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@ Let (M, g) be a smooth, compact, connected Riemannian
manifold of dimension d and —A, be the Laplace—Beltrami
operator on M.

@ —Ag has discrete spectrum, 0 = A3 < A3 < A3 < ..., with
0 < )‘j — OQ.

Theorem (Weyl, 1911 (slightly modified setting))
Let

N(A) = #{j : N <AL

el lo(M)volga(By)
Vo) VOlpa (Bj
N()‘): g (277)5

A9 4 o()\9).

@ (Hilbert, 1910) This conjecture will not be proved in my
lifetime.
Proved by Weyl in 1911
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o Consider u(t) := tr(e'49) = 37 e ™ t>o0.
Theorem (Minakshisundaram—Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of
dimension d. Then, there are {a;}?°, such that for all N we
have, ast — 0t :

VOI ) N +] _d.pN
+ O(t~2th).
(47T g Z ( )

@ Asymptotics for u(t) imply the theorem of Weyl:
N()\) volg(M)voIRd(B1))\d i O()\d).
Naive Conjecture
Let N(\) := #{j : Aj < A}. Then, there are {b;}°, such that for
all N we have:
volg(M)volgq(By)
(2m)d

N—1
AT+ bAdT + o).
Jj=1

N(\) =
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@ Then even the second asymptotic term of N(\) does not
exist!
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N g, V) =4#{: <A} = @) M4LEN g, V).

@ Levitan (1952), Avakumovi¢ (1956), E(\, g, V) = O(\9~ 1)
@ Hdérmander (1968) - introduces the theory of Fourier
integral operators - E(\, g, V) = O(\91)

Theorem (Duistermaat—Guillemin, 1975)

If there are few periodic geodesics, then E(\, g, V) = o(\9~1).
If there are only periodic geodesics E(), g, V) # o(\9~1).

All based on Levitan’s wave method Other people working on
this problem: V.lvrii, R.Melrose, Yu.Safarov, D.Vassiliev,
S.Zelditch, and many others.



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(\, g, V) has a full
asymptotic expansion in powers of \.




A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(\, g, V) has a full
asymptotic expansion in powers of \.

@ Problem!: Compact manifolds without a closed geodesic is
not a very big family.



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(\, g, V) has a full
asymptotic expansion in powers of \.

@ Problem!: Compact manifolds without a closed geodesic is
not a very big family.

@ Move to non-compact manifolds, say take M = RY.



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(\, g, V) has a full
asymptotic expansion in powers of \.

@ Problem!: Compact manifolds without a closed geodesic is
not a very big family.

@ Move to non-compact manifolds, say take M = RY.

@ If V(x) — 400 as X — oo, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(\, g, V) has a full
asymptotic expansion in powers of \.

@ Problem!: Compact manifolds without a closed geodesic is
not a very big family.

@ Move to non-compact manifolds, say take M = RY.

@ If V(x) — 400 as X — oo, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.

@ New problem!: N(A, g, V) does not make sense here
(unless V is very structured at infinity).
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e(—ADg + V, A)(X) =1 e (—Ag + V)(X, X).

If M is compact, we have:

e(—Ag + V. N)(x) = > 4P,

A<A

where {¢;} are L2-normalised eigenfunctions.
In this case we have

N(—Dg+ V,\) = /Me(—Ag+ V, \)(x).
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High energy asymptotics of the LDS

Theorem (Levitan 1952, Avakumovi¢ 1956, Hérmander 1968)

e(—Ag + V, \)(x) = (27) " 9Volga(By)AY + O(A4T).

Theorem (Safarov 1988, Sogge—Zelditch 2002)
If there are few loops from x to itself, then

e(—Ag + V,\)(x) = (27) " 9Volga(B1)AY + o(A9T).
If the geodesics through x are all periodic with the same time,

le(—Ag + V, M) (x) — (21) " %Volga(B1)AY| # o(X9~T).
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A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then e(—Ag + V, X)(x) has a full
asymptotic expansion in powers of \.

@ Problem!: (still) We do not know of any compact manifolds
without a loop.

@ Move to non-compact manifolds. Now this makes sense!
@ One example M = R? with the standard metric.
e Still a problem V = |x|2.
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We say V € Ci*(RY) if V € C and for all a € N9, there are
C, > 0 such that
|05 V]| < C,.

Conjecture (LP—Shterenberg 2016)

Suppose V € C*(RY). Then, there are {aj(x)}72 such that for
any N > 0,

2
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e(—Apa + V,N)(X) = Y g(x)ATT + oM.
j

Il
=}

<

This conjecture is complicated, since the spectrum can be very
wild

@ Dense pure point

@ Positive, but arbitrarily small Hausdorff dimension

@ Absolutely continuous

@ Singular continuous
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The conjecture is known for several classes of

potentials

Potential Method Reference
periodic (P) gauge transform (GT) | [LP—Shterenberg 2016]
almost periodic GT [LP—Shterenberg 2016]
compact support (CS) wave method [Popov—Shubin 1983]
CS+PonR wave method + GT [Galkowski 2020]




The conjecture is true in 1 dimension

Theorem (Galkowski — LP — Shterenberg 2022)
Let V € C°(R;R). Then there are {aj(x)};2, such that for all
N > 0, there is Cy > 0 satisfying
N—1 '
]e(—AR ANGEDS a,-(x)A1—2f‘ < CuA1 2N,
j=0
Moreover, aj(x) can be determined from a finite (j-dependent)
number of derivatives of V at x.




Corollaries of the theorem: Spectral Gaps

Corollary (Galkowski — LP — Shterenberg 2022)

Let V € C;°(R;R). Then for all N > 0, there is Cy > 0 such
that forall \ > 1 ande > 0, if

spec(—Ar + V)N[A—eA+¢€ =0,

then

€< CN)\_N.
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Corollary (Galkowski — LP — Shterenberg 2022)

Let V € C;°(R;R). Then for all N > 0 there is cy > 0 such that
for any A > 1 and any solution of

(—Ag+ V - \)u=0,

we have

[1ullz > en AU

Corollary (Galkowski — LP — Shterenberg 2022, (see also

Delyon—Foulon 1986))

Let V € C;°(R; R). If the Lyapunov exponent, A(\), makes
sense, then A(\) < CyA~N.

Heuristic message
The spectrum WANTS to be absolutely continuous for
high energies.



