# Maximizers beyond the hemisphere for the second Neumann eigenvalue 

Richard Laugesen, University of Illinois Urbana-Champaign and Jeffrey Langford, Bucknell University

ICMS, September 2022

## Neumann eigenvalues

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
-\Delta u=\mu u \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=0
\end{array} \quad \text { on } \partial \Omega\right.
\end{array}\right\} \begin{aligned}
& 0=\mu_{1}(\Omega)<\mu_{2}(\Omega) \leq \mu_{3}(\Omega) \leq \cdots \rightarrow \infty
\end{aligned}
$$

Second eigenvalue: $\mu_{2}$ maximal for ball of same volume

- Szegő (1954), 2-dimensions simply connected
- Weinberger (1956), n-dimensions

Developments. . .

- curved surfaces, simply connected - Bandle
- third eigenvalue - Girouard, Nadirashvili, Polterovich, Bucur, Henrot
- metrics on whole sphere - Hersch, ...


## Second eigenvalue maximal for geodesic disk, up to $50 \%$ of sphere

Theorem (Bandle 1972)
simply connected surface $\Omega$

$$
\begin{aligned}
& \text { curvature } \leq K \in \mathbb{R} \quad \Longrightarrow \quad \mu_{2}(\Omega) \leq \mu_{2}\left(D_{K}\right) \\
& \operatorname{area}(\Omega) K \leq \frac{1}{2} \cdot 4 \pi
\end{aligned}
$$

where
$D_{K}=$ geodesic disk, constant curvature $K$, same area as $\Omega$.
Also, harmonic mean of $\mu_{2}$ and $\mu_{3}$ is maximal at $D_{K}$.

## Corollary

simply connected $\Omega \subset S^{2}$

$$
\mu_{2}(\Omega) \leq \mu_{2}(\text { spherical cap }
$$

$$
\left.\operatorname{area}(\Omega) \leq \frac{1}{2} \operatorname{area}\left(S^{2}\right) \quad \Longrightarrow \quad \text { with same area as } \Omega\right)
$$

Open problem for past 50 years:
is "half sphere" obstruction fundamental, or surmountable?

## Spherical caps

## Non-monotonicity of Neumann eigenvalues w.r.t. cap aperture $\Theta$



Observations

- $\mu_{2}(\Theta)$ remains monotonic BEYOND hemisphere $0.5 \pi$, until $\Theta_{2} \simeq 0.7 \pi$
- for $\Theta>\Theta_{2}$, larger caps have larger eigenvalues

Non-monotonicity of cap eigenfns $u=g(\theta)\left\{\begin{array}{l}\cos \phi \\ \sin \phi\end{array}\right.$
$\begin{aligned} \theta & =\text { angle from z-axis } \\ & =\text { geodesic radius from north pole }\end{aligned}$
Observations

- radial part remains monotonic for caps BEYOND hemisphere, until aperture $\simeq 0.7 \pi$
- for apertures $\Theta>\Theta_{2}$, the radial part $g$ is non-monotonic


## Second eigenvalue maximal for geodesic disk, up to $94 \%$ of sphere

Theorem (Langford-Laugesen, Math. Ann. 2022)
simply connected surface $\Omega$

$$
\begin{array}{r}
\text { curvature } \leq K \in \mathbb{R} \\
\operatorname{area}(\Omega) K \leq \frac{16}{17} \cdot 4 \pi
\end{array} \quad \Longrightarrow \quad \mu_{2}(\Omega) \leq \mu_{2}\left(D_{K}\right)
$$

where

$$
D_{K}=\text { geodesic disk, constant curvature } K, \text { same area as } \Omega .
$$

Also, harmonic mean of $\mu_{2}$ and $\mu_{3}$ is maximal at $D_{K}$.


## Proof sketch (following Szegő and Bandle in Steps 1 and 2)

Step 1 - domain $\Omega \subset S^{2}$ with curvature $K=1$.
Stereographic projection: spherical domain $\Omega \mapsto$ planar domain $U$ spherical cap $D_{K} \mapsto$ planar disk $D$, radius $R$
Area normalization: $U$ and $D$ have same area w.r.t. density

$$
w(r)=4 /\left(1+r^{2}\right)^{2}
$$

Weighted eigenvalue problem $-\Delta u=\mu w u$
Eigenfunctions for weighted disk $D$ :

$$
f_{2}=h(r) \cos \phi, \quad f_{3}=h(r) \sin \phi
$$

Transplant to trial functions on $U$ :

$$
u_{2}=f_{2} \circ F^{-1}, \quad u_{3}=f_{3} \circ F^{-1}
$$

Center of mass: conformal map $F: D \rightarrow U$ chosen s.t. $u_{2}, u_{3} \perp 1$.
Dirichlet integral conformal invariance:

$$
\int_{U}\left|\nabla u_{i}\right|^{2} d A=\int_{D}\left|\nabla f_{i}\right|^{2} d A
$$

## Proof, cont.

For Rayleigh quotient denominator, want:

$$
\begin{aligned}
\int_{U}\left(h \circ F^{-1}\right)^{2} w d A & \geq \int_{D} h^{2} w d A \\
\int_{D} h^{2}\left(B^{\prime}-A^{\prime}\right) d r & \geq 0
\end{aligned}
$$

where

$$
\begin{aligned}
B(r) & =\int_{F(D(r))} w d A \\
& =w \text {-area of } F(D(r)) \\
A(r) & =w \text {-area of } D(r)
\end{aligned}
$$

and area normalization says $A(R)=B(R)$. By parts, we want

$$
\int_{0}^{R}\left(h^{2}\right)^{\prime}(A-B) d r \geq 0
$$

Method: conformal mass transplantation!

## Proof, cont.

$A(r)=w$-area of $D(r), \quad B(r)=w$-area of $F(D(r)), \quad$ want

$$
\int_{0}^{R}\left(h^{2}\right)^{\prime}(A-B) d r \geq 0
$$

Bol's isoperimetric inequality + curvature bound (Bandle) implies $A \geq B$.
Step 2 - area $/ 4 \pi \leq 0.79 \Longrightarrow$ cap aperture $\leq \Theta_{2} \Longrightarrow h^{\prime}>0$. QED.
(Bandle: area $/ 4 \pi \leq 0.50$ )
Step $3-0.79<$ area $/ 4 \pi<1 \Longrightarrow$ aperture $>\Theta_{2} \Longrightarrow h^{\prime} \ngtr 0$. BAD!

## NEW IDEA:

factor out $A$, define $H=\int_{0}^{r}\left(h^{2}\right)^{\prime} A$ (depends only on cap), int. by parts. Want

$$
\int_{0}^{R} H(B / A)^{\prime} d r \geq 0
$$

Area ratio increasing: $(B / A)^{\prime} \geq 0$ follows from Bol. Show $H(R) \geq 0$ by Legendre functions, when area $/ 4 \pi \leq 0.94 \approx 16 / 17$. Since $H^{\prime}=\left(h^{2}\right)^{\prime} A$ changes sign from + to - , deduce $H(r) \geq 0$. QED.

## Corollary

$$
\text { simply connected } \Omega \subset S^{2}
$$

$$
\operatorname{area}(\Omega) \leq \frac{16}{17} \operatorname{area}\left(S^{2}\right) \quad \Longrightarrow \quad \mu_{2}(\Omega) \leq \begin{aligned}
& \mu_{2}(\text { spherical cap } \\
& \text { with same area as } \Omega)
\end{aligned}
$$

Note $16 / 17 \simeq 94 \%$. Can one improve to $100 \%$ ?

## Conjecture

$$
\text { simply connected } \Omega \subset S^{2} \quad \Longrightarrow \quad \mu_{2}(\Omega) \leq \begin{gathered}
\mu_{2}(\text { spherical cap } \\
\text { with same area as } \Omega)
\end{gathered}
$$

## Open problems

- All dimensions, all domains:

Weinberger's method adapts to hyperbolic space (Chavel 1979, Xu 1995).
Similarly, domains on sphere $S^{n}$ by Ashbaugh-Benguria (1995) using "two-pole" Weinberger construction, under "antipodal" restriction and

$$
\operatorname{area}(\Omega) \leq \frac{1}{2} \operatorname{area}\left(S^{n}\right)
$$

Cannot improve $1 / 2$ to 1 , due to multiply connected counterexamples by Bucur, Laugesen, Martinet, Nahon (in progress).

- Third eigenvalue:
is $\mu_{3}$ maximal for two disjoint equal-sized caps of curvature $K$ ??
* Constant curvature: Euclidean 2-dim simply conn. by

Girouard-Nadirashvili-Polterovich (2009), higher dim by Bucur-Henrot (2019); hyperbolic domains by Freitas-Laugesen (2022); spherical domains by Bucur-Martinet-Nahon (preprint).

* Variable curvature $\leq 0$ : simply conn. by Girouard-Polterovich (2010)

Eigenvalue scaling on hyperbolic space and sphere
Root $\Theta_{2}$ of $\mu_{2}(\Theta) \sin ^{2} \Theta=1$ exists by monotonicity of whole spectrum:
Theorem (Scaling monotonicity; Langford and Laugesen 2022)
For each $k \geq 2$,

$$
\Theta \mapsto\left\{\begin{array}{ll}
\mu_{k}(\Theta) \sinh ^{2} \Theta, & \Theta \in(-\infty, 0), \\
\mu_{k}(\mathbb{D}), & \Theta=0, \\
\mu_{k}(\Theta) \sin ^{2} \Theta, & \Theta \in(0, \pi),
\end{array} \quad \begin{array}{r}
\mu_{2}(\Theta) \operatorname{si}^{2}(\Theta) \\
8 \\
6 \\
4
\end{array}\right.
$$

decreases strictly and continuously from $\infty$ to 0 .
Similarly for Dirichlet eigenvalues when $k \geq 1$.
i.e. monotonicity of "eigenvalue times perimeter squared"
(intrinsic perimeter of disk or cap is $2 \pi \sinh |\Theta|$ or $2 \pi \sin \Theta$ ).
Higher dimensions? Scott Harman (PhD student) in progress.

