An inequality for the normal derivative of the Lane-Emden ground state

Simon Larson
The University of Gothenburg
joint work with
Rupert L. Frank, LMU Munich

Edinburgh, September 2022

Setting up the problem

Consider the variational problem

$$
\lambda_{q}(\Omega):=\inf _{u \in C_{0}^{\infty}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{q}(\Omega)}^{2}},
$$

with $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{d}$ is an open set.

Setting up the problem

Consider the variational problem

$$
\lambda_{q}(\Omega):=\inf _{u \in C_{0}^{\infty}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{q}(\Omega)}^{2}}
$$

with $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{d}$ is an open set.
If $\lambda_{1}(\Omega)>0$ the embedding $\mathcal{D}_{0}^{1,2}(\Omega) \hookrightarrow L^{q}(\Omega)$ is continuous and the infimum is unchanged if $C_{0}^{\infty}(\Omega)$ is replaced by $\mathcal{D}_{0}^{1,2}(\Omega)$.

Here we mostly consider Ω for which the embedding is compact. In this case the infimum over $\mathcal{D}_{0}^{1,2}(\Omega)$ is attained by some $u \in \mathcal{D}_{0}^{1,2}(\Omega)$. Today we are interested in properties of minimizers and how they depend on the set Ω.

Setting up the problem

Consider the variational problem

$$
\lambda_{q}(\Omega):=\inf _{u \in C_{0}^{\infty}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{q}(\Omega)}^{2}}
$$

with $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{d}$ is an open set.
If $\lambda_{1}(\Omega)>0$ the embedding $\mathcal{D}_{0}^{1,2}(\Omega) \hookrightarrow L^{q}(\Omega)$ is continuous and the infimum is unchanged if $C_{0}^{\infty}(\Omega)$ is replaced by $\mathcal{D}_{0}^{1,2}(\Omega)$.

Here we mostly consider Ω for which the embedding is compact. In this case the infimum over $\mathcal{D}_{0}^{1,2}(\Omega)$ is attained by some $u \in \mathcal{D}_{0}^{1,2}(\Omega)$. Today we are interested in properties of minimizers and how they depend on the set Ω.

Any minimizer u solves the Lane-Emden equation

$$
\begin{cases}-\Delta u=\lambda_{q}(\Omega)\|u\|_{L^{q}(\Omega)}^{2-q}|u|^{q-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Setting up the problem

Consider the variational problem

$$
\lambda_{q}(\Omega):=\inf _{u \in C_{0}^{\infty}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{L^{2}(\Omega)}^{2}}{\|u\|_{L^{q}(\Omega)}^{2}}
$$

with $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{d}$ is an open set.
If $\lambda_{1}(\Omega)>0$ the embedding $\mathcal{D}_{0}^{1,2}(\Omega) \hookrightarrow L^{q}(\Omega)$ is continuous and the infimum is unchanged if $C_{0}^{\infty}(\Omega)$ is replaced by $\mathcal{D}_{0}^{1,2}(\Omega)$.

Here we mostly consider Ω for which the embedding is compact. In this case the infimum over $\mathcal{D}_{0}^{1,2}(\Omega)$ is attained by some $u \in \mathcal{D}_{0}^{1,2}(\Omega)$. Today we are interested in properties of minimizers and how they depend on the set Ω.

Any minimizer u solves the Lane-Emden equation

$$
\begin{cases}-\Delta u=\lambda_{q}(\Omega)\|u\|_{L^{q}(\Omega)}^{2-q}|u|^{q-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Throughout $u_{q, \Omega}$ denotes a non-negative minimizer normalized in $L^{q}(\Omega)$.

The linear case: For $q=2$ we recognize $\lambda_{2}(\Omega)$ as the lowest eigenvalue of the Dirichlet Laplacian in Ω and the set of all minimizers is the corresponding eigenspace.

The sub-homogeneous case: For $1 \leq q<2$ it is common to instead study minimal energy solutions of $-\Delta \tilde{u}=\tilde{u}^{q-1}$ and the energy $\mathbf{F}_{q}(\Omega)=\|\nabla \tilde{u}\|_{L^{2}}^{2}$.
By homogeneity

$$
\tilde{u}=\lambda_{q}(\Omega)^{-1 /(2-q)} u_{q, \Omega} \quad \text { and } \quad \mathbf{F}_{q}(\Omega)=\lambda_{q}(\Omega)^{-q /(2-q)}
$$

In particular, the quantity $\mathbf{F}_{1}(\Omega)=1 / \lambda_{1}(\Omega)$ is the torsional rigidity of Ω and the solution \tilde{u} is the classical torsion function; $-\Delta w=1$ with $\left.w\right|_{\partial \Omega}=0$.

The linear case: For $q=2$ we recognize $\lambda_{2}(\Omega)$ as the lowest eigenvalue of the Dirichlet Laplacian in Ω and the set of all minimizers is the corresponding eigenspace.

The sub-homogeneous case: For $1 \leq q<2$ it is common to instead study minimal energy solutions of $-\Delta \tilde{u}=\tilde{u}^{q-1}$ and the energy $\mathbf{F}_{q}(\Omega)=\|\nabla \tilde{u}\|_{L^{2}}^{2}$.

By homogeneity

$$
\tilde{u}=\lambda_{q}(\Omega)^{-1 /(2-q)} u_{q, \Omega} \quad \text { and } \quad \mathbf{F}_{q}(\Omega)=\lambda_{q}(\Omega)^{-q /(2-q)}
$$

In particular, the quantity $\mathbf{F}_{1}(\Omega)=1 / \lambda_{1}(\Omega)$ is the torsional rigidity of Ω and the solution \tilde{u} is the classical torsion function; $-\Delta w=1$ with $\left.w\right|_{\partial \Omega}=0$.

Remark: There are interesting differences between the cases of $q=2$ and $1<q<2$ (see e.g. Brasco-Franzina '20), for instance:

- If $q=2$ then the critical values of $u \mapsto\|\nabla u\|_{L^{2}}^{2} /\|u\|_{L^{2}}^{2}$ is an infinite discrete set (the spectrum of the Dirichlet Laplacian).
- For $1<q<2$ the critical values of $u \mapsto\|\nabla u\|_{L^{2}}^{2} /\|u\|_{L^{q}}^{2}$ is a closed infinite set but it is not in general known to be countable. There are examples where the set fails to be discrete.

Basic properties:

i) (monotonicity) If $\Omega^{\prime} \subset \Omega$, then $\lambda_{q}\left(\Omega^{\prime}\right) \geq \lambda_{q}(\Omega)$.
ii) (scaling) Let $\alpha_{q}=(2+d(2 / q-1))^{-1}$, then for all $s>0$

$$
\lambda_{q}(s \Omega)=s^{-1 / \alpha_{q}} \lambda_{q}(\Omega) \quad \text { and } \quad u_{q, s \Omega}(x)=s^{-d / q} u_{q, \Omega}(x / s)
$$

iii) (disjoint unions) If $\Omega=\bigcup_{j \geq 1} \Omega_{j}$ with $\Omega_{j} \cap \Omega_{j^{\prime}}=\emptyset$ when $j \neq j^{\prime}$, then
a) for $1 \leq q<2$

$$
\lambda_{q}(\Omega)=\left(\sum_{j \geq 1} \lambda_{q}\left(\Omega_{j}\right)^{-\frac{q}{2-q}}\right)^{-\frac{2-q}{q}} \quad \text { and } \quad u_{q, \Omega}=\sum_{j \geq 1}\left(\frac{\lambda_{q}(\Omega)}{\lambda_{q}\left(\Omega_{j}\right)}\right)^{\frac{1}{2-q}} u_{q, \Omega_{j}}
$$

b) for $q=2$ then $\lambda_{2}(\Omega)=\min _{j \geq 1} \lambda_{2}\left(\Omega_{j}\right)$ and the set of minimizers is the linear span of

$$
\left\{u_{q, \Omega_{j}}: j \geq 1 \text { such that } \lambda_{2}\left(\Omega_{j}\right)=\lambda_{2}(\Omega)\right\} .
$$

iv) (continuity interior exhaustion) If $\Omega \subset \mathbb{R}^{d}$ is open and $\left\{\Omega_{j}\right\}_{j \geq 1}$ satisfy $\Omega_{j} \subset \Omega_{j+1}$ and $\cup_{j \geq 1} \Omega_{j}=\Omega$ then

$$
\lim _{j \rightarrow \infty} \lambda_{q}\left(\Omega_{j}\right)=\lambda_{q}(\Omega)
$$

Main result

Theorem

Fix $1 \leq q \leq 2$, let $\Omega \subset \mathbb{R}^{d}$ be open, bounded with Lipschitz boundary. Then

$$
\frac{1}{\lambda_{q}(\Omega)^{1+\alpha_{q}}} \int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x) \geq \frac{1}{\lambda_{q}(B)^{1+\alpha_{q}}} \int_{\partial B}\left|\frac{\partial u_{q, B}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x)
$$

where B is the unit ball and $\alpha_{q}=(2+d(2 / q-1))^{-1}$.

Remarks:

- That the normal derivative $\frac{\partial u_{q, \Omega}}{\partial \nu}$ can be made sense of when $\partial \Omega$ is irregular follows from classical work of Dahlberg, Jerison-Kenig, Verchota in the 70's and 80's.
- The theorem combined with Faber-Krahn-type inequalities for λ_{q} implies

$$
|\Omega|^{\frac{1+\alpha_{q}}{d \alpha_{q}}} \int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x) \geq|B|^{\frac{1+\alpha_{q}}{d \alpha_{q}}} \int_{\partial B}\left|\frac{\partial u_{q, B}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x)
$$

and

$$
|\partial \Omega|^{\frac{1+\alpha_{q}}{(d-1) \alpha_{q}}} \int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x) \geq|\partial B|^{\frac{1+\alpha_{q}}{(d-1) \alpha_{q}}} \int_{\partial B}\left|\frac{\partial u_{q, B}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x)
$$

Main result

Theorem

Fix $1 \leq q \leq 2$, let $\Omega \subset \mathbb{R}^{d}$ be open, bounded with Lipschitz boundary. Then

$$
\frac{1}{\lambda_{q}(\Omega)^{1+\alpha_{q}}} \int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x) \geq \frac{1}{\lambda_{q}(B)^{1+\alpha_{q}}} \int_{\partial B}\left|\frac{\partial u_{q, B}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x)
$$

where B is the unit ball and $\alpha_{q}=(2+d(2 / q-1))^{-1}$.

History: For convex sets bounds of this form have appeared earlier, in particular in connection to Minkowski-type problems:

- For $q=2$ the bound is (implicitly) in Jerison Adv. Math. '96 (for problem of electrostatic capacity an analogue appears in Jerison Acta Math. '96).
- For $q=1$ the bound is (implicitly) in Colesanti-Fimiani '10.
- For $q \in\{1,2\}$ the bounds appear in Bucur-Fragala-Lamboley '12.
- Similar results but where the Laplacian is replaced by the p-Laplace operator appear in Colesanti-Nyström-Salani-Xiao-Yang-Zhang '15.

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.
Idea: By the BM inequality: for $\Omega \subset \mathbb{R}^{d}$ and $t>0$ it holds that

$$
|\Omega+t B|^{1 / d} \geq|\Omega|^{1 / d}+t|B|^{1 / d}
$$

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.
Idea: By the BM inequality: for $\Omega \subset \mathbb{R}^{d}$ and $t>0$ it holds that

$$
\begin{aligned}
|\Omega+t B|^{1 / d} & \geq|\Omega|^{1 / d}+t|B|^{1 / d} \\
\Longleftrightarrow \quad \frac{|\Omega+t B|-|\Omega|}{t} & \geq \frac{\left(|\Omega|^{1 / d}+t|B|^{1 / d}\right)^{d}-|\Omega|}{t}
\end{aligned}
$$

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.
Idea: By the BM inequality: for $\Omega \subset \mathbb{R}^{d}$ and $t>0$ it holds that

$$
\begin{aligned}
|\Omega+t B|^{1 / d} & \geq|\Omega|^{1 / d}+t|B|^{1 / d} \\
\Longleftrightarrow \quad \frac{|\Omega+t B|-|\Omega|}{t} & \geq \frac{\left(|\Omega|^{1 / d}+t|B|^{1 / d}\right)^{d}-|\Omega|}{t} \\
\downarrow \quad t & \rightarrow 0 \quad \downarrow \\
\text { (if } \Omega \text { is regular) } \quad \operatorname{Per}(\Omega) & \geq d|B|^{1 / d}|\Omega|^{(d-1) / d} .
\end{aligned}
$$

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.
Idea: By the BM inequality: for $\Omega \subset \mathbb{R}^{d}$ and $t>0$ it holds that

$$
\begin{aligned}
|\Omega+t B|^{1 / d} & \geq|\Omega|^{1 / d}+t|B|^{1 / d} \\
\Longleftrightarrow \quad \frac{|\Omega+t B|-|\Omega|}{t} & \geq \frac{\left(|\Omega|^{1 / d}+t|B|^{1 / d}\right)^{d}-|\Omega|}{t} \\
\downarrow \quad t & \rightarrow 0 \quad \downarrow \\
\text { (if } \Omega \text { is regular) } \quad \operatorname{Per}(\Omega) \quad & \geq d|B|^{1 / d}|\Omega|^{(d-1) / d} .
\end{aligned}
$$

In general this yields a lower bound for

$$
\mathcal{S} \mathcal{M}_{*}(\Omega):=\liminf _{t \rightarrow 0^{+}} \frac{|\Omega+t B|-|\Omega|}{t}=\liminf _{t \rightarrow 0^{+}} \frac{\left|\left\{x \in \Omega^{c}: \operatorname{dist}(x, \Omega)<t\right\}\right|}{t} .
$$

Left with the question of when one can relate this quantity to something we are (more) familiar with?

Strategy of proof

Our aim is to mimic a classical argument to pass from the classical Brunn-Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn-Minkowski-type inequality.
Idea: By the BM inequality: for $\Omega \subset \mathbb{R}^{d}$ and $t>0$ it holds that

$$
\begin{aligned}
|\Omega+t B|^{1 / d} & \geq|\Omega|^{1 / d}+t|B|^{1 / d} \\
\Longleftrightarrow \quad \frac{|\Omega+t B|-|\Omega|}{t} & \geq \frac{\left(|\Omega|^{1 / d}+t|B|^{1 / d}\right)^{d}-|\Omega|}{t} \\
\downarrow \quad t & \rightarrow 0 \quad \downarrow \\
\text { (if } \Omega \text { is regular) } \quad \operatorname{Per}(\Omega) & \geq d|B|^{1 / d}|\Omega|^{(d-1) / d}
\end{aligned}
$$

In general this yields a lower bound for

$$
\mathcal{S} \mathcal{M}_{*}(\Omega):=\liminf _{t \rightarrow 0^{+}} \frac{|\Omega+t B|-|\Omega|}{t}=\liminf _{t \rightarrow 0^{+}} \frac{\left|\left\{x \in \Omega^{c}: \operatorname{dist}(x, \Omega)<t\right\}\right|}{t} .
$$

Left with the question of when one can relate this quantity to something we are (more) familiar with?
Today we shall follow this strategy but with the shape functional $\Omega \mapsto|\Omega|$ replaced by $\Omega \mapsto \lambda_{q}(\Omega)$.

Strategy of proof

The essence of the strategy boils down to:

1) a Brunn-Minkowski inequality for λ_{q}, and
2) computing (one-sided) derivative of $t \mapsto \lambda_{q}(\Omega+t B)$ at $t=0$.

Strategy of proof

The essence of the strategy boils down to:

1) a Brunn-Minkowski inequality for λ_{q}, and
2) computing (one-sided) derivative of $t \mapsto \lambda_{q}(\Omega+t B)$ at $t=0$.

Part 1) is ok.

Theorem

For $1 \leq q \leq 2,0 \leq s \leq 1$, and $\Omega_{0}, \Omega_{1} \subset \mathbb{R}^{d}$ open sets

$$
\lambda_{q}\left((1-s) \Omega_{0}+s \Omega_{1}\right) \leq\left((1-s) \lambda_{q}\left(\Omega_{0}\right)^{-\alpha_{q}}+s \lambda_{q}\left(\Omega_{1}\right)^{-\alpha_{q}}\right)^{-1 / \alpha_{q}}
$$

For $1 \leq q<2$ equality holds for some $s \in(0,1)$ if and only if either

- $\min \left\{\lambda_{q}\left(\Omega_{0}\right), \lambda_{q}\left(\Omega_{1}\right)\right\}=0$, or
- both Ω_{0} and Ω_{1} agree with homothetic copies of a bounded convex set K up to sets of zero capacity.
This is (essentially) proved in $\left\{\begin{array}{l}\text { Brascamp-Lieb '76 for } q=2, \\ \text { Borell ' } 85 \text { for } q=1 \text {, and } \\ \text { Colesanti '05 for } 1 \leq q<2 .\end{array}\right.$

Strategy of proof

The essence of the strategy boils down to:

1) a Brunn-Minkowski inequality for λ_{q}, and
2) computing (one-sided) derivative of $t \mapsto \lambda_{q}(\Omega+t B)$ at $t=0$.

Part 1) is ok.

Theorem

For $1 \leq q \leq 2,0 \leq s \leq 1$, and $\Omega_{0}, \Omega_{1} \subset \mathbb{R}^{d}$ open sets

$$
\lambda_{q}\left((1-s) \Omega_{0}+s \Omega_{1}\right) \leq\left((1-s) \lambda_{q}\left(\Omega_{0}\right)^{-\alpha_{q}}+s \lambda_{q}\left(\Omega_{1}\right)^{-\alpha_{q}}\right)^{-1 / \alpha_{q}}
$$

For $1 \leq q<2$ equality holds for some $s \in(0,1)$ if and only if either

- $\min \left\{\lambda_{q}\left(\Omega_{0}\right), \lambda_{q}\left(\Omega_{1}\right)\right\}=0$, or
- both Ω_{0} and Ω_{1} agree with homothetic copies of a bounded convex set K up to sets of zero capacity.
This is (essentially) proved in $\left\{\begin{array}{l}\text { Brascamp-Lieb '76 for } q=2, \\ \text { Borell ' } 85 \text { for } q=1 \text {, and } \\ \text { Colesanti '05 for } 1 \leq q<2 .\end{array}\right.$
Part 2) needs more work.

Strategy of proof

Main issues:

- The dependence of λ_{q} on regular perturbations of Ω is rather delicate.
- Generally the set $\Omega+t B$ is not a regular perturbation of Ω for t small.

Strategy of proof

Main issues:

- The dependence of λ_{q} on regular perturbations of Ω is rather delicate.
- Generally the set $\Omega+t B$ is not a regular perturbation of Ω for t small.

Our solution: Split the argument into several parts:

- Compute derivative of $t \mapsto \lambda_{q}(\Phi(t, \Omega))$ when $\Phi:(-T, T) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is sufficiently regular. (Hadamard formula)
- Prove that for regular Ω the mapping $t \mapsto \Omega+t B$ can be approximated by regular perturbations of Ω.
- Combining these two results with the BM inequality one proves the main bound for regular Ω.
- Use main inequality for regular sets and approximation argument to obtain the general result.

Strategy of proof

Main issues:

- The dependence of λ_{q} on regular perturbations of Ω is rather delicate.
- Generally the set $\Omega+t B$ is not a regular perturbation of Ω for t small.

Our solution: Split the argument into several parts:

- Compute derivative of $t \mapsto \lambda_{q}(\Phi(t, \Omega))$ when $\Phi:(-T, T) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is sufficiently regular. (Hadamard formula)
- Prove that for regular Ω the mapping $t \mapsto \Omega+t B$ can be approximated by regular perturbations of Ω.
- Combining these two results with the BM inequality one proves the main bound for regular Ω.
- Use main inequality for regular sets and approximation argument to obtain the general result.
In what remains we take a look at the first two points, aiming to prove:

Lemma

Fix $1 \leq q \leq 2$, let $\Omega \subset \mathbb{R}^{d}$ be open, bounded, connected with C^{1} boundary. Then

$$
\lim _{t \rightarrow 0^{+}} \frac{\lambda_{q}(\Omega+t B)-\lambda_{q}(\Omega)}{t}=-\int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} d \mathcal{H}^{d-1}(x)
$$

Remark: For convex Ω this is simplified by representation of $\lambda_{q}(\Omega)$ as an integral over \mathbb{S}^{d-1} and properties of the Minkowski sum.

A Hadamard formula for $\lambda_{q}(\Omega)$

Theorem

Fix $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{d}$ open set of finite measure such that the normalized minimizer $u_{q, \Omega}$ is unique. Let $\Phi \in C^{1}\left((-1,1) ; W^{1, \infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)$, be such that $\Phi(t, \cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a bi-Lipschitz homeomorphism of a neighbourhood of Ω onto its image, and

$$
\Phi(t, x)=x+t \dot{\Phi}(x)+o_{t \rightarrow 0}(t) \quad \text { in } W^{1, \infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

Then $t \mapsto \lambda_{q}(\Phi(t, \Omega))$ is differentiable at $t=0$ and

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\lambda_{q}(\Phi(t, \Omega))-\lambda_{q}(\Omega)}{t}= & -2 \int_{\Omega} \nabla u_{q, \Omega} \cdot(D \dot{\Phi}) \nabla u_{q, \Omega} d x \\
& +\int_{\Omega}\left(\left|\nabla u_{q, \Omega}\right|^{2}-\frac{2}{q} \lambda_{q}(\Omega) u_{q, \Omega}^{q}\right) \nabla \cdot \dot{\Phi} d x .
\end{aligned}
$$

If Ω has Lipschitz boundary,

$$
\lim _{t \rightarrow 0} \frac{\lambda_{q}(\Phi(t, \Omega))-\lambda_{q}(\Omega)}{t}=-\int_{\partial \Omega}\left|\frac{\partial u_{q, \Omega}}{\partial \nu}\right|^{2} \nu \cdot \dot{\Phi} d \mathcal{H}^{d-1}(x) .
$$

Remark: For $q=1$ or 2 this is classical.

A Hadamard formula for $\lambda_{q}(\Omega)$

The result looks standard, but the standard proof runs into problems.
Classically: Differentiability of $t \mapsto\left(\lambda_{q}(\Phi(t, \Omega)), u_{q, \Phi(t, \Omega)}\right)$ is established by using the implicit function theorem applied to the mapping

$$
\begin{aligned}
H_{0}^{1}(\Omega) \times \mathbb{R} \times(-1,1) & \rightarrow H^{-1}(\Omega) \times \mathbb{R} \\
\left(\begin{array}{c}
v \\
\lambda \\
t
\end{array}\right) & \mapsto\binom{-\left(\Delta\left(v \circ \Phi(t, \cdot)^{-1}\right)\right) \circ \Phi(t, \cdot)-\lambda v^{q-1}}{\int_{\Omega}|v|^{q}\left|\operatorname{det} D_{x} \Phi(t, x)\right| d x-1}
\end{aligned}
$$

Problem: for $1<q<2$ the map $v \mapsto v^{q-1}$ is not Fréchet differentiable.

A Hadamard formula for $\lambda_{q}(\Omega)$

The result looks standard, but the standard proof runs into problems.
Classically: Differentiability of $t \mapsto\left(\lambda_{q}(\Phi(t, \Omega)), u_{q, \Phi(t, \Omega)}\right)$ is established by using the implicit function theorem applied to the mapping

$$
\begin{aligned}
H_{0}^{1}(\Omega) \times \mathbb{R} \times(-1,1) & \rightarrow H^{-1}(\Omega) \times \mathbb{R} \\
\left(\begin{array}{c}
v \\
\lambda \\
t
\end{array}\right) & \mapsto\binom{-\left(\Delta\left(v \circ \Phi(t, \cdot)^{-1}\right)\right) \circ \Phi(t, \cdot)-\lambda v^{q-1}}{\int_{\Omega}|v|^{q}\left|\operatorname{det} D_{x} \Phi(t, x)\right| d x-1}
\end{aligned}
$$

Problem: for $1<q<2$ the map $v \mapsto v^{q-1}$ is not Fréchet differentiable.
Our solution: Use a variational proof which avoids differentiating $t \mapsto u_{q, \Phi(t, \Omega)}$.

Approximation of Minkowski sum

Remaining problem: Want to construct regular map Φ so that, for $t>0$ small, $\Phi(t, \Omega)$ approximates $\Omega+t B$,

$$
\Phi(t, x)=x+t \dot{\Phi}(x)+o(t) \quad \text { and }\left.\quad \quad \dot{\Phi}\right|_{\partial \Omega}=\nu_{\partial \Omega}
$$

Approximation of Minkowski sum

Remaining problem: Want to construct regular map Φ so that, for $t>0$ small, $\Phi(t, \Omega)$ approximates $\Omega+t B$,

$$
\Phi(t, x)=x+t \dot{\Phi}(x)+o(t) \quad \text { and }\left.\quad \dot{\Phi}\right|_{\partial \Omega}=\nu_{\partial \Omega}
$$

Theorem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded with C^{1} boundary and fix $\varepsilon, \delta>0$. There exists a map $\Phi \in C^{\infty}\left((-1,1) ; C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)$ so that

- $\Phi(t, x)=x+t \dot{\Phi}(x)$ with $\dot{\Phi} \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ supported near $\partial \Omega$,
- for $|t|$ sufficiently small $\Phi(t, \cdot)$ is a diffeomorphism of \mathbb{R}^{d} onto itself,
- for sufficiently small $t>0$,

$$
\Phi(t, \Omega) \subset \Omega+t B \subset \Phi((1+\delta) t, \Omega)
$$

- and $\left\|\dot{\Phi}-\nu_{\partial \Omega}\right\|_{L^{\infty}(\partial \Omega)}<\varepsilon$.

Remark: The assumptions are essentially sharp: Setting

$$
\rho(\Omega):=\inf \left\{\left\|X-\nu_{\partial \Omega}\right\|_{L^{\infty}(\partial \Omega)}: X \in C^{0}\left(\partial \Omega ; \mathbb{R}^{d}\right),|X|=1\right\}
$$

then by Hofmann-Mitrea-Taylor '07

$$
\rho(\Omega)=0 \Longleftrightarrow \partial \Omega \text { is } C^{1} \quad \text { and } \quad \rho(\Omega)<\sqrt{2} \Longleftrightarrow \partial \Omega \text { is Lipschitz. }
$$

Approximation of Minkowski sum

Define the signed distance function

$$
\delta_{\Omega}(x)=\operatorname{dist}(x, \Omega)-\operatorname{dist}\left(x, \Omega^{c}\right), \quad \text { note that }\left|\nabla \delta_{\Omega}\right|=1 \text { a.e. }
$$

Then, for $t>0$,

$$
\Omega+t B=\left\{x \in \mathbb{R}^{d}: \delta_{\Omega}(x)<t\right\}
$$

and a natural candidate for Φ is

$$
(t, x) \mapsto x+t \nabla \delta_{\Omega}(x)
$$

But if $\partial \Omega$ is non-regular then the vector field $\nabla \delta_{\Omega}$ is only defined almost everywhere and is certainly not smooth.

Approximation of Minkowski sum

Define the signed distance function

$$
\delta_{\Omega}(x)=\operatorname{dist}(x, \Omega)-\operatorname{dist}\left(x, \Omega^{c}\right), \quad \text { note that }\left|\nabla \delta_{\Omega}\right|=1 \text { a.e. }
$$

Then, for $t>0$,

$$
\Omega+t B=\left\{x \in \mathbb{R}^{d}: \delta_{\Omega}(x)<t\right\}
$$

and a natural candidate for Φ is

$$
(t, x) \mapsto x+t \nabla \delta_{\Omega}(x)
$$

But if $\partial \Omega$ is non-regular then the vector field $\nabla \delta_{\Omega}$ is only defined almost everywhere and is certainly not smooth.

Solution: Replace $\nabla \delta_{\Omega}$ by a new vector field obtained by localizing $\nabla \delta_{\Omega}$ close to $\partial \Omega$ and mollifying.

The proof of the theorem is reduced to verifying the stated properties through explicit calculations.

Thank you for your attention!

