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High energy spectral asymptotics: the origins

Let (M,g) be a smooth, compact, connected Riemannian
manifold of dimension d and −∆g be the Laplace–Beltrami
operator on M.

−∆g has discrete spectrum, 0 = λ2
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2 ≤ . . . , with

0 ≤ λj →∞.

(Hilbert, 1910) This conjecture will not be proved in my
lifetime.
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High energy spectral asymptotics: heat traces

Consider u(t) := tr(et∆g ) =
∑

j e−tλ2
j , t > 0.

Theorem (Minakshisundaram–Pleijel - 1949)

Let (M,g) be a smooth, compact Riemannian manifold of
dimension d. Then, there are {aj}∞j=1 such that for all N we
have, as t → 0+:

u(t) =
vol(M)

(4πt)
d
2

+
N−1∑
j=1

aj t−
d
2 +j + O(t−

d
2 +N).

Asymptotics for u(t) imply the theorem of Weyl:
N(λ) =
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Let (M,g) = (S2,ground).

Then even the second asymptotic term of N(λ) does not
exist!
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High energy spectral asymptotics: improved errors

Let V ∈ C∞(M; [0,∞))

−∆g + V has discrete spectrum, 0 ≤ λ2
0 ≤ λ2

1 ≤ λ2
2 ≤ . . . ,

with λj →∞.

N(λ,g,V ) := #{j : λj ≤ λ} =:
volg(M)volRd (B1)

(2π)d λd +E(λ,g,V )

.

Levitan (1952), Avakumović (1956), E(λ,g,V ) = O(λd−1)
Hörmander (1968) - introduces the theory of Fourier
integral operators - E(λ,g,V ) = O(λd−1)

Theorem (Duistermaat–Guillemin, 1975)

If there are few periodic geodesics, then E(λ,g,V ) = o(λd−1).

If there are only periodic geodesics E(λ,g,V ) 6= o(λd−1).

All based on Levitan’s wave method Other people working on
this problem: V.Ivrii, R.Melrose, Yu.Safarov, D.Vassiliev,
S.Zelditch, and many others.
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A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ,g,V ) has a full
asymptotic expansion in powers of λ.

Problem!: Compact manifolds without a closed geodesic is
not a very big family.
Move to non-compact manifolds, say take M = Rd .
If V (x)→ +∞ as x→∞, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.
New problem!: N(λ,g,V ) does not make sense here
(unless V is very structured at infinity).



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ,g,V ) has a full
asymptotic expansion in powers of λ.

Problem!: Compact manifolds without a closed geodesic is
not a very big family.

Move to non-compact manifolds, say take M = Rd .
If V (x)→ +∞ as x→∞, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.
New problem!: N(λ,g,V ) does not make sense here
(unless V is very structured at infinity).



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ,g,V ) has a full
asymptotic expansion in powers of λ.

Problem!: Compact manifolds without a closed geodesic is
not a very big family.
Move to non-compact manifolds, say take M = Rd .

If V (x)→ +∞ as x→∞, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.
New problem!: N(λ,g,V ) does not make sense here
(unless V is very structured at infinity).



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ,g,V ) has a full
asymptotic expansion in powers of λ.

Problem!: Compact manifolds without a closed geodesic is
not a very big family.
Move to non-compact manifolds, say take M = Rd .
If V (x)→ +∞ as x→∞, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.

New problem!: N(λ,g,V ) does not make sense here
(unless V is very structured at infinity).



A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then N(λ,g,V ) has a full
asymptotic expansion in powers of λ.

Problem!: Compact manifolds without a closed geodesic is
not a very big family.
Move to non-compact manifolds, say take M = Rd .
If V (x)→ +∞ as x→∞, the spectrum is discrete, but the
conjecture is obviously false (harmonic oscillator). So, take
V to be bounded.
New problem!: N(λ,g,V ) does not make sense here
(unless V is very structured at infinity).



A replacement for the Weyl law

The local counting function or the local density of states (LDS)
is given by

e(−∆g + V , λ)(x) := 1(−∞,λ2](−∆g + V )(x , x).

If M is compact, we have:

e(−∆g + V , λ)(x) =
∑
λj≤λ
|φj(x)|2,

where {φj} are L2-normalised eigenfunctions.
In this case we have

N(−∆g + V , λ) =

∫
M

e(−∆g + V , λ)(x).
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High energy asymptotics of the LDS

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

e(−∆g + V , λ)(x) = (2π)−dvolRd (B1)λd + O(λd−1).

Theorem (Safarov 1988, Sogge–Zelditch 2002)

If there are few loops from x to itself, then

e(−∆g + V , λ)(x) = (2π)−dvolRd (B1)λd + o(λd−1).

If the geodesics through x are all periodic with the same time,∣∣e(−∆g + V , λ)(x)− (2π)−dvolRd (B1)λd ∣∣ 6= o(λd−1).
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asymptotic expansion in powers of λ.

Problem!: (still) We do not know of any compact manifolds
without a loop.

Move to non-compact manifolds.

Now this makes sense!

One example M = Rd with the standard metric.
Still a problem V = |x |2.
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A less naive conjecture

We say V ∈ C∞b (Rd ) if V ∈ C∞ and for all α ∈ Nd , there are
Cα > 0 such that

‖∂αx V‖L∞ ≤ Cα.

Conjecture (LP–Shterenberg 2016)

Suppose V ∈ C∞b (Rd ). Then, there are {aj(x)}∞j=0 such that for
any N > 0,

e(−∆Rd + V , λ)(x) =
N−1∑
j=0

aj(x)λd−j + O(λd−N).
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The conjecture is known for several classes of
potentials

Potential Method Reference

periodic (P) gauge transform (GT) [LP–Shterenberg 2016]

almost periodic GT [LP–Shterenberg 2016]

compact support (CS) wave method [Popov–Shubin 1983]

CS +P on R wave method + GT [Galkowski 2020]
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The conjecture is true in 1 dimension

Theorem (Galkowski – LP – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then there are {aj(x)}∞j=0 such that for all
N > 0, there is CN > 0 satisfying

∣∣∣e(−∆R + V , λ)(x)−
N−1∑
j=0

aj(x)λ1−2j
∣∣∣ ≤ CNλ

1−2N .

Moreover, aj(x) can be determined from a finite (j-dependent)
number of derivatives of V at x.



Corollaries of the theorem: Spectral Gaps

Corollary (Galkowski – LP – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then for all N > 0, there is CN > 0 such
that for all λ ≥ 1 and ε > 0, if

spec(−∆R + V ) ∩ [λ− ε, λ+ ε] = ∅,

then
ε ≤ CNλ

−N .



Corollaries of the theorem: Almost plane waves
Corollary (Galkowski – LP – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then for all N > 0 there are cN > 0 and
C > 0 such that for any λ > 1 and any solution of

(−∆R + V − λ2)u = 0,

and any x1, x2 ∈ R with |x1 − x2| < cNλ
N , we have:

|u(x1)|2 + λ−2|u′(x1)|2 ≤ eCλ−1
(|u(x2)|2 + λ−2|u′(x2)|2)
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Corollaries of the theorem: Lyapunov exponents

Corollary (Galkowski – LP – Shterenberg 2022)

Let V ∈ C∞b (R;R). Then for all N > 0 there is cN > 0 such that
for any λ > 1 and any solution of

(−∆R + V − λ2)u = 0,

we have
||u||2 ≥ cNλ

N ||u||∞.

Corollary (Galkowski – LP – Shterenberg 2022, (see also
Delyon–Foulon 1986))

Let V ∈ C∞b (R;R). If the Lyapunov exponent, Λ(λ), makes
sense, then Λ(λ) ≤ CNλ

−N .

Heuristic message
The spectrum WANTS to be absolutely continuous for

high energies.
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