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Setting up the problem

Consider the variational problem

λq(Ω) := inf
u∈C∞0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2Lq(Ω)

,

with 1 ≤ q ≤ 2 and Ω ⊂ Rd is an open set.

If λ1(Ω) > 0 the embedding D1,2
0 (Ω) ↪→ Lq(Ω) is continuous and the infimum

is unchanged if C∞0 (Ω) is replaced by D1,2
0 (Ω).

Here we mostly consider Ω for which the embedding is compact. In this case
the infimum over D1,2

0 (Ω) is attained by some u ∈ D1,2
0 (Ω). Today we are

interested in properties of minimizers and how they depend on the set Ω.

Any minimizer u solves the Lane–Emden equation{
−∆u = λq(Ω)‖u‖2−qLq(Ω)|u|

q−2u in Ω ,

u = 0 on ∂Ω .

Throughout uq,Ω denotes a non-negative minimizer normalized in Lq(Ω).
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The linear case: For q = 2 we recognize λ2(Ω) as the lowest eigenvalue of the
Dirichlet Laplacian in Ω and the set of all minimizers is the corresponding
eigenspace.

The sub-homogeneous case: For 1 ≤ q < 2 it is common to instead study
minimal energy solutions of −∆ũ = ũq−1 and the energy Fq(Ω) = ‖∇ũ‖2L2 .

By homogeneity

ũ = λq(Ω)−1/(2−q)uq,Ω and Fq(Ω) = λq(Ω)−q/(2−q).

In particular, the quantity F1(Ω) = 1/λ1(Ω) is the torsional rigidity of Ω and
the solution ũ is the classical torsion function; −∆w = 1 with w|∂Ω = 0.

Remark: There are interesting differences between the cases of q = 2 and
1 < q < 2 (see e.g. Brasco–Franzina ’20), for instance:

• If q = 2 then the critical values of u 7→ ‖∇u‖2L2/‖u‖2L2 is an infinite
discrete set (the spectrum of the Dirichlet Laplacian).

• For 1 < q < 2 the critical values of u 7→ ‖∇u‖2L2/‖u‖2Lq is a closed
infinite set but it is not in general known to be countable. There are
examples where the set fails to be discrete.
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Basic properties:

i) (monotonicity) If Ω′ ⊂ Ω, then λq(Ω
′) ≥ λq(Ω).

ii) (scaling) Let αq = (2 + d(2/q − 1))−1, then for all s > 0

λq(sΩ) = s−1/αqλq(Ω) and uq,sΩ(x) = s−d/quq,Ω(x/s) .

iii) (disjoint unions) If Ω =
⋃
j≥1 Ωj with Ωj ∩ Ωj′ = ∅ when j 6= j′, then

a) for 1 ≤ q < 2

λq(Ω) =

(∑
j≥1

λq(Ωj)
− q

2−q

)− 2−q
q

and uq,Ω =
∑
j≥1

( λq(Ω)

λq(Ωj)

) 1
2−q

uq,Ωj .

b) for q = 2 then λ2(Ω) = minj≥1 λ2(Ωj) and the set of minimizers is the
linear span of {

uq,Ωj : j ≥ 1 such that λ2(Ωj) = λ2(Ω)
}
.

iv) (continuity interior exhaustion) If Ω ⊂ Rd is open and {Ωj}j≥1 satisfy
Ωj ⊂ Ωj+1 and ∪j≥1Ωj = Ω then

lim
j→∞

λq(Ωj) = λq(Ω) .
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Main result

Theorem

Fix 1 ≤ q ≤ 2, let Ω ⊂ Rd be open, bounded with Lipschitz boundary. Then

1

λq(Ω)1+αq

∫
∂Ω

∣∣∣∂uq,Ω
∂ν

∣∣∣2dHd−1(x) ≥ 1

λq(B)1+αq

∫
∂B

∣∣∣∂uq,B
∂ν

∣∣∣2 dHd−1(x),

where B is the unit ball and αq = (2 + d(2/q − 1))−1.

Remarks:

• That the normal derivative
∂uq,Ω
∂ν

can be made sense of when ∂Ω is
irregular follows from classical work of Dahlberg, Jerison–Kenig,
Verchota in the 70’s and 80’s.

• The theorem combined with Faber–Krahn-type inequalities for λq implies

|Ω|
1+αq
dαq

∫
∂Ω

∣∣∣∂uq,Ω
∂ν

∣∣∣2 dHd−1(x) ≥ |B|
1+αq
dαq

∫
∂B

∣∣∣∂uq,B
∂ν

∣∣∣2 dHd−1(x) ,

and

|∂Ω|
1+αq

(d−1)αq

∫
∂Ω

∣∣∣∂uq,Ω
∂ν

∣∣∣2 dHd−1(x) ≥ |∂B|
1+αq

(d−1)αq

∫
∂B

∣∣∣∂uq,B
∂ν

∣∣∣2 dHd−1(x) .
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∣∣∣2 dHd−1(x),

where B is the unit ball and αq = (2 + d(2/q − 1))−1.

History: For convex sets bounds of this form have appeared earlier, in particular
in connection to Minkowski-type problems:

• For q = 2 the bound is (implicitly) in Jerison Adv. Math. ’96 (for problem
of electrostatic capacity an analogue appears in Jerison Acta Math. ’96).

• For q = 1 the bound is (implicitly) in Colesanti–Fimiani ’10.

• For q ∈ {1, 2} the bounds appear in Bucur–Fragala–Lamboley ’12.

• Similar results but where the Laplacian is replaced by the p-Laplace
operator appear in Colesanti–Nyström–Salani–Xiao–Yang–Zhang ’15.
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Strategy of proof

Our aim is to mimic a classical argument to pass from the classical
Brunn–Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn–Minkowski-type inequality.
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|Ω + tB| − |Ω|
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|{x ∈ Ωc : dist(x,Ω) < t}|
t
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Left with the question of when one can relate this quantity to something we are
(more) familiar with?
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|{x ∈ Ωc : dist(x,Ω) < t}|
t

.

Left with the question of when one can relate this quantity to something we are
(more) familiar with?

Today we shall follow this strategy but with the shape functional Ω 7→ |Ω|
replaced by Ω 7→ λq(Ω).
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Strategy of proof

The essence of the strategy boils down to:

1) a Brunn–Minkowski inequality for λq, and

2) computing (one-sided) derivative of t 7→ λq(Ω + tB) at t = 0.
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Strategy of proof

The essence of the strategy boils down to:

1) a Brunn–Minkowski inequality for λq, and

2) computing (one-sided) derivative of t 7→ λq(Ω + tB) at t = 0.

Part 1) is ok.

Theorem

For 1 ≤ q ≤ 2, 0 ≤ s ≤ 1, and Ω0,Ω1 ⊂ Rd open sets

λq((1− s)Ω0 + sΩ1) ≤
(

(1− s)λq(Ω0)−αq + sλq(Ω1)−αq
)−1/αq

.

For 1 ≤ q < 2 equality holds for some s ∈ (0, 1) if and only if either

• min{λq(Ω0), λq(Ω1)} = 0, or

• both Ω0 and Ω1 agree with homothetic copies of a bounded convex set K
up to sets of zero capacity.

This is (essentially) proved in


Brascamp–Lieb ’76 for q = 2,

Borell ’85 for q = 1, and

Colesanti ’05 for 1 ≤ q < 2.
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This is (essentially) proved in


Brascamp–Lieb ’76 for q = 2,

Borell ’85 for q = 1, and

Colesanti ’05 for 1 ≤ q < 2.

Part 2) needs more work.
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Strategy of proof
Main issues:
• The dependence of λq on regular perturbations of Ω is rather delicate.
• Generally the set Ω + tB is not a regular perturbation of Ω for t small.

Our solution: Split the argument into several parts:
• Compute derivative of t 7→ λq(Φ(t,Ω)) when Φ: (−T, T )× Rd → Rd is

sufficiently regular. (Hadamard formula)
• Prove that for regular Ω the mapping t 7→ Ω + tB can be approximated by

regular perturbations of Ω.
• Combining these two results with the BM inequality one proves the main

bound for regular Ω.
• Use main inequality for regular sets and approximation argument to obtain

the general result.

In what remains we take a look at the first two points, aiming to prove:

Lemma

Fix 1 ≤ q ≤ 2, let Ω ⊂ Rd be open, bounded, connected with C1 boundary.
Then

lim
t→0+

λq(Ω + tB)− λq(Ω)

t
= −

∫
∂Ω

∣∣∣∂uq,Ω
∂ν

∣∣∣2dHd−1(x) .

Remark: For convex Ω this is simplified by representation of λq(Ω) as an
integral over Sd−1 and properties of the Minkowski sum.
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A Hadamard formula for λq(Ω)

Theorem

Fix 1 ≤ q ≤ 2 and Ω ⊂ Rd open set of finite measure such that the normalized
minimizer uq,Ω is unique. Let Φ ∈ C1((−1, 1);W 1,∞(Rd;Rd)), be such that
Φ(t, · ) : Rd → Rd is a bi-Lipschitz homeomorphism of a neighbourhood of Ω
onto its image, and

Φ(t, x) = x+ tΦ̇(x) + ot→0(t) in W 1,∞(Rd;Rd) .

Then t 7→ λq(Φ(t,Ω)) is differentiable at t = 0 and

lim
t→0

λq(Φ(t,Ω))− λq(Ω)

t
= −2

∫
Ω

∇uq,Ω ·
(
DΦ̇
)
∇uq,Ω dx

+

∫
Ω

(
|∇uq,Ω|2 −

2

q
λq(Ω)uqq,Ω

)
∇ · Φ̇ dx .

If Ω has Lipschitz boundary,

lim
t→0

λq(Φ(t,Ω))− λq(Ω)

t
= −

∫
∂Ω

∣∣∣∂uq,Ω
∂ν

∣∣∣2ν · Φ̇ dHd−1(x) .

Remark: For q = 1 or 2 this is classical.
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A Hadamard formula for λq(Ω)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of t 7→ (λq(Φ(t,Ω)), uq,Φ(t,Ω)) is established by
using the implicit function theorem applied to the mapping

H1
0 (Ω)× R× (−1, 1)→ H−1(Ω)× R(v

λ
t

)
7→
(
−(∆(v ◦ Φ(t, ·)−1)) ◦ Φ(t, ·)− λvq−1∫

Ω
|v|q|detDxΦ(t, x)| dx− 1

)

Problem: for 1 < q < 2 the map v 7→ vq−1 is not Fréchet differentiable.

Our solution: Use a variational proof which avoids differentiating t 7→ uq,Φ(t,Ω).
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map Φ so that, for t > 0 small,
Φ(t,Ω) approximates Ω + tB,

Φ(t, x) = x+ tΦ̇(x) + o(t) and Φ̇|∂Ω = ν∂Ω.

Theorem

Let Ω ⊂ Rd be open and bounded with C1 boundary and fix ε, δ > 0. There
exists a map Φ ∈ C∞((−1, 1);C∞(Rd;Rd)) so that

• Φ(t, x) = x+ tΦ̇(x) with Φ̇ ∈ C∞(Rd;Rd) supported near ∂Ω,

• for |t| sufficiently small Φ(t, ·) is a diffeomorphism of Rd onto itself,

• for sufficiently small t > 0,

Φ(t,Ω) ⊂ Ω + tB ⊂ Φ((1 + δ)t,Ω)

• and ‖Φ̇− ν∂Ω‖L∞(∂Ω) < ε.

Remark: The assumptions are essentially sharp: Setting

ρ(Ω) := inf{‖X − ν∂Ω‖L∞(∂Ω) : X ∈ C0(∂Ω;Rd), |X| = 1}

then by Hofmann–Mitrea–Taylor ’07

ρ(Ω) = 0 ⇐⇒ ∂Ω is C1 and ρ(Ω) <
√

2 ⇐⇒ ∂Ω is Lipschitz.
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2 ⇐⇒ ∂Ω is Lipschitz.
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Approximation of Minkowski sum

Define the signed distance function

δΩ(x) = dist(x,Ω)− dist(x,Ωc), note that |∇δΩ| = 1 a.e.

Then, for t > 0,
Ω + tB = {x ∈ Rd : δΩ(x) < t}

and a natural candidate for Φ is

(t, x) 7→ x+ t∇δΩ(x).

But if ∂Ω is non-regular then the vector field ∇δΩ is only defined almost
everywhere and is certainly not smooth.

Solution: Replace ∇δΩ by a new vector field obtained by localizing ∇δΩ close
to ∂Ω and mollifying.

The proof of the theorem is reduced to verifying the stated properties through
explicit calculations.
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Thank you for your attention!
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