The isoperimetric inequality outside a convex set: the case of equality

Nicola Fusco

Shape Optimisation and Geometric Spectral Theory
Edinburgh, September 20-23, 2022

A well-known isoperimetric inequality

Among all sets of finite perimeter $\Omega \subset \mathbb{R}^{N}$ of volume m contained in a half space \mathscr{H} the unique minimizer of $P(\Omega ; \mathscr{H})$ (the perimeter of Ω in \mathscr{H}) is the half ball $B^{+},\left|B^{+}\right|=m$ sitting on $\partial \mathscr{H}$

The isoperimetric inequality outside a convex set

Theorem (Choe-Ghomi-Ritoré, 2007)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a closed convex set with nonempty interior. For any set of finite perimeter $\Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$ we have
(*)

$$
P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right) \geq P\left(B^{+} ; \mathbb{R}^{N} \backslash \mathscr{H}\right)
$$

(the surface measure of the half ball B^{+}with the same volume of Ω)

Moreover, if \mathcal{C} is smooth and Ω is a smooth bounded set for which the equality in $(*)$ holds, then Ω is a half ball sitting on a facet of \mathcal{C}.

The isoperimetric profile

$$
\text { (*) } \quad P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right) \geq N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}
$$

The isoperimetric profile
(*) $\quad P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right) \geq N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}$
Introducing the isoperimetric profile of \mathcal{C}

$$
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

The isoperimetric profile
(*) $\quad P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right) \geq N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}$ Introducing the isoperimetric profile of \mathcal{C}

$$
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

and the isoperimetric profile of the half space

$$
\mathscr{H}=\left\{x \in \mathbb{R}^{N}: x_{N}>0\right\}
$$

$$
\begin{aligned}
I_{\mathscr{H}}(m) & =\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\} \\
& =N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}
\end{aligned}
$$

The isoperimetric profile
(*) $\quad P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right) \geq N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}$ Introducing the isoperimetric profile of \mathcal{C}

$$
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

and the isoperimetric profile of the half space
$\mathscr{H}=\left\{x \in \mathbb{R}^{N}: x_{N}>0\right\}$

$$
\begin{aligned}
I_{\mathscr{H}}(m) & =\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\} \\
& =N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}
\end{aligned}
$$

$\left.{ }^{*}\right)$ can be rewritten as

$$
I_{C}(m) \geq I_{\mathscr{H}}(m)
$$

Our result

Theorem (The equality case, F.-Morini (2021))
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be any closed convex set with nonempty interior and let $\Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$ be any set of finite perimeter such that

$$
P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right)=N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}
$$

Then Ω is a half ball supported on a facet of \mathcal{C}.

Motivation

In models of vapor-liquid-solid grown nanowires
$\mathcal{C}=$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section

Motivation

In models of vapor-liquid-solid grown nanowires
$\mathcal{C}=$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section
The crystal growth is driven by the capillarity energy functional

$$
P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right)-\lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \quad-1<\lambda<1
$$

Motivation

In models of vapor-liquid-solid grown nanowires
$\mathcal{C}=$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section
The crystal growth is driven by the capillarity energy functional

$$
P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right)-\lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \quad-1<\lambda<1
$$

The case $\lambda=0$ corresponds to the relative perimeter

Motivation

In models of vapor-liquid-solid grown nanowires
$\mathcal{C}=$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section
The crystal growth is driven by the capillarity energy functional

$$
P\left(\Omega ; \mathbb{R}^{N} \backslash \mathcal{C}\right)-\lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \quad-1<\lambda<1
$$

The case $\lambda=0$ corresponds to the relative perimeter
Qualitative properties of local minimizers studied in a recent paper by Fonseca-F.-Leoni-Morini (2021)

Basic notation

$$
\text { Let } \theta \in(0, \pi)
$$

$S_{\theta}=$ the unit spherical cap forming an angle θ with $\partial \mathscr{H}$

Basic notation - The total curvature

If $x \in \Sigma$ the normal cone at x to Σ is defined as

$$
N_{x} \Sigma=\left\{\nu \in \mathbb{S}^{N-1}:(y-x) \cdot \nu \leq 0 \forall y \in \Sigma\right\}
$$

Then we set
$\Sigma^{+}=\left\{x \in \Sigma \backslash \mathcal{C}: \exists\right.$ a support hyperplane Π_{x}, s.t. $\left.\Pi_{x} \cap \Sigma=\{x\}\right\}$

Basic notation - The total curvature

$$
\begin{aligned}
& \Omega \subset \mathbb{R}^{N} \backslash \mathcal{C} \text { an open set } \\
& \Sigma=\overline{\partial \Omega \backslash \mathcal{C}}
\end{aligned}
$$

If $x \in \Sigma$ the normal cone at x to Σ is defined as

$$
N_{x} \Sigma=\left\{\nu \in \mathbb{S}^{N-1}:(y-x) \cdot \nu \leq 0 \forall y \in \Sigma\right\}
$$

Then we set

$$
\begin{aligned}
\Sigma^{+}= & \left\{x \in \Sigma \backslash \mathcal{C}: \exists \text { a support hyperplane } \Pi_{x}, \text { s.t. } \Pi_{x} \cap \Sigma=\{x\}\right\} \\
& \tau^{+}(\Sigma)=\mathcal{H}^{N-1}\left(\bigcup_{x \in \Sigma^{+}} N_{x} \Sigma\right)=\text { the total curvature of } \Sigma
\end{aligned}
$$

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)
Let \mathcal{C} be a smooth convex set and let $\Sigma=\overline{\partial \Omega \backslash \mathcal{C}}, \Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$, be a C^{2} hypersurface with boundary. Assume that $\partial \Sigma$ intersects $\partial \mathcal{C}$ orthogonally. Then

$$
\tau^{+}(\Sigma) \geq \frac{N \omega_{N}}{2}
$$

Moreover if the equality holds then $\partial \Sigma$ lies on a support hyperplane to \mathcal{C}

In other words:

The measure of the image of Σ^{+}through the Gauss map is bigger than the one of a half sphere

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)
Let \mathcal{C} be a smooth convex set and let $\Sigma=\overline{\partial \Omega \backslash \mathcal{C}}, \Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$, be a C^{2} hypersurface with boundary. Assume that $\partial \Sigma$ intersects $\partial \mathcal{C}$ orthogonally. Then

$$
\tau^{+}(\Sigma) \geq \frac{N \omega_{N}}{2}
$$

Moreover if the equality holds then $\partial \Sigma$ lies on a support hyperplane to \mathcal{C}

The regularity of \mathcal{C} is crucial to ensure that the minimizer Ω_{m} of

$$
\min \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

satisfies the orthogonality condition at $\partial \mathcal{C}$

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)
Let \mathcal{C} be a smooth convex set and let $\Sigma=\overline{\partial \Omega \backslash \mathcal{C}}, \Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$, be a C^{2} hypersurface with boundary. Assume that $\partial \Sigma$ intersects $\partial \mathcal{C}$ orthogonally. Then

$$
\tau^{+}(\Sigma) \geq \frac{N \omega_{N}}{2}
$$

Moreover if the equality holds then $\partial \Sigma$ lies on a support hyperplane to \mathcal{C}

The regularity of \mathcal{C} is crucial to ensure that the minimizer Ω_{m} of

$$
\min \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

satisfies the orthogonality condition at $\partial \mathcal{C}$ (this is the Young's law when $\lambda=0$, i.e. $\theta=\frac{\pi}{2}$)

Theorem (F.-Morini, 2021)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a closed convex set of class $C^{1}, \Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$ a bounded open set and $\Sigma:=\overline{\partial \Omega \backslash \mathcal{C}}$. Let $\theta \in(0, \pi)$ such that
(1) $\nu \cdot \nu_{\mathcal{C}}(x) \leq \cos \theta$ whenever $x \in \Sigma \cap \partial \mathcal{C}, \nu \in N_{x} \Sigma$

$$
\begin{equation*}
\text { then } \tau^{+}(\Sigma) \geq \mathcal{H}^{N-1}\left(S_{\theta}\right) \tag{2}
\end{equation*}
$$

Let $\Sigma \cap \partial \mathcal{C} \subset B_{r}$. For any $\varepsilon>0$ there exists δ, depending on ε, θ and r, but not on \mathcal{C} or Σ, such that if

$$
\begin{gathered}
\nu \cdot \nu_{\mathcal{C}}(x) \leq \cos \theta+\delta \quad \text { whenever } x \in \Sigma \cap \partial \mathcal{C}, \nu \in N_{x} \Sigma \\
\text { and } \tau^{+}(\Sigma) \leq \mathcal{H}^{N-1}\left(S_{\theta}\right)+\delta
\end{gathered}
$$

then $\Sigma \cap \partial \mathcal{C}$ is not empty and lies between two parallel ε-distant hyperplanes orthogonal to $\nu_{\mathcal{C}}(x)$ for some $x \in \Sigma \cap \partial \mathcal{C}$. In particular, if (1) is satisfied and the equality in (2) holds, then $\Sigma \cap \partial \mathcal{C}$ lies on a support hyperplane to \mathcal{C}.

Both Σ_{1} and Σ_{2} satisfy

$$
\nu \cdot \nu_{\mathcal{C}}(x) \leq \cos \left(\frac{3 \pi}{4}\right) \quad \text { whenever } x \in \Sigma_{i} \cap \partial \mathcal{C}, \nu \in N_{x} \Sigma_{i}
$$

and

$$
\tau^{+}\left(\Sigma_{i}\right)=\mathcal{H}^{N-1}\left(S_{\frac{3 \pi}{4}}\right)
$$

and thus $\quad \Sigma_{1} \cap \partial \mathcal{C}, \Sigma_{2} \cap \partial \mathcal{C}$ lie on a support plane to \mathcal{C}

Theorem (A Willmore type inequality)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a closed convex set with nonempty interior, $\Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$ a bounded open set, $\Sigma:=\overline{\partial \Omega \backslash \mathcal{C}}$ and let $\theta \in(0, \pi)$. Assume that $\Sigma \backslash \mathcal{C}$ is of class $C^{1,1}$. Assume also
$\nu \cdot \nu^{\prime} \leq \cos \theta$ whenever $x \in \Sigma \cap \partial \mathcal{C}, \nu \in N_{x} \Sigma$ and $\nu^{\prime} \in N_{x} \mathcal{C}$
Then $\quad \int_{\Sigma \backslash \subset}\left|H_{\Sigma}\right|^{N-1} d \mathcal{H}^{N-1} \geq(N-1)^{N-1} \mathcal{H}^{N-1}\left(S_{\theta}\right)$
Moreover, if equality holds in (*) and $H_{\Sigma} \neq 0$ a.e., then $\Sigma \backslash \mathcal{C}$ coincides, up to a rigid motion, with an omothetic of S_{θ} sitting on a facet of \mathcal{C}.

Theorem (A Willmore type inequality)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a closed convex set with nonempty interior, $\Omega \subset \mathbb{R}^{N} \backslash \mathcal{C}$ a bounded open set, $\Sigma:=\overline{\partial \Omega \backslash \mathcal{C}}$ and let $\theta \in(0, \pi)$. Assume that $\Sigma \backslash \mathcal{C}$ is of class $C^{1,1}$. Assume also
$\nu \cdot \nu^{\prime} \leq \cos \theta$ whenever $x \in \Sigma \cap \partial \mathcal{C}, \nu \in N_{x} \Sigma$ and $\nu^{\prime} \in N_{x} \mathcal{C}$
Then $\quad \int_{\Sigma \backslash \subset}\left|H_{\Sigma}\right|^{N-1} d \mathcal{H}^{N-1} \geq(N-1)^{N-1} \mathcal{H}^{N-1}\left(S_{\theta}\right)$
Moreover, if equality holds in (*) and $H_{\Sigma} \neq 0$ a.e., then $\Sigma \backslash \mathcal{C}$ coincides, up to a rigid motion, with an omothetic of S_{θ} sitting on a facet of \mathcal{C}.

When $N=3$ (*) becomes

$$
\int_{\Sigma \backslash C} H_{\Sigma}^{2} d \mathcal{H}^{2} \geq 4 \mathcal{H}^{2}\left(S_{\theta}\right)
$$

Asymptotic behaviour of the isoperimetric profile

$$
\begin{gathered}
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\} \\
I_{\mathscr{H}}(m)=\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\}=N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}} \\
I_{\mathcal{C}}(m) \geq I_{\mathscr{H}}(m)
\end{gathered}
$$

Asymptotic behaviour of the isoperimetric profile

$$
\begin{gathered}
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\} \\
I_{\mathscr{H}}(m)=\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\}=N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}} \\
I_{\mathcal{C}}(m) \geq I_{\mathscr{H}}(m)
\end{gathered}
$$

Asymptotic behaviour of the isoperimetric profile

$$
\begin{aligned}
& I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\} \\
& I_{\mathscr{C}}(m)=\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\}=N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}} \\
& I_{\mathcal{C}}(m) \geq I_{\mathscr{C}}(m)
\end{aligned}
$$

Asymptotic behaviour of the isoperimetric profile

$$
I_{\mathcal{C}}(m)=\inf \left\{P\left(E ; \mathbb{R}^{N} \backslash \mathcal{C}\right): E \subset \mathbb{R}^{N} \backslash \mathcal{C},|E|=m\right\}
$$

$$
I_{\mathscr{H}}(m)=\min \{P(E ; \mathscr{H}): E \subset \mathscr{H},|E|=m\}=N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}
$$

$$
I_{C}(m) \geq I_{\mathscr{C}}(m)
$$

$$
P\left(S ; \mathbb{R}^{3} \backslash \mathcal{C}\right)=I_{\mathcal{C}}(m)=I_{\mathscr{H}}(m)
$$

$P\left(E_{n} ; \mathbb{R}^{\mathbf{3}} \backslash \mathcal{C}\right) \rightarrow I_{\mathcal{C}}(m)=I_{\mathscr{H}}(\stackrel{\downarrow}{m})!$

Asymptotic behaviour of the isoperimetric profile

Asymptotic behaviour of the isoperimetric profile

$$
P\left(S ; \mathbb{R}^{3} \backslash \mathcal{C}\right)=I_{C}(m)=I_{\mathscr{H}}(m) \quad P\left(E ; \mathbb{R}^{3} \backslash \mathcal{C}\right) m^{-\frac{N-1}{N}} \approx P(B)|B|^{-\frac{N-1}{N}}
$$

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body, recall

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \text { (the recession cone) }
$$

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body, recall

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \quad(\text { the recession cone })
$$

$\operatorname{dim}\left(\mathcal{C}_{\infty}\right)=1$

$\operatorname{dim}\left(\mathcal{C}_{\infty}\right)=3$

However,

$\operatorname{dim}\left(\mathcal{C}_{\infty}\right)=1$

However,

But

$$
\lim _{m \rightarrow \infty} \frac{I_{\mathcal{C}}(m)}{m^{\frac{2}{3}}}=\frac{P(B)}{|B|^{\frac{2}{3}}}
$$

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \text { (the recession cone) }
$$

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \text { (the recession cone) }
$$

Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a convex body

$$
d^{*}(\mathcal{C}):=\max \left\{\operatorname{dim} K: \exists\left\{x_{n}\right\} \subset \mathcal{C}, \lambda_{n} \rightarrow 0,\right. \text { s.t. }
$$

$$
\left.\lambda_{n}\left(\mathcal{C}-x_{n}\right) \rightarrow K \text { in the Kuratowski sense }\right\}
$$

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \text { (the recession cone) }
$$

Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a convex body

$$
d^{*}(\mathcal{C}):=\max \left\{\operatorname{dim} K: \exists\left\{x_{n}\right\} \subset \mathcal{C}, \lambda_{n} \rightarrow 0,\right. \text { s.t. }
$$

$$
\left.\lambda_{n}\left(\mathcal{C}-x_{n}\right) \rightarrow K \text { in the Kuratowski sense }\right\}
$$

$d^{*}(\mathcal{C})=$ asymptotic dimension of \mathcal{C}

If $\mathcal{C} \subset \mathbb{R}^{N}$ is a convex body

$$
\mathcal{C}_{\infty}=\bigcap_{\lambda>0} \lambda \mathcal{C} \text { (the recession cone) }
$$

Let $\mathcal{C} \subset \mathbb{R}^{N}$ be a convex body

$$
d^{*}(\mathcal{C}):=\max \left\{\operatorname{dim} K: \exists\left\{x_{n}\right\} \subset \mathcal{C}, \lambda_{n} \rightarrow 0,\right. \text { s.t. }
$$

$$
\left.\lambda_{n}\left(\mathcal{C}-x_{n}\right) \rightarrow K \text { in the Kuratowski sense }\right\}
$$

$$
d^{*}(\mathcal{C})=\text { asymptotic dimension of } \mathcal{C}
$$

Note:

$$
d^{*}(\mathcal{C}) \geq \operatorname{dim} \mathcal{C}_{\infty}
$$

$d^{*}(\mathcal{C})=3$

$$
d^{*}(\mathcal{C})=3
$$

Asymptotic behaviour of the isoperimetric profile
Theorem (F.-Maggi-Morini-Novack, work in progress)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be an unbounded convex body.
If $d^{*}(\mathcal{C}) \geq N-1$, then $I_{\mathcal{C}}=I_{\mathscr{H}}$. Otherwise

$$
\lim _{m \rightarrow \infty} \frac{I_{\mathcal{C}}(m)}{m^{\frac{N-1}{N}}}=\frac{P(B)}{|B|^{\frac{N-1}{N}}}
$$

Moreover in this case, for m large
(*)

$$
I_{C}(m) \geq P(B)\left(\frac{m}{|B|}\right)^{\frac{N-1}{N}}-C_{0} m^{\frac{d^{*}(\mathcal{C})}{N}}
$$

Asymptotic behaviour of the isoperimetric profile
Theorem (F.-Maggi-Morini-Novack, work in progress)
Let $\mathcal{C} \subset \mathbb{R}^{N}$ be an unbounded convex body.
If $d^{*}(\mathcal{C}) \geq N-1$, then $I_{\mathcal{C}}=I_{\mathscr{H}}$. Otherwise

$$
\lim _{m \rightarrow \infty} \frac{I_{\mathcal{C}}(m)}{m^{\frac{N-1}{N}}}=\frac{P(B)}{|B|^{\frac{N-1}{N}}}
$$

Moreover in this case, for m large
(*)

$$
I_{\mathcal{C}}(m) \geq P(B)\left(\frac{m}{|B|}\right)^{\frac{N-1}{N}}-C_{0} m^{\frac{\alpha^{*}(\mathcal{C})}{N}}
$$

In the special case $d^{*}(\mathcal{C})=1$ we may improve $(*)$:

$$
I_{\mathcal{C}}(m) \geq P(B)\left(\frac{m}{|B|}\right)^{\frac{N-1}{N}}-C_{0} m^{\frac{1}{2 N}}
$$

