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A well-known isoperimetric inequality

Among all sets of finite perimeter Ω ⊂ RN of volume m
contained in a half space H the unique minimizer of P(Ω; H )
(the perimeter of Ω in H ) is the half ball B+, |B+| = m
sitting on ∂H

∂H

B+

H



The isoperimetric inequality outside a convex set

Theorem (Choe-Ghomi-Ritoré, 2007)
Let C ⊂ RN be a closed convex set with nonempty interior. For any
set of finite perimeter Ω ⊂ RN \ C we have

(∗) P(Ω;RN \ C)≥ P(B+;RN \H )

(the surface measure of the half ball
B+ with the same volume of Ω)

Ω

C

B+
H

Moreover, if C is smooth and Ω is a smooth bounded set for which
the equality in (∗) holds, then Ω is a half ball sitting on a facet of C.



The isoperimetric profile

(∗) P(Ω;RN \ C) ≥ N
(ωN

2

) 1
N |Ω|

N−1
N

Introducing the isoperimetric profile of C

IC(m) = inf{P(E ;RN \ C) : E ⊂ RN \ C, |E | = m}

and the isoperimetric profile of the half space
H = {x ∈ RN : xN > 0}

IH (m)= min{P(E ; H ) : E ⊂H , |E | = m}

= N
(ωN

2

) 1
N
m

N−1
N

(*) can be rewritten as

IC(m) ≥ IH (m)
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Our result

Theorem (The equality case, F.-Morini (2021))
Let C ⊂ RN be any closed convex set with nonempty interior and
let Ω ⊂ RN \ C be any set of finite perimeter such that

P(Ω;RN \ C) = N
(ωN

2

) 1
N |Ω|

N−1
N

Then Ω is a half ball supported on a facet of C.



Motivation
In models of vapor-liquid-solid grown nanowires

C = semi-infinite ‘cylinder’ with sharp edges and (nonsmooth) cross section

VLS nanowire growth videos 

1. Illustration of nanowire growth [movie] 
2. TEM of Si nanowire growth at IBM [movie] 
3. illustration of hexagonal GaAs nanowire growth [movie] 
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The crystal growth is driven by the capillarity energy functional

P(Ω;RN \ C)− λHN−1(∂Ω ∩ ∂C) − 1 < λ < 1

The case λ = 0 corresponds to the relative perimeter

Qualitative properties of local minimizers studied in a recent paper
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Basic notation

Let θ ∈ (0, π)

H

Sθ

θ0

−cosθ

Sθ = the unit spherical cap forming an angle θ with ∂H



Basic notation - The total curvature

C

Ω

Σ
ν

ν

Ω ⊂ RN \ C an open set

Σ = ∂Ω \ C

If x ∈ Σ the normal cone at x to Σ is defined as

NxΣ = {ν ∈ SN−1 : (y − x) · ν ≤ 0 ∀y ∈ Σ}

Then we set

Σ+ =
{
x ∈ Σ\C : ∃ a support hyperplane Πx , s.t. Πx ∩Σ = {x}

}

τ+(Σ) = HN−1
( ⋃

x∈Σ+

NxΣ
)

= the total curvature of Σ
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An inequality involving the total curvature

Theorem (Choe-Ghomi-Ritoré, 2006)
Let C be a smooth convex set and let Σ = ∂Ω \ C, Ω ⊂ RN \ C, be
a C 2 hypersurface with boundary. Assume that ∂Σ intersects ∂C
orthogonally. Then

τ+(Σ) ≥ NωN

2
Moreover if the equality holds then ∂Σ lies on a support hyperplane
to C
In other words:

The measure of the image of Σ+ through the Gauss map is bigger
than the one of a half sphere

(this is the Young’s law when
λ = 0 , i.e. θ = π

2 )
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Theorem (F.-Morini, 2021)
Let C ⊂ RN be a closed convex set of class C 1, Ω ⊂ RN \ C a
bounded open set and Σ := ∂Ω \ C. Let θ ∈ (0, π) such that

(1) ν · νC(x) ≤ cos θ whenever x ∈ Σ ∩ ∂C, ν ∈ NxΣ

(2) then τ+(Σ) ≥ HN−1(Sθ)

Let Σ ∩ ∂C ⊂ Br . For any ε > 0 there exists δ, depending on ε, θ
and r , but not on C or Σ, such that if

ν · νC(x) ≤ cos θ + δ whenever x ∈ Σ ∩ ∂C, ν ∈ NxΣ

and τ+(Σ) ≤ HN−1(Sθ) + δ

then Σ ∩ ∂C is not empty and lies between two parallel ε-distant
hyperplanes orthogonal to νC(x) for some x ∈ Σ ∩ ∂C.
In particular, if (1) is satisfied and the equality in (2) holds, then
Σ ∩ ∂C lies on a support hyperplane to C.



Σ1
Σ2

C

Both Σ1 and Σ2 satisfy

ν · νC(x) ≤ cos
(3π

4

)
whenever x ∈ Σi ∩ ∂C, ν ∈ NxΣi

and τ+(Σi ) = HN−1(S 3π
4

)

and thus Σ1 ∩ ∂C ,Σ2 ∩ ∂C lie on a support plane to C



Theorem (A Willmore type inequality)
Let C ⊂ RN be a closed convex set with nonempty interior,
Ω ⊂ RN \ C a bounded open set, Σ := ∂Ω \ C and let θ ∈ (0, π).
Assume that Σ \ C is of class C 1,1. Assume also

ν · ν ′ ≤ cos θ whenever x ∈ Σ ∩ ∂C, ν ∈ NxΣ and ν ′ ∈ NxC

Then
∫

Σ\C
|HΣ|N−1 dHN−1 ≥ (N − 1)N−1HN−1(Sθ) (∗)

Moreover, if equality holds in (∗) and HΣ 6= 0 a.e., then Σ \ C
coincides, up to a rigid motion, with an omothetic of Sθ sitting on
a facet of C.

When N = 3 (∗) becomes∫
Σ\C

H2
Σ dH2 ≥ 4H2(Sθ)
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Asymptotic behaviour of the isoperimetric profile

IC(m) = inf{P(E ;RN \ C) : E ⊂ RN \ C, |E | = m}

IH (m) = min{P(E ; H ) : E ⊂H , |E | = m} = N
(ωN
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IC(m) ≥ IH (m)
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P(S ;R3\C)=IC(m)=IH (m) P(En;R3\C)→ IC(m)=IH (m)!
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Asymptotic behaviour of the isoperimetric profile

C

S

C

E

P(S;R3\C)=IC(m)=IH (m) P(E ;R3\C)m
−N−1

N ≈P(B)|B|
−N−1

N
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If C ⊂ RN is a convex body, recall

C∞ =
⋂
λ>0

λC (the recession cone)

C C
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However,

C

dim(C∞)=1

But
lim

m→∞

IC(m)

m
2
3

=
P(B)

|B|
2
3
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If C ⊂ RN is a convex body

C∞ =
⋂
λ>0

λC (the recession cone)

Let C ⊂ RN be a convex body

d∗(C) := max
{

dimK : ∃ {xn} ⊂ C, λn → 0, s.t.

λn(C − xn)→ K in the Kuratowski sense
}

d∗(C)= asymptotic dimension of C

Note: d∗(C) ≥ dim C∞
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Asymptotic behaviour of the isoperimetric profile
Theorem (F.-Maggi-Morini-Novack, work in progress)

Let C ⊂ RN be an unbounded convex body.

If d∗(C) ≥ N − 1 , then IC = IH . Otherwise

lim
m→∞

IC(m)

m
N−1
N

=
P(B)

|B|
N−1
N

Moreover in this case, for m large

(∗) IC(m) ≥ P(B)
( m

|B|

)N−1
N − C0m

d∗(C)
N

In the special case d∗(C) = 1 we may improve (∗):

IC(m) ≥ P(B)
( m

|B|

)N−1
N − C0m

1
2N
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