^2, \end{split}$$

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+
ho} = \{(1+
ho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{ll} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

• Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

$$\begin{split} h &= u_\rho - \frac{r^2 - |x - \xi|^2}{2n} \text{ satisfies} \\ & \int_{\Omega} d_{\partial\Omega} \big| \boldsymbol{D}^2 \boldsymbol{h} \big|^2 \, dx = \frac{1}{2} \int_{\partial\Omega} \left\{ c^2 - \left(\frac{\partial u_\rho}{\partial \nu} \right)^2 \right\} \frac{\partial \boldsymbol{h}}{\partial \nu} \, d\sigma \\ & \to \quad \| \nabla \boldsymbol{h} \|_{L^{2n/(n-1)}(\Omega)}^2 \leq C \| \boldsymbol{g} \|_{L^2(\partial\Omega)}^2 \\ & \to \quad \left(\underset{\partial\Omega}{\text{osc }} \boldsymbol{h} \right)^{2/\theta_n} \sim \| \rho \|_{L^\infty}^{2/\theta_n} \leq C \| \boldsymbol{g} \|_{L^2(\partial\Omega)}^2, \end{split}$$
 where $\theta_2 = 1$, $\theta_3 = 1 - \varepsilon$, $\theta_n = 4/(n+1)$ $(n \geq 4)$.

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+\rho} = \{(1+\rho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{cccc} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

• Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

$$\begin{split} h &= u_{\rho} - \frac{r^2 - |x - \xi|^2}{2n} \text{ satisfies} \\ & \int_{\Omega} d_{\partial\Omega} |\textbf{\textit{D}}^2 \textbf{\textit{h}}|^2 \, dx = \frac{1}{2} \int_{\partial\Omega} \left\{ c^2 - \left(\frac{\partial u_{\rho}}{\partial \nu} \right)^2 \right\} \frac{\partial \textbf{\textit{h}}}{\partial \nu} \, d\sigma \\ & \to \quad \|\nabla \textbf{\textit{h}}\|_{L^{2n/(n-1)}(\Omega)}^2 \leq C \|g\|_{L^2(\partial\Omega)}^2 \\ & \to \quad \left(\underset{\partial\Omega}{\text{osc }} \textbf{\textit{h}} \right)^{2/\theta_n} \sim \|\rho\|_{L^\infty}^{2/\theta_n} \leq C \|g\|_{L^2(\partial\Omega)}^2, \end{split}$$

Domain deviation $ho \in C(\partial B)$:

$$\partial B_{1+
ho} = \{(1+
ho(\zeta))\zeta \mid \zeta \in \partial B\}$$

Neumann deviation:

$$g=-rac{\partial u_
ho}{\partial
u}-rac{1}{n}$$
 with $\left\{egin{array}{ll} -\Delta u_
ho=1 & ext{in } B_{1+
ho}, \ u_
ho=0 & ext{on } \partial B_{1+
ho}. \end{array}
ight.$

Magnanini, Poggesi ('19 - '23): Integral Identity with d(u)

$$\begin{split} h &= u_\rho - \frac{r^2 - |x - \xi|^2}{2n} \text{ satisfies} \\ & \int_{\Omega} d_{\partial\Omega} | \underline{D}^2 h |^2 \, dx = \frac{1}{2} \int_{\partial\Omega} \left\{ c^2 - \left(\frac{\partial u_\rho}{\partial \nu} \right)^2 \right\} \frac{\partial h}{\partial \nu} \, d\sigma \\ & \to \quad \| \nabla h \|_{L^{2n/(n-1)}(\Omega)}^2 \leq C \| g \|_{L^2(\partial\Omega)}^2 \\ & \to \quad \left(\underset{\partial\Omega}{\text{osc }} h \right)^{2/\theta_n} \sim \| \rho \|_{L^\infty}^{2/\theta_n} \leq C \| g \|_{L^2(\partial\Omega)}^2, \end{split}$$

Gilsbach and O. ('21) and O. ('22): Implicit Function Theorem

"
$$\|\rho\|_{C^{2+\alpha}} < C\|g\|_{C^{1+\alpha}}$$
" (Main result)

Result and Proof

Main result: Existence & Optimal stability

Due to translational invariance of ODP, we set

$$h^{k+\alpha}(\partial B) = \overline{C^{\infty}(\partial B)}^{C^{k+\alpha}}$$
$$= \langle x_1, \dots, x_n \rangle \oplus h_{\perp}^{k+\alpha}(\partial B),$$

where $h_{\perp}^{k+lpha}(\partial B)$ is the L^2 -orthogonal complement of $K=\langle x_1,\ldots,x_n
angle$.

Main result: Existence & Optimal stability

Due to translational invariance of ODP, we set

$$h^{k+lpha}(\partial B) = \overline{C^{\infty}(\partial B)}^{C^{k+lpha}}$$

= $\langle x_1, \dots, x_n \rangle \oplus h_{\perp}^{k+lpha}(\partial B),$

where $h_{\perp}^{k+lpha}(\partial B)$ is the L^2 -orthogonal complement of $K=\langle x_1,\ldots,x_n
angle$.

Theorem (Existence)

There exist $\varepsilon, \delta > 0$ such that, for any $g_1 \in h_{\perp}^{3+\alpha}$ with $\|g_1\|_{h^{3+\alpha}} < \delta$, there is a unique $(\rho, g_2) \in h^{3+\alpha} \times K$ with $\|\rho\|_{h^{3+\alpha}} + \|g_2\|_K < \varepsilon$ s.t.

- ① ODP with $g=g_1+g_2$ is solvable in $\Omega=B_{1+\rho}$;
- 2 The barycenter of $B_{1+\rho}$ is the origin.

Main result: Existence & Optimal stability

Due to translational invariance of ODP, we set

$$h^{k+lpha}(\partial B) = \overline{C^{\infty}(\partial B)}^{C^{k+lpha}}$$

= $\langle x_1, \dots, x_n \rangle \oplus h_{\perp}^{k+lpha}(\partial B),$

where $h_{\perp}^{k+lpha}(\partial B)$ is the L^2 -orthogonal complement of $K=\langle x_1,\ldots,x_n
angle$.

Theorem (Existence)

There exist $\varepsilon, \delta > 0$ such that, for any $g_1 \in h^{3+\alpha}_{\perp}$ with $\|g_1\|_{h^{3+\alpha}} < \delta$, there is a unique $(\rho, g_2) \in h^{3+\alpha} \times K$ with $\|\rho\|_{h^{3+\alpha}} + \|g_2\|_K < \varepsilon$ s.t.

- ① ODP with $g=g_1+g_2$ is solvable in $\Omega=B_{1+\rho}$;
- 2 The barycenter of $B_{1+\rho}$ is the origin.

Theorem (Stability)

Moreover, there is a constant C>0 such that

$$\|\rho\|_{h^{2+\alpha}(\partial B)} + \|g_2\|_K \le C\|g_1\|_{h^{1+\alpha}(\partial B)}.$$

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \\ \\ \theta_\rho^* \in \operatorname{Isom} \left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B) \right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \end{array} \right. \\ \theta_\rho^* \in \operatorname{Isom}(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B)) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

- ullet $F(
 ho,g)=0 \ \Leftrightarrow \ ext{ODP}$ is solvable in $\Omega=B_{1+
 ho}$.
- $F(0,0) = \partial_{\nu} \left(\frac{1 |x|^2}{2n} \right) + \frac{1}{n} = 0.$

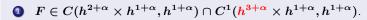
Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \\ \\ \theta_\rho^* \in \operatorname{Isom} \left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B) \right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \\ \theta_\rho^* \in \operatorname{Isom} \left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B) \right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Lemma (Derivative)



Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \end{array} \right. \\ \theta_\rho^* \in \operatorname{Isom}\left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B)\right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Lemma (Derivative)

$$\begin{array}{ll} \boldsymbol{\partial}_{\rho}F(0,0)[\tilde{\rho}] = H_{\partial B}\cdot p + \partial_{\nu}p - \tilde{\rho} \\ \\ \text{with} \left\{ \begin{aligned} \Delta p &= 0 & \text{in } B, \\ p &= -\partial_{\nu}u_{0}\cdot \tilde{\rho} & \text{on } \partial B, \end{aligned} \right. \end{array}$$

Proof: Reformulation & Linear analysis

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \end{array} \right. \\ \theta_\rho^* \in \operatorname{Isom}(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B)) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Lemma (Derivative)

- $\begin{array}{ll} \text{ @ } \partial_{\rho}F(0,0)[\tilde{\rho}] = H_{\partial B}\cdot p + \partial_{\nu}p \tilde{\rho} = \frac{1}{n}(\mathcal{N}-I)\tilde{\rho} \\ \\ \text{with } \begin{cases} \Delta p = 0 & \text{in } B, & \mathcal{N}: \textit{Dirichlet-to-Neumann map.} \\ p = -\partial_{\nu}u_{0}\cdot\tilde{\rho} & \text{on } \partial B, \end{cases}$

Proof: Reformulation & Linear analysis

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ \begin{array}{c} -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \\ \theta_\rho^* \in \operatorname{Isom} \left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B) \right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Lemma (Derivative)

$$\begin{array}{ll} \boldsymbol{\partial}_{\rho}F(0,0)[\tilde{\rho}] = H_{\partial B}\cdot p + \partial_{\nu}p - \tilde{\rho} = \frac{1}{n}(\mathcal{N}-I)\tilde{\rho} \\ \\ \text{with} \left\{ \begin{aligned} \Delta p &= 0 & \text{in } B, & \mathcal{N}: \textit{Dirichlet-to-Neumann map.} \\ p &= -\partial_{\nu}u_{0}\cdot\tilde{\rho} & \text{on } \partial B, \end{aligned} \right. \end{array}$$

$$\longrightarrow \operatorname{Ker} \partial_{\rho} F(0,0) = K$$
, Range $\partial_{\rho} F(0,0) = h_{\perp}^{1+\alpha}$

Proof: Reformulation & Linear analysis

Our problem is equivalent to finding a zero point $ho \in h^{2+lpha}(\partial B)$ of

$$\begin{split} F(\rho,g) &= \theta_\rho^* \left[\frac{\partial u_\rho}{\partial \nu_\rho} \right] + \frac{1}{n} + g \in h^{1+\alpha}(\partial B), \\ \left(\begin{array}{c} u_\rho \in h^{2+\alpha}(\overline{B_{1+\rho}}) : \text{ solution to } \left\{ -\Delta u_\rho = 1 & \text{in } B_{1+\rho}, \\ u_\rho = 0 & \text{on } \partial B_{1+\rho}, \\ \theta_\rho^* \in \operatorname{Isom} \left(h^{1+\alpha}(\partial B_{1+\rho}), h^{1+\alpha}(\partial B) \right) : \text{ pull-back operator.} \end{array} \right) \end{split}$$

Lemma (Derivative)

- $\begin{array}{ll} \boldsymbol{\partial}_{\rho}F(0,0)[\tilde{\rho}] = H_{\partial B}\cdot p + \partial_{\nu}p \tilde{\rho} = \frac{1}{n}(\mathcal{N}-I)\tilde{\rho} \\ \\ \text{with } \begin{cases} \Delta p = 0 & \text{in } B, & \mathcal{N}: \textit{Dirichlet-to-Neumann map.} \\ \\ p = -\partial_{\nu}u_{0}\cdot\tilde{\rho} & \text{on } \partial B, \end{cases}$
 - $\longrightarrow \operatorname{Ker} \partial_{\rho} F(0,0) = K$, Range $\partial_{\rho} F(0,0) = h_{\perp}^{1+\alpha}$

After eliminating the degeneracy, we have

$$F\in C^1(\color{red}h^{3+\alpha}\times h^{1+\alpha},h^{1+\alpha}),\quad \partial_\rho F(0,0)^{-1}\in \mathcal{L}(h^{1+\alpha},\color{red}h^{2+\alpha}).$$

After eliminating the degeneracy, we have

$$F\in C^1(\pmb{h^{3+\alpha}}\times \pmb{h^{1+\alpha}}, \pmb{h^{1+\alpha}}), \quad \partial_\rho F(0,0)^{-1}\in \mathcal{L}(\pmb{h^{1+\alpha}}, \pmb{h^{2+\alpha}}).$$

But this is not sufficient to make the successive approximation converge:

$$\rho_{j+1} = \Phi(\rho_j) := \rho_j - \partial_\rho F(0,0)^{-1} F(\rho_j, g),$$

$$\rho_j \in h^{3+\alpha} \implies \rho_{j+1} \in h^{2+\alpha}.$$

After eliminating the degeneracy, we have

$$F\in C^1(\pmb{h^{3+\alpha}}\times h^{1+\alpha},h^{1+\alpha}),\quad \partial_\rho F(0,0)^{-1}\in \mathcal{L}(h^{1+\alpha},\pmb{h^{2+\alpha}}).$$

But this is not sufficient to make the successive approximation converge:

$$\rho_{j+1} = \Phi(\rho_j) := \rho_j - \partial_\rho F(0,0)^{-1} F(\rho_j, g),$$

$$\rho_j \in h^{3+\alpha} \implies \rho_{j+1} \in h^{2+\alpha}.$$

Indeed, Φ is a contraction only in a nbd of 0 in $(h^{3+\alpha}, \|\cdot\|_{h^{2+\alpha}})$:

$$\|\Phi(\rho) - \Phi(\tilde{\rho})\|_{h^{2+\alpha}} \leq \frac{1}{2} \|\rho - \tilde{\rho}\|_{h^{2+\alpha}} \ (\|\rho\|_{h^{3+\alpha}}, \|\tilde{\rho}\|_{h^{3+\alpha}} \ll 1),$$

After eliminating the degeneracy, we have

$$F \in C^1(\boldsymbol{h}^{3+\alpha} \times \boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{1+\alpha}), \quad \partial_{\rho} F(0,0)^{-1} \in \mathcal{L}(\boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{2+\alpha}).$$

But this is not sufficient to make the successive approximation converge:

$$\rho_{j+1} = \Phi(\rho_j) := \rho_j - \partial_\rho F(0,0)^{-1} F(\rho_j, g),$$

$$\rho_j \in h^{3+\alpha} \implies \rho_{j+1} \in h^{2+\alpha}.$$

Indeed, Φ is a contraction only in a nbd of 0 in $(h^{3+\alpha}, \|\cdot\|_{h^{2+\alpha}})$:

$$\|\Phi(\rho) - \Phi(\tilde{\rho})\|_{h^{2+\alpha}} \leq \frac{1}{2} \|\rho - \tilde{\rho}\|_{h^{2+\alpha}} \ (\|\rho\|_{h^{3+\alpha}}, \|\tilde{\rho}\|_{h^{3+\alpha}} \ll 1),$$

$$\|\Phi(\rho)\|_{h^{3+\alpha}} = \left\|\partial_{\rho}F(0,0)^{-1} \left[\partial_{\rho}F(0,0)\rho - F(\rho,g)\right]\right\|_{h^{3+\alpha}} \ll 1.$$

if $F\in C(h^{3+lpha} imes h^{2+lpha},h^{2+lpha})$ is differentiable at (0,0) and $g\in h^{2+lpha}.$

After eliminating the degeneracy, we have

$$F \in C^1(\boldsymbol{h}^{3+\alpha} \times \boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{1+\alpha}), \quad \partial_{\rho} F(0,0)^{-1} \in \mathcal{L}(\boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{2+\alpha}).$$

But this is not sufficient to make the successive approximation converge:

$$\rho_{j+1} = \Phi(\rho_j) := \rho_j - \partial_\rho F(0,0)^{-1} F(\rho_j, g),$$

$$\rho_j \in h^{3+\alpha} \implies \rho_{j+1} \in h^{2+\alpha}.$$

Indeed, Φ is a contraction only in a nbd of 0 in $(h^{3+\alpha}, \|\cdot\|_{h^{2+\alpha}})$:

$$\|\Phi(\rho) - \Phi(\tilde{\rho})\|_{h^{2+\alpha}} \leq \frac{1}{2} \|\rho - \tilde{\rho}\|_{h^{2+\alpha}} \ (\|\rho\|_{h^{3+\alpha}}, \|\tilde{\rho}\|_{h^{3+\alpha}} \ll 1),$$

$$\|\Phi(\rho)\|_{h^{3+\alpha}} = \left\|\partial_{\rho}F(0,0)^{-1} \left[\partial_{\rho}F(0,0)\rho - F(\rho,g)\right]\right\|_{h^{3+\alpha}} \ll 1.$$

if
$$F\in C(h^{3+lpha} imes h^{2+lpha},h^{2+lpha})$$
 is differentiable at $(0,0)$ and $g\in h^{2+lpha}$.

Now the limit $\rho = \lim \rho_i \in h^{2+\alpha}$ satisfies $F(\rho, g) = 0$ in $h^{1+\alpha}$.

After eliminating the degeneracy, we have

$$F \in C^1(\boldsymbol{h}^{3+\alpha} \times \boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{1+\alpha}), \quad \partial_{\rho} F(0,0)^{-1} \in \mathcal{L}(\boldsymbol{h}^{1+\alpha}, \boldsymbol{h}^{2+\alpha}).$$

But this is not sufficient to make the successive approximation converge:

$$\rho_{j+1} = \Phi(\rho_j) := \rho_j - \partial_\rho F(0,0)^{-1} F(\rho_j, g),$$

$$\rho_j \in h^{3+\alpha} \implies \rho_{j+1} \in h^{2+\alpha}.$$

Indeed, Φ is a contraction only in a nbd of 0 in $(h^{3+\alpha}, \|\cdot\|_{h^{2+\alpha}})$:

$$\|\Phi(\rho) - \Phi(\tilde{\rho})\|_{h^{2+\alpha}} \le \frac{1}{2} \|\rho - \tilde{\rho}\|_{h^{2+\alpha}} \ (\|\rho\|_{h^{3+\alpha}}, \|\tilde{\rho}\|_{h^{3+\alpha}} \ll 1),$$

$$\|\Phi(\rho)\|_{h^{3+\alpha}} = \left\|\partial_{\rho}F(0,0)^{-1} \left[\partial_{\rho}F(0,0)\rho - F(\rho,g)\right]\right\|_{h^{3+\alpha}} \ll 1.$$

if
$$F\in C(h^{3+lpha} imes h^{2+lpha},h^{2+lpha})$$
 is differentiable at $(0,0)$ and $g\in h^{2+lpha}.$

Now the limit $ho = \lim
ho_j \in h^{2+\alpha}$ satisfies F(
ho,g) = 0 in $h^{1+\alpha}$.

In fact, if $g \in h^{3+\alpha}$, then the solution $\rho = \rho(g) \in h^{3+\alpha}$ is unique and

$$\|\rho\|_{h^{2+\alpha}} = \|\Phi(\rho)\|_{h^{2+\alpha}} \le \|\Phi(\rho) - \Phi(0)\|_{h^{2+\alpha}} + \|\Phi(0)\|_{h^{2+\alpha}}$$

$$\le \frac{1}{2} \|\rho\|_{h^{2+\alpha}} + \|\partial_{\rho} F(0,0)^{-1}\|_{\mathcal{L}(h^{1+\alpha},h^{2+\alpha})} \|g\|_{h^{1+\alpha}}.$$

Summary

Main result

• Existence & (local) uniqueness:

$$g_1 \in h^{3+lpha}_{\perp} \mapsto (
ho,g_2) \in h^{3+lpha} imes K.$$

Optimal stability estimate:

$$\|\rho\|_{h^{2+\alpha}} + \|g_2\|_K \le C\|g_1\|_{h^{1+\alpha}}.$$

Remark

• The same argument applies to other overdetermined problems.

Summary

Main result

• Existence & (local) uniqueness:

$$g_1 \in h^{3+lpha}_+ \mapsto (
ho, g_2) \in h^{3+lpha} \times K.$$

Optimal stability estimate:

$$\|\rho\|_{h^{2+\alpha}} + \|g_2\|_K \leq C\|g_1\|_{h^{1+\alpha}}.$$

Remark

• The same argument applies to other overdetermined problems.

THE COFFEE IS READY!

