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Laplace-Beltrami operator

Let (M, g) be a closed Riemannian manifold of dimension n.

The
Laplace-Beltrami operator is defined by

∆g f = − 1√
|g |

∂

∂x i

(√
|g |g ij ∂f

∂x j

)
,

where gij is the Riemannian metric, g ij are the components of the
matrix inverse to gij and |g | = det g .
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Eigenvalues of the Laplacian

Consider the eigenvalue problem:

∆g f = λf

The spectrum is discrete,

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 · · · ↗ +∞

Set
λ̄i (M, g) = λi (M, g)Vol(M, g)

2
n .
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Geometric optimization of eigenvalues

Consider λ̄i (M, g) as a functional on the space R of Riemannian
metrics on M.

g 7−→ λ̄i (M, g)

We are interested in the following quantities

Λi (M) = sup
g
λ̄i (M, g);

Λi (M, c) = sup
g∈c

λ̄i (M, g),

where c = [g ] = {eωg |ω ∈ C∞(M)} is a fixed conformal class of

metrics.
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Surfaces: upper bounds and examples

• Korevaar (1993), Hassannezhad (2011): on any surface M of
genus γ,

λ̄i (M, g) ≤ C (i + γ).

• Hersch (1970): Λ1(S2) = 8π and the maximum is achieved on
the standard metric on S2.

• Li–Yau (1982): Λ1(RP2) = 12π and the maximum is achieved
on the standard metric on RP2.
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• Nadirashvili (1996): Λ1(T2) =
8π2

√
3

and the maximum is achieved on the
flat equilateral torus.



Harmonic maps to Sk

Φ: (M, g)→ Sk is a harmonic map if it is a critical point of energy

Eg (Φ) =
1

2

ˆ
M
|dΦ|2g dvg

They satisfy the equation

∆gΦ = |dΦ|2gΦ.

Equivalently, λ = 1 is an eigenvalue of the problem with density

∆gu = λ|dΦ|2gu.
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Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant.

In
particular, for gΦ = |dΦ|2gg one has

|dΦ|2gΦ
≡ 1, ∆gΦ

Φ = Φ.

Conversely, if Φ: (M, h)→ Sk is such that

∆hΦ = Φ,

then

0 =
1

2
∆h(|Φ|2) = 〈∆hΦ,Φ〉 − |dΦ|2h = 1− |dΦ|2h,

i.e. Φ is harmonic.
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Conformally critical metrics on surfaces

Nadirashvili (1996), El Soufi, Ilias (2008): Critical points for the
functional λ̄i (M, g) in the conformal class correspond to harmonic
maps to Sn.

Critical metrics in c Harmonic maps to Sk

Critical metrics Minimal surfaces in Sk
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Maximal metrics for λ1: first examples

• Hersch (1970): Λ1(S2) = 8π and the maximum is achieved on
the standard metric on S2.

• Li–Yau (1982): Λ1(RP2) = 12π and the maximum is achieved
on the standard metric on RP2.
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• Nadirashvili (1996): Λ1(T2) =
8π2

√
3

and the maximum is achieved on the
flat equilateral torus.



Maximal metrics: S2 and RP2 revisited

• The eigenfunctions of S2 ⊂ R3 are the restrictions of
homogeneous harmonic polynomials p on R3.
Eigenvalue is deg p(deg p + 1)

degree 1: x , y , z
degree 2: xy , yz , xz , x2 − y2, x2 − z2

• S2: the identity map S2 → S2 is an isometric minimal
immersion.

• RP2: Veronese immersion v : RP2 → S4

v(x , y , z) =

(
xy , xz , yz ,

√
3

2
(x2 − y2),

1

2
(x2 + y2)− z2

)
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Existence of maximizers for λ̄1 on surfaces.

Theorem For any surface (M, c) there exists a “smooth” metric
g ∈ c , such that λ̄1(M, g) = Λ1(M, c).

Many proofs by Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich, K.-Stern

Theorem (K.-Stern, 2020) Any maximal metric has to be
“smooth”.
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Optimisation in higher dimensions

Recall
Λ1(M, [g ]) = sup

ρ>0
λ̄1(M, ρg)

For surfaces

Λ1(M, g) = V1(M, g) := sup
ρ>0

λ1(M, g , ρ)

ˆ
ρ dvg ,

where

∆gu = λ(M, g , ρ)ρu.

In higher dimensions these quantities are genuinely different.
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Optimisation in higher dimensions

In the following n = dimM > 2.

Consider

Λi (M, [g ]) = sup
ρ>0

λ̄i (M, ρg)

K.-Métras (2022):

Critical metrics in c n-harmonic maps to Sk

El Soufi, Ilias (1986): Λ1(Sn, [gst ]) = λ̄1(Sn, gst)
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Optimisation in higher dimensions

Consider

Vi (M, g) := sup
ρ>0

λi (M, g , ρ)

ˆ
ρ dvg

K.-Stern (2022):

Critical densi-
ties on (M, g)

Harmonic maps to Sk

K.-Stern (2022): V1(Sn, gst) is achieved on constant density.
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Main result

Theorem (K.-Stern 2022) Let 3 6 n 6 5. Then for any (M, g)
there exists a smooth density ρ achieving V1(M, g).

Furthermore,
any density achieving V1(M, g) is smooth.

The first existence result in higher dimensions.

Observation: Many results for surfaces in conformal class can be
extended to V1(M, g).
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Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

• Consider a regularized or restricted functional with better
compactness properties, e.g.
µ 7→ λ̄1(Kε[µ]), Kt – heat flow or
ρ ≤ 1

ε 7→ λ̄1(ρg)

• There exists a maximal measure µε. It corresponds to a map
Φε : M → Rk(ε) by eigenfunctions;

• A priori multiplicity bounds for surfaces imply k ≡ k(ε);

• Show that Φε converge to a harmonic map to Sk .

Main challenge for dimM > 2: there are no multiplicity bounds
(Y. Colin de Verdìre)
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16 / 24



Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

• Consider a regularized or restricted functional with better
compactness properties, e.g.
µ 7→ λ̄1(Kε[µ]), Kt – heat flow or
ρ ≤ 1

ε 7→ λ̄1(ρg)

• There exists a maximal measure µε. It corresponds to a map
Φε : M → Rk(ε) by eigenfunctions;

• A priori multiplicity bounds for surfaces imply k ≡ k(ε);

• Show that Φε converge to a harmonic map to Sk .

Main challenge for dimM > 2: there are no multiplicity bounds
(Y. Colin de Verdìre)
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Alternative proof via min-max theory

As in K.-Stern

• For each k > 3 construct a harmonic map Φk : (M, g)→ Sk
such that

2E (Φk) > 2E (Φk+1) > V1(M, g), indE (Φk) 6 k + 1.

• Show that such family of harmonic maps “stabilizes” in the
sense that there is N, such that for all k > N the map Φk

factors into
M → SN ↪→ Sk

This can be thought of as a multiplicity bound, but for special
densities arising from harmonic maps.

• Observe that for k � N the densitiy |dΦk |2g is maximal.
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Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g)→ (N, h)

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

• πl(N) 6= 0 for some l ≥ 3;

• (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g)→ (N, h),
smooth up to a singular set of codimension 3.

Can be applied to

• (N, h) is a 3-manifold with Rich > 0;

• (N, h) is a k-manifold with positive isotropic curvature, k ≥ 4.

18 / 24



Open questions

1. Existence for Λ1(M, [g ]). Need to better understand
n-harmonic maps.

2. Existence for Vi (M, g). The case k = 2 is tractable using
current methods.

3. Prove the following identity

sup
h∈[g ]

V1(M, h)Vol(M, h)
2−n
n = Λ1(M, [g ]).
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Hersch’s theorem

Theorem V1(Sn, gst) = nVol(Sn, gst). Constant density is the only
maximizer.

Proof. Let g = gst .

• conformal automorphisms of Sn modulo O(n + 1) are ∼= Bn+1

• Hersch trick: there exists Φb, b ∈ Bn+1 such that
ˆ

Φbρ dvg = 0
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Hersch’s theorem: continued

• Use the components of Φb as test-functions for λ1(Sn, g , ρ)

λ1(Sn, g , ρ)

ˆ
(Φi

b)2ρ dvg 6
ˆ
|dΦi

b|2g dvg

• Sum over i = 1, 2, . . . , n + 1

λ1(Sn, g , ρ)

ˆ
ρ dvg 6 2Eg (Φb) 6 nVol(Sn, g),

• Can check that equality iff ρ is constant.
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Proof of Hersch’s trick

• Define the map I : Bn+1 → Bn+1 by

I (b) =
1´
ρ dvg

ˆ
Φbρ dvg

• It extends continuously to I : Bn+1 → Bn+1
with I |Sn = id .

• Brouwer theorem implies there exists b0 with I (b0) = 0.
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Intuition for the min-max construction

• Fix (M, g) and k > 2. Let Γ̃n be a collection of weakly

continuous families of maps Bk+1 7→W 1,2(M,Sk) such that

F ∈ Γ̃k iff Fa ≡ a, a ∈ Sk

• Example: For any F0 ∈ C∞(M,Sn) its canonical family F is
Fb = Φb ◦ F0, where Φb are the conformal automorphisms of
Sn.
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Intuition for the min-max construction

• Hersch’s trick =⇒ for any F ∈ Γ̃k and any ρ one has

λ1(M, g , ρ)

ˆ
ρ dvg 6 2 sup

a∈Bk+1

Eg (Fa)

• As a result,

1

2
λ1(M, g , ρ)

ˆ
ρ dvg 6 inf

F∈Γ̃k

sup
a∈Bk+1

Eg (Fa) =: Ẽn(M, g).

• Goal: for large n one has V1(M, g) = Ẽn(M, g).
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24 / 24


