The isoperimetric inequality outside a convex set: the case of equality

Nicola Fusco

Shape Optimisation and Geometric Spectral Theory

Edinburgh, September 20-23, 2022

A well-known isoperimetric inequality

Among all sets of finite perimeter $\Omega \subset \mathbb{R}^N$ of volume *m* contained in a half space \mathscr{H} the unique minimizer of $P(\Omega; \mathscr{H})$ (the perimeter of Ω in \mathscr{H}) is the half ball B^+ , $|B^+| = m$ sitting on $\partial \mathscr{H}$

The isoperimetric inequality outside a convex set

Theorem (Choe-Ghomi-Ritoré, 2007)

Let $C \subset \mathbb{R}^N$ be a closed convex set with nonempty interior. For any set of finite perimeter $\Omega \subset \mathbb{R}^N \setminus C$ we have

Moreover, if C is smooth and Ω is a smooth bounded set for which the equality in (*) holds, then Ω is a half ball sitting on a facet of C.

 $(*) \qquad \qquad \mathsf{P}(\Omega;\mathbb{R}^{\mathsf{N}}\setminus\mathcal{C})\geq\mathsf{N}\Big(\frac{\omega_{\mathsf{N}}}{2}\Big)^{\frac{1}{\mathsf{N}}}|\Omega|^{\frac{\mathsf{N}-1}{\mathsf{N}}}$

$$(*) \qquad \qquad P(\Omega; \mathbb{R}^N \setminus \mathcal{C}) \geq N\Big(\frac{\omega_N}{2}\Big)^{\frac{1}{N}} |\Omega|^{\frac{N-1}{N}}$$

Introducing the isoperimetric profile of $\mathcal C$

 $I_{\mathcal{C}}(m) = \inf \{ P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m \}$

$$(*) \qquad \qquad P(\Omega; \mathbb{R}^N \setminus \mathcal{C}) \geq N\Big(\frac{\omega_N}{2}\Big)^{\frac{1}{N}} |\Omega|^{\frac{N-1}{N}}$$

Introducing the isoperimetric profile of $\mathcal C$

 $I_{\mathcal{C}}(m) = \inf \{ P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m \}$

and the isoperimetric profile of the half space $\mathscr{H} = \{x \in \mathbb{R}^N : x_N > 0\}$

 $I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\}$ $= N\left(\frac{\omega_N}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$

$$(*) \qquad \qquad \mathsf{P}(\Omega;\mathbb{R}^N\setminus\mathcal{C})\geq\mathsf{N}\Big(\frac{\omega_N}{2}\Big)^{\frac{1}{N}}|\Omega|^{\frac{N-1}{N}}$$

Introducing the isoperimetric profile of C

 $I_{\mathcal{C}}(m) = \inf \{ P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m \}$

and the isoperimetric profile of the half space $\mathscr{H} = \{x \in \mathbb{R}^N : x_N > 0\}$

 $I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\}$ $= N\left(\frac{\omega_N}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$

(*) can be rewritten as

 $I_{\mathcal{C}}(m) \geq I_{\mathscr{H}}(m)$

Our result

Theorem (The equality case, F.-Morini (2021))

Let $C \subset \mathbb{R}^N$ be any closed convex set with nonempty interior and let $\Omega \subset \mathbb{R}^N \setminus C$ be any set of finite perimeter such that

$$P(\Omega; \mathbb{R}^N \setminus \mathcal{C}) = N\left(\frac{\omega_N}{2}\right)^{\frac{1}{N}} |\Omega|^{\frac{N-1}{N}}$$

Then Ω is a half ball supported on a facet of C.

In models of vapor-liquid-solid grown nanowires

 \mathcal{C} = semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section

In models of vapor-liquid-solid grown nanowires

 $\mathcal{C} =$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section

The crystal growth is driven by the capillarity energy functional

 $P(\Omega; \mathbb{R}^N \setminus \mathcal{C}) - \lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \qquad -1 < \lambda < 1$

In models of vapor-liquid-solid grown nanowires

 $\mathcal{C} =$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section

The crystal growth is driven by the capillarity energy functional

 $P(\Omega; \mathbb{R}^N \setminus \mathcal{C}) - \lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \qquad -1 < \lambda < 1$

The case $\lambda = 0$ corresponds to the relative perimeter

In models of vapor-liquid-solid grown nanowires

 $\mathcal{C} =$ semi-infinite 'cylinder' with sharp edges and (nonsmooth) cross section

The crystal growth is driven by the capillarity energy functional

 $P(\Omega; \mathbb{R}^{N} \setminus \mathcal{C}) - \lambda \mathcal{H}^{N-1}(\partial \Omega \cap \partial \mathcal{C}) \qquad -1 < \lambda < 1$

The case $\lambda = 0$ corresponds to the relative perimeter

Qualitative properties of local minimizers studied in a recent paper by Fonseca-F.-Leoni-Morini (2021)

Basic notation

 S_{θ} = the unit spherical cap forming an angle θ with $\partial \mathscr{H}$

Basic notation - The total curvature

If $x \in \Sigma$ the normal cone at x to Σ is defined as $N_{\nu}\Sigma = \{\nu \in \mathbb{S}^{N-1} : (\nu - x) \cdot \nu \leq 0 \ \forall \nu \in \Sigma\}$

$$m_{\chi} = \left[\nu \in \mathbb{B} : (\mathbf{y} \times \mathbf{y}) \right] \nu \leq \mathbf{0}$$

Then we set

 $\Sigma^+ = \left\{ x \in \Sigma \setminus \mathcal{C} : \exists \text{ a support hyperplane } \Pi_x, \text{ s.t. } \Pi_x \cap \Sigma = \{x\} \right\}$

Basic notation - The total curvature

If $x \in \Sigma$ the normal cone at x to Σ is defined as $N_x \Sigma = \{ \nu \in \mathbb{S}^{N-1} : (y - x) \cdot \nu \le 0 \ \forall y \in \Sigma \}$

Then we set

 $\Sigma^+ = \left\{ x \in \Sigma \setminus \mathcal{C} : \exists \text{ a support hyperplane } \Pi_x, \text{ s.t. } \Pi_x \cap \Sigma = \{x\} \right\}$

$$au^+(\Sigma) = \mathcal{H}^{N-1}\Big(igcup_{x\in\Sigma^+} N_x \Sigma\Big) = ext{the total curvature of }\Sigma$$

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)

Let C be a smooth convex set and let $\Sigma = \overline{\partial \Omega \setminus C}$, $\Omega \subset \mathbb{R}^N \setminus C$, be a C^2 hypersurface with boundary. Assume that $\partial \Sigma$ intersects ∂C orthogonally. Then

 $au^+(\Sigma) \geq rac{N\omega_N}{2}$

Moreover if the equality holds then $\partial\Sigma$ lies on a support hyperplane to ${\cal C}$

In other words:

The measure of the image of Σ^+ through the Gauss map is bigger than the one of a half sphere

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)

Let C be a smooth convex set and let $\Sigma = \overline{\partial \Omega \setminus C}$, $\Omega \subset \mathbb{R}^N \setminus C$, be a C^2 hypersurface with boundary. Assume that $\partial \Sigma$ intersects ∂C orthogonally. Then

 $au^+(\Sigma) \geq rac{N\omega_N}{2}$

Moreover if the equality holds then $\partial\Sigma$ lies on a support hyperplane to ${\cal C}$

The regularity of C is crucial to ensure that the minimizer Ω_m of

$$\min\{P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m\}$$

satisfies the orthogonality condition at ∂C

An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)

Let C be a smooth convex set and let $\Sigma = \overline{\partial \Omega \setminus C}$, $\Omega \subset \mathbb{R}^N \setminus C$, be a C^2 hypersurface with boundary. Assume that $\partial \Sigma$ intersects ∂C orthogonally. Then

 $au^+(\Sigma) \geq rac{N\omega_N}{2}$

Moreover if the equality holds then $\partial\Sigma$ lies on a support hyperplane to ${\cal C}$

The regularity of C is crucial to ensure that the minimizer Ω_m of

$$\min\{P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m\}$$

satisfies the orthogonality condition at ∂C (this is the Young's law when $\lambda = 0$, i.e. $\theta = \frac{\pi}{2}$)

Theorem (F.-Morini, 2021)

Let $\mathcal{C} \subset \mathbb{R}^N$ be a closed convex set of class C^1 , $\Omega \subset \mathbb{R}^N \setminus \mathcal{C}$ a bounded open set and $\Sigma := \overline{\partial \Omega \setminus \mathcal{C}}$. Let $\theta \in (0, \pi)$ such that

(1) $\nu \cdot \nu_{\mathcal{C}}(x) \leq \cos \theta$ whenever $x \in \Sigma \cap \partial \mathcal{C}, \ \nu \in N_{x}\Sigma$

(2) then
$$\tau^+(\Sigma) \geq \mathcal{H}^{N-1}(S_{\theta})$$

Let $\Sigma \cap \partial C \subset B_r$. For any $\varepsilon > 0$ there exists δ , depending on ε, θ and r, but not on C or Σ , such that if

 $\nu \cdot \nu_{\mathcal{C}}(x) \leq \cos \theta + \delta \quad \text{whenever} \quad x \in \Sigma \cap \partial \mathcal{C}, \ \nu \in N_{x}\Sigma$ and $\tau^{+}(\Sigma) \leq \mathcal{H}^{N-1}(S_{\theta}) + \delta$

then $\Sigma \cap \partial C$ is not empty and lies between two parallel ε -distant hyperplanes orthogonal to $\nu_{\mathcal{C}}(x)$ for some $x \in \Sigma \cap \partial C$. In particular, if (1) is satisfied and the equality in (2) holds, then $\Sigma \cap \partial C$ lies on a support hyperplane to C.

Both Σ_1 and Σ_2 satisfy

 $u \cdot
u_{\mathcal{C}}(x) \leq \cos\left(rac{3\pi}{4}
ight)$ whenever $x \in \Sigma_i \cap \partial \mathcal{C}, \
u \in N_x \Sigma_i$

and	$\tau^+(\Sigma_i) = \mathcal{H}^{N-1}(S_{\frac{3\pi}{4}})$
-----	--

and thus $\Sigma_1 \cap \partial \mathcal{C}, \Sigma_2 \cap \partial \mathcal{C}$ lie on a support plane to \mathcal{C}

Theorem (A Willmore type inequality)

Let $C \subset \mathbb{R}^N$ be a closed convex set with nonempty interior, $\Omega \subset \mathbb{R}^N \setminus C$ a bounded open set, $\Sigma := \overline{\partial \Omega \setminus C}$ and let $\theta \in (0, \pi)$. Assume that $\Sigma \setminus C$ is of class $C^{1,1}$. Assume also

 $\nu \cdot \nu' \leq \cos \theta$ whenever $x \in \Sigma \cap \partial C$, $\nu \in N_x \Sigma$ and $\nu' \in N_x C$

Then
$$\int_{\Sigma \setminus \mathcal{C}} |H_{\Sigma}|^{N-1} d\mathcal{H}^{N-1} \ge (N-1)^{N-1} \mathcal{H}^{N-1}(S_{\theta}) \quad (*)$$

Moreover, if equality holds in (*) and $H_{\Sigma} \neq 0$ a.e., then $\Sigma \setminus C$ coincides, up to a rigid motion, with an omothetic of S_{θ} sitting on a facet of C.

Theorem (A Willmore type inequality)

Let $C \subset \mathbb{R}^N$ be a closed convex set with nonempty interior, $\Omega \subset \mathbb{R}^N \setminus C$ a bounded open set, $\Sigma := \overline{\partial \Omega \setminus C}$ and let $\theta \in (0, \pi)$. Assume that $\Sigma \setminus C$ is of class $C^{1,1}$. Assume also

 $\nu \cdot \nu' \leq \cos \theta$ whenever $x \in \Sigma \cap \partial C$, $\nu \in N_x \Sigma$ and $\nu' \in N_x C$

Then
$$\int_{\Sigma \setminus \mathcal{C}} |H_{\Sigma}|^{N-1} d\mathcal{H}^{N-1} \ge (N-1)^{N-1} \mathcal{H}^{N-1}(S_{\theta}) \quad (*)$$

Moreover, if equality holds in (*) and $H_{\Sigma} \neq 0$ a.e., then $\Sigma \setminus C$ coincides, up to a rigid motion, with an omothetic of S_{θ} sitting on a facet of C.

When N = 3 (*) becomes

$$\int_{\Sigma\setminus\mathcal{C}} H_{\Sigma}^2 \, d\mathcal{H}^2 \geq 4\mathcal{H}^2(S_{\theta})$$

$$I_{\mathcal{C}}(m) = \inf\{P(E; \mathbb{R}^N \setminus \mathcal{C}) : E \subset \mathbb{R}^N \setminus \mathcal{C}, |E| = m\}$$
$$I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\} = N\left(\frac{\omega_N}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$$
$$I_{\mathcal{C}}(m) \ge I_{\mathscr{H}}(m)$$

$$I_{\mathcal{C}}(m) = \inf\{P(E; \mathbb{R}^{N} \setminus \mathcal{C}) : E \subset \mathbb{R}^{N} \setminus \mathcal{C}, |E| = m\}$$
$$I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\} = N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$$
$$I_{\mathcal{C}}(m) \ge I_{\mathscr{H}}(m)$$

$$I_{\mathcal{C}}(m) = \inf\{P(E; \mathbb{R}^{N} \setminus \mathcal{C}) : E \subset \mathbb{R}^{N} \setminus \mathcal{C}, |E| = m\}$$
$$I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\} = N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$$
$$I_{\mathcal{C}}(m) \ge I_{\mathscr{H}}(m)$$

 $P(S; \mathbb{R}^{3} \setminus \mathcal{C}) = I_{\mathcal{C}}(m) = I_{\mathcal{H}}(m)$

$$I_{\mathcal{C}}(m) = \inf\{P(E; \mathbb{R}^{N} \setminus \mathcal{C}) : E \subset \mathbb{R}^{N} \setminus \mathcal{C}, |E| = m\}$$

$$I_{\mathscr{H}}(m) = \min\{P(E; \mathscr{H}) : E \subset \mathscr{H}, |E| = m\} = N\left(\frac{\omega_{N}}{2}\right)^{\frac{1}{N}} m^{\frac{N-1}{N}}$$

$$I_{\mathcal{C}}(m) \ge I_{\mathscr{H}}(m)$$

 $P(S;\mathbb{R}^{3}\backslash \mathcal{C})=I_{\mathcal{C}}(m)=I_{\mathcal{H}}(m)$

$$\mathcal{C}_{\infty} = \bigcap_{\lambda > 0} \lambda \mathcal{C}$$
 (the recession cone)

However,

However,

$$\mathcal{C}_{\infty} = igcap_{\lambda > 0} \lambda \mathcal{C}$$
 (the recession cone)

$$\mathcal{C}_{\infty} = \bigcap_{\lambda>0} \lambda \mathcal{C}$$
 (the recession cone)

Let $\mathcal{C} \subset \mathbb{R}^N$ be a convex body

$$d^*(\mathcal{C}) := \max \left\{ \dim K : \exists \left\{ x_n \right\} \subset \mathcal{C}, \lambda_n \to 0, \text{ s.t.} \right.$$

$$\lambda_n(\mathcal{C} - x_n) \to K$$
 in the Kuratowski sense $\}$

$$\mathcal{C}_{\infty} = igcap_{\lambda>0} \lambda \mathcal{C}$$
 (the recession cone)

Let $\mathcal{C} \subset \mathbb{R}^N$ be a convex body

$$d^*(\mathcal{C}) := \max \left\{ \dim K : \exists \{x_n\} \subset \mathcal{C}, \lambda_n \to 0, \text{ s.t.} \right.$$

 $\lambda_n(\mathcal{C} - x_n) \to K$ in the Kuratowski sense}

$$d^*(\mathcal{C}) =$$
asymptotic dimension of \mathcal{C}

$$\mathcal{C}_{\infty} = \bigcap_{\lambda>0} \lambda \mathcal{C}$$
 (the recession cone)

Let $\mathcal{C} \subset \mathbb{R}^N$ be a convex body

$$d^*(\mathcal{C}) := \max \{ \dim \mathcal{K} : \exists \{x_n\} \subset \mathcal{C}, \lambda_n \to 0, \text{ s.t.} \}$$

 $\lambda_n(\mathcal{C} - x_n) \rightarrow K$ in the Kuratowski sense $\}$

 $d^*(\mathcal{C})$ = asymptotic dimension of \mathcal{C}

Note: $d^*(\mathcal{C}) \geq \dim \mathcal{C}_\infty$

Theorem (F.-Maggi-Morini-Novack, work in progress)

Let $\mathcal{C} \subset \mathbb{R}^N$ be an unbounded convex body.

If $d^*(\mathcal{C}) \geq N-1$, then $I_{\mathcal{C}} = I_{\mathscr{H}}$. Otherwise

Moreover in this case, for m large

(*)
$$l_{\mathcal{C}}(m) \geq P(B) \left(\frac{m}{|B|}\right)^{\frac{N-1}{N}} - C_0 m^{\frac{d^*(\mathcal{C})}{N}}$$

Theorem (F.-Maggi-Morini-Novack, work in progress)

Let $C \subset \mathbb{R}^N$ be an unbounded convex body.

If $d^*(\mathcal{C}) \geq N-1$, then $I_{\mathcal{C}} = I_{\mathscr{H}}$. Otherwise

Moreover in this case, for m large

(*)
$$l_{\mathcal{C}}(m) \geq P(B) \left(\frac{m}{|B|}\right)^{\frac{N-1}{N}} - C_0 m^{\frac{d^*(\mathcal{C})}{N}}$$

In the special case $d^*(\mathcal{C}) = 1$ we may improve (*):

$$I_{\mathcal{C}}(m) \geq P(B) \left(\frac{m}{|B|}\right)^{\frac{N-1}{N}} - C_0 m^{\frac{1}{2N}}$$