Classical wave methods and modern gauge transforms: Spectral asymptotics in the one dimensional case

Leonid Parnovski

Department of Mathematics
UCL

Joint work with J.Galkowski (UCL) and R.Shterenberg (UAB)

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $0 \leq \lambda_{j} \rightarrow \infty$.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $0 \leq \lambda_{j} \rightarrow \infty$.

Conjecture (Sommerfeld-Lorentz, 1910)
Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $0 \leq \lambda_{j} \rightarrow \infty$.

Conjecture (Sommerfeld-Lorentz, 1910)
Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right)
$$

- (Hilbert, 1910) This conjecture will not be proved in my lifetime.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $0 \leq \lambda_{j} \rightarrow \infty$.

Theorem (Weyl, 1911 (slightly modified setting))

Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

- (Hilbert, 1910) This conjecture will not be proved in my lifetime.

Proved by Weyl in 1911

High energy spectral asymptotics: heat traces

- Consider $u(t):=\operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}, t>0$.
- Consider $u(t):=\operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}, t>0$.

Theorem (Minakshisundaram-Pleijel - 1949)
Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N we have, as $t \rightarrow 0^{+}$:

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

High energy spectral asymptotics: heat traces

- Consider $u(t):=\operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}, t>0$.

Theorem (Minakshisundaram-Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N we have, as $t \rightarrow 0^{+}$:

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

- Asymptotics for $u(t)$ imply the theorem of Weyl:

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+O\left(\lambda^{d}\right)
$$

High energy spectral asymptotics: heat traces

- Consider $u(t):=\operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}, t>0$.

Theorem (Minakshisundaram-Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N we have, as $t \rightarrow 0^{+}$:

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

- Asymptotics for $u(t)$ imply the theorem of Weyl:

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

Naive Conjecture

Let $N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\}$. Then, there are $\left\{b_{j}\right\}_{j=1}^{\infty}$ such that for all N we have:

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+\sum_{j=1}^{N-1} b_{j} \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.
- Then even the second asymptotic term of $N(\lambda)$ does not exist!

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$

High energy spectral asymptotics：improved errors

－Let $V \in C^{\infty}(M ;[0, \infty))$
－$-\Delta_{g}+V$ has discrete spectrum， $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$ ， with $\lambda_{j} \rightarrow \infty$ ．

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.
$N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}$
- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.
$N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)$.
- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.
$N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)$.
- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators - $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $-E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $-E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $-E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

All based on Levitan's wave method

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $-E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

All based on Levitan's wave method Other people working on this problem: V.Ivrii, R.Melrose, Yu.Safarov, D.Vassiliev, S.Zelditch, and many others.

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics，then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ ．
－Problem！：Compact manifolds without a closed geodesic is not a very big family．

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: Compact manifolds without a closed geodesic is not a very big family.
- Move to non-compact manifolds, say take $M=\mathbb{R}^{d}$.

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: Compact manifolds without a closed geodesic is not a very big family.
- Move to non-compact manifolds, say take $M=\mathbb{R}^{d}$.
- If $V(\mathbf{x}) \rightarrow+\infty$ as $\mathbf{x} \rightarrow \infty$, the spectrum is discrete, but the conjecture is obviously false (harmonic oscillator). So, take V to be bounded.

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: Compact manifolds without a closed geodesic is not a very big family.
- Move to non-compact manifolds, say take $M=\mathbb{R}^{d}$.
- If $V(\mathbf{x}) \rightarrow+\infty$ as $\mathbf{x} \rightarrow \infty$, the spectrum is discrete, but the conjecture is obviously false (harmonic oscillator). So, take V to be bounded.
- New problem!: $N(\lambda, g, V)$ does not make sense here (unless V is very structured at infinity).

A replacement for the Weyl law

The local counting function or the local density of states (LDS) is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

A replacement for the Weyl law

The local counting function or the local density of states (LDS) is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

If M is compact, we have:

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=\sum_{\lambda_{j} \leq \lambda}\left|\phi_{j}(x)\right|^{2}
$$

where $\left\{\phi_{j}\right\}$ are L^{2}-normalised eigenfunctions.

A replacement for the Weyl law

The local counting function or the local density of states (LDS) is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

If M is compact, we have:

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=\sum_{\lambda_{j} \leq \lambda}\left|\phi_{j}(x)\right|^{2}
$$

where $\left\{\phi_{j}\right\}$ are L^{2}-normalised eigenfunctions.
In this case we have

$$
N\left(-\Delta_{g}+V, \lambda\right)=\int_{M} e\left(-\Delta_{g}+V, \lambda\right)(x)
$$

High energy asymptotics of the LDS

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vo}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

Theorem (Safarov 1988, Sogge-Zelditch 2002)
If there are few loops from x to itself, then

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+o\left(\lambda^{d-1}\right)
$$

High energy asymptotics of the LDS

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

Theorem (Safarov 1988, Sogge-Zelditch 2002)

If there are few loops from x to itself, then

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vo}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+o\left(\lambda^{d-1}\right)
$$

If the geodesics through x are all periodic with the same time,

$$
\left|e\left(-\Delta_{g}+V, \lambda\right)(x)-(2 \pi)^{-d} \mathrm{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}\right| \neq o\left(\lambda^{d-1}\right)
$$

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds.

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds. Now this makes sense!

A third naive conjecture

Naive Conjecture

If there are no geodesic loops，then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ ．
－Problem！：（still）We do not know of any compact manifolds without a loop．
－Move to non－compact manifolds．Now this makes sense！
－One example $M=\mathbb{R}^{d}$ with the standard metric．

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds. Now this makes sense!
- One example $M=\mathbb{R}^{d}$ with the standard metric.
- Still a problem $V=|x|^{2}$.

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha} .
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V_{1}, V_{2} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, if $V_{1}=V_{2}$ in a neighborhood of x, for any $N>0$, we have

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V_{1}, \lambda\right)(x)-e\left(-\Delta_{\mathbb{R}^{d}}+V_{2}, \lambda\right)(x)=O\left(\lambda^{-N}\right)
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

This conjecture is complicated, since the spectrum can be very wild

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

This conjecture is complicated, since the spectrum can be very wild

- Dense pure point

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

This conjecture is complicated, since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

This conjecture is complicated, since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension
- Absolutely continuous

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha} .
$$

Conjecture (LP-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{\mathrm{a}_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right) .
$$

This conjecture is complicated, since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension
- Absolutely continuous
- Singular continuous

The conjecture is known for several classes of potentials

Potential	Method	Reference

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)		[LP-Shterenberg 2016]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)		[LP-Shterenberg 2016]
almost periodic		[LP-Shterenberg 2016]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)		[LP-Shterenberg 2016]
almost periodic		[LP-Shterenberg 2016]
compact support (CS)		[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)	gauge transform (GT)	[LP-Shterenberg 2016]
almost periodic	GT	[LP-Shterenberg 2016]
compact support (CS)		[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)	gauge transform (GT)	[LP-Shterenberg 2016]
almost periodic	GT	[LP-Shterenberg 2016]
compact support (CS)	wave method	[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)	gauge transform (GT)	[LP-Shterenberg 2016]
almost periodic	GT	[LP-Shterenberg 2016]
compact support (CS)	wave method	[Popov-Shubin 1983]
CS +P on \mathbb{R}		[Galkowski 2020]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic (P)	gauge transform (GT)	[LP-Shterenberg 2016]
almost periodic	GT	[LP-Shterenberg 2016]
compact support (CS)	wave method	[Popov-Shubin 1983]
CS +P on \mathbb{R}	wave method + GT	[Galkowski 2020]

The conjecture is true in 1 dimension

Theorem (Galkowski - LP - Shterenberg 2022)

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for all $N>0$, there is $C_{N}>0$ satisfying

$$
\left|e\left(-\Delta_{\mathbb{R}}+V, \lambda\right)(x)-\sum_{j=0}^{N-1} a_{j}(x) \lambda^{1-2 j}\right| \leq C_{N} \lambda^{1-2 N}
$$

Moreover, $a_{j}(x)$ can be determined from a finite (j-dependent) number of derivatives of V at x.

Corollaries of the theorem：Spectral Gaps

Corollary（Galkowski－LP－Shterenberg 2022）
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$ ．Then for all $N>0$ ，there is $C_{N}>0$ such that for all $\lambda \geq 1$ and $\epsilon>0$ ，if

$$
\operatorname{spec}\left(-\Delta_{\mathbb{R}}+V\right) \cap[\lambda-\epsilon, \lambda+\epsilon]=\emptyset,
$$

then

$$
\epsilon \leq C_{N} \lambda^{-N}
$$

Corollaries of the theorem：Almost plane waves

Corollary（Galkowski－LP－Shterenberg 2022）
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$ ．Then for all $N>0$ there are $c_{N}>0$ and $C>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

and any $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<c_{N} \lambda^{N}$ ，we have：

$$
\left|u\left(x_{1}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{1}\right)\right|^{2} \leq e^{C \lambda^{-1}}\left(\left|u\left(x_{2}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{2}\right)\right|^{2}\right)
$$

Corollaries of the theorem: Almost plane waves

Corollary (Galkowski - LP - Shterenberg 2022)
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there are $c_{N}>0$ and $C>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

and any $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<c_{N} \lambda^{N}$, we have:

$$
\left|u\left(x_{1}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{1}\right)\right|^{2} \leq e^{C \lambda^{-1}}\left(\left|u\left(x_{2}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{2}\right)\right|^{2}\right)
$$

~NWMAMAMAMNMMWW~

Corollaries of the theorem: Lyapunov exponents

Corollary (Galkowski - LP - Shterenberg 2022)
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there is $c_{N}>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

we have

$$
\|u\|_{2} \geq c_{N} \lambda^{N}\|u\|_{\infty}
$$

Corollaries of the theorem: Lyapunov exponents

Corollary (Galkowski - LP - Shterenberg 2022)

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there is $c_{N}>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

we have

$$
\|u\|_{2} \geq c_{N} \lambda^{N}\|u\|_{\infty}
$$

Corollary (Galkowski - LP - Shterenberg 2022, (see also Delyon-Foulon 1986))
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. If the Lyapunov exponent, $\Lambda(\lambda)$, makes sense, then $\Lambda(\lambda) \leq C_{N} \lambda^{-N}$.

Corollaries of the theorem: Lyapunov exponents

Corollary (Galkowski - LP - Shterenberg 2022)

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there is $c_{N}>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

we have

$$
\|u\|_{2} \geq c_{N} \lambda^{N}\|u\|_{\infty}
$$

```
Corollary (Galkowski - LP - Shterenberg 2022, (see also Delyon-Foulon 1986))
```

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. If the Lyapunov exponent, $\Lambda(\lambda)$, makes sense, then $\Lambda(\lambda) \leq C_{N} \lambda^{-N}$.

Heuristic message
The spectrum WANTS to be absolutely continuous for high energies.

