Harmonic maps and eigenvalue optimisation in higher dimension

Mikhail Karpukhin

(University College London)

Based on a joint work with Daniel Stern (UChicago)

Laplace-Beltrami operator

Let (M, g) be a closed Riemannian manifold of dimension n.

Laplace-Beltrami operator

Let (M, g) be a closed Riemannian manifold of dimension n. The Laplace-Beltrami operator is defined by

$$
\Delta_{g} f=-\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}}\left(\sqrt{|g|} g^{i j} \frac{\partial f}{\partial x^{j}}\right)
$$

where $g_{i j}$ is the Riemannian metric, $g^{i j}$ are the components of the matrix inverse to $g_{i j}$ and $|g|=\operatorname{det} g$.

Eigenvalues of the Laplacian

Consider the eigenvalue problem:

$$
\Delta_{g} f=\lambda f
$$

Eigenvalues of the Laplacian

Consider the eigenvalue problem:

$$
\Delta_{g} f=\lambda f
$$

The spectrum is discrete,

$$
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leqslant \lambda_{2}(M, g) \leqslant \cdots \nearrow+\infty
$$

Eigenvalues of the Laplacian

Consider the eigenvalue problem:

$$
\Delta_{g} f=\lambda f
$$

The spectrum is discrete,

$$
0=\lambda_{0}(M, g)<\lambda_{1}(M, g) \leqslant \lambda_{2}(M, g) \leqslant \cdots \nearrow+\infty
$$

Set

$$
\bar{\lambda}_{i}(M, g)=\lambda_{i}(M, g) \operatorname{Vol}(M, g)^{\frac{2}{n}}
$$

Geometric optimization of eigenvalues

Consider $\bar{\lambda}_{i}(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$
g \longmapsto \bar{\lambda}_{i}(M, g)
$$

Geometric optimization of eigenvalues

Consider $\bar{\lambda}_{i}(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$
g \longmapsto \bar{\lambda}_{i}(M, g)
$$

We are interested in the following quantities

$$
\Lambda_{i}(M)=\sup _{g} \bar{\lambda}_{i}(M, g)
$$

Geometric optimization of eigenvalues

Consider $\bar{\lambda}_{i}(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$
g \longmapsto \bar{\lambda}_{i}(M, g)
$$

We are interested in the following quantities

$$
\begin{gathered}
\Lambda_{i}(M)=\sup _{g} \bar{\lambda}_{i}(M, g) \\
\Lambda_{i}(M, c)=\sup _{g \in c} \bar{\lambda}_{i}(M, g)
\end{gathered}
$$

Geometric optimization of eigenvalues

Consider $\bar{\lambda}_{i}(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$
g \longmapsto \bar{\lambda}_{i}(M, g)
$$

We are interested in the following quantities

$$
\begin{gathered}
\Lambda_{i}(M)=\sup _{g} \bar{\lambda}_{i}(M, g) \\
\Lambda_{i}(M, c)=\sup _{g \in c} \bar{\lambda}_{i}(M, g)
\end{gathered}
$$

where $c=[g]=\left\{e^{\omega} g \mid \omega \in C^{\infty}(M)\right\}$ is a fixed conformal class of metrics.

Surfaces: upper bounds and examples

Surfaces: upper bounds and examples

- Korevaar (1993), Hassannezhad (2011): on any surface M of genus γ,

$$
\bar{\lambda}_{i}(M, g) \leq C(i+\gamma)
$$

Surfaces: upper bounds and examples

- Korevaar (1993), Hassannezhad (2011): on any surface M of genus γ,

$$
\bar{\lambda}_{i}(M, g) \leq C(i+\gamma)
$$

- Hersch (1970): $\Lambda_{1}\left(\mathbb{S}^{2}\right)=8 \pi$ and the maximum is achieved on the standard metric on \mathbb{S}^{2}.

Surfaces: upper bounds and examples

- Korevaar (1993), Hassannezhad (2011): on any surface M of genus γ,

$$
\bar{\lambda}_{i}(M, g) \leq C(i+\gamma)
$$

- Hersch (1970): $\Lambda_{1}\left(\mathbb{S}^{2}\right)=8 \pi$ and the maximum is achieved on the standard metric on \mathbb{S}^{2}.
- Li-Yau (1982): $\Lambda_{1}\left(\mathbb{R P}^{2}\right)=12 \pi$ and the maximum is achieved on the standard metric on $\mathbb{R P}^{2}$.

Surfaces: upper bounds and examples

- Korevaar (1993), Hassannezhad (2011): on any surface M of genus γ,

$$
\bar{\lambda}_{i}(M, g) \leq C(i+\gamma)
$$

- Hersch (1970): $\Lambda_{1}\left(\mathbb{S}^{2}\right)=8 \pi$ and the maximum is achieved on the standard metric on \mathbb{S}^{2}.
- Li-Yau (1982): $\Lambda_{1}\left(\mathbb{R P}^{2}\right)=12 \pi$ and the maximum is achieved on the standard metric on $\mathbb{R P}^{2}$.
- Nadirashvili (1996): $\Lambda_{1}\left(\mathbb{T}^{2}\right)=\frac{8 \pi^{2}}{\sqrt{3}}$ and the maximum is achieved on the flat equilateral torus.

Harmonic maps to \mathbb{S}^{k}

Harmonic maps to \mathbb{S}^{k}

$\Phi:(M, g) \rightarrow \mathbb{S}^{k}$ is a harmonic map if it is a critical point of energy

$$
E_{g}(\Phi)=\frac{1}{2} \int_{M}|d \Phi|_{g}^{2} d v_{g}
$$

Harmonic maps to \mathbb{S}^{k}

$\Phi:(M, g) \rightarrow \mathbb{S}^{k}$ is a harmonic map if it is a critical point of energy

$$
E_{g}(\Phi)=\frac{1}{2} \int_{M}|d \Phi|_{g}^{2} d v_{g}
$$

They satisfy the equation

$$
\Delta_{g} \Phi=|d \Phi|_{g}^{2} \Phi
$$

Harmonic maps to \mathbb{S}^{k}

$\Phi:(M, g) \rightarrow \mathbb{S}^{k}$ is a harmonic map if it is a critical point of energy

$$
E_{g}(\Phi)=\frac{1}{2} \int_{M}|d \Phi|_{g}^{2} d v_{g}
$$

They satisfy the equation

$$
\Delta_{g} \Phi=|d \Phi|_{g}^{2} \Phi
$$

Equivalently, $\lambda=1$ is an eigenvalue of the problem with density

$$
\Delta_{g} u=\lambda|d \Phi|_{g}^{2} u
$$

Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant.

Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant. In particular, for $g_{\Phi}=|d \Phi|_{g}^{2} g$ one has

$$
|d \Phi|_{g_{\phi}}^{2} \equiv 1, \quad \Delta_{g_{\phi}} \Phi=\Phi
$$

Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant. In particular, for $g_{\Phi}=|d \Phi|_{g}^{2} g$ one has

$$
|d \Phi|_{g_{\phi}}^{2} \equiv 1, \quad \Delta_{g_{\phi}} \Phi=\Phi
$$

Conversely, if $\Phi:(M, h) \rightarrow \mathbb{S}^{k}$ is such that

$$
\Delta_{h} \Phi=\Phi
$$

Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant. In particular, for $g_{\Phi}=|d \Phi|_{g}^{2} g$ one has

$$
|d \Phi|_{g_{\phi}}^{2} \equiv 1, \quad \Delta_{g_{\phi}} \Phi=\Phi
$$

Conversely, if $\Phi:(M, h) \rightarrow \mathbb{S}^{k}$ is such that

$$
\Delta_{h} \Phi=\Phi,
$$

then

$$
0=\frac{1}{2} \Delta_{h}\left(|\Phi|^{2}\right)=\left\langle\Delta_{h} \Phi, \Phi\right\rangle-|d \Phi|_{h}^{2}=1-|d \Phi|_{h}^{2},
$$

i.e. Φ is harmonic.

Conformally critical metrics on surfaces

Conformally critical metrics on surfaces

Nadirashvili (1996), El Soufi, Ilias (2008): Critical points for the functional $\bar{\lambda}_{i}(M, g)$ in the conformal class correspond to harmonic maps to \mathbb{S}^{n}.

Conformally critical metrics on surfaces

Nadirashvili (1996), El Soufi, Ilias (2008): Critical points for the functional $\bar{\lambda}_{i}(M, g)$ in the conformal class correspond to harmonic maps to \mathbb{S}^{n}.

Critical metrics in c
Harmonic maps to \mathbb{S}^{k}

Conformally critical metrics on surfaces

Nadirashvili (1996), El Soufi, Ilias (2008): Critical points for the functional $\bar{\lambda}_{i}(M, g)$ in the conformal class correspond to harmonic maps to \mathbb{S}^{n}.

Critical metrics in c
 Harmonic maps to \mathbb{S}^{k}

Critical metrics
Minimal surfaces in \mathbb{S}^{k}

Maximal metrics for λ_{1} : first examples

- Hersch (1970): $\Lambda_{1}\left(\mathbb{S}^{2}\right)=8 \pi$ and the maximum is achieved on the standard metric on \mathbb{S}^{2}.
- Li-Yau (1982): $\Lambda_{1}\left(\mathbb{R P}^{2}\right)=12 \pi$ and the maximum is achieved on the standard metric on $\mathbb{R P}^{2}$.
- Nadirashvili (1996): $\Lambda_{1}\left(\mathbb{T}^{2}\right)=\frac{8 \pi^{2}}{\sqrt{3}}$ and the maximum is achieved on the flat equilateral torus.

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

- The eigenfunctions of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^{3}.

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

- The eigenfunctions of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^{3}.
Eigenvalue is $\operatorname{deg} p(\operatorname{deg} p+1)$

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

- The eigenfunctions of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^{3}.
Eigenvalue is $\operatorname{deg} p(\operatorname{deg} p+1)$
degree 1: x, y, z
degree 2: $x y, y z, x z, x^{2}-y^{2}, x^{2}-z^{2}$

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

- The eigenfunctions of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^{3}.
Eigenvalue is $\operatorname{deg} p(\operatorname{deg} p+1)$
degree 1: x, y, z
degree 2: $x y, y z, x z, x^{2}-y^{2}, x^{2}-z^{2}$
- \mathbb{S}^{2} : the identity map $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is an isometric minimal immersion.

Maximal metrics: \mathbb{S}^{2} and $\mathbb{R} \mathbb{P}^{2}$ revisited

- The eigenfunctions of $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^{3}.
Eigenvalue is $\operatorname{deg} p(\operatorname{deg} p+1)$
degree 1: x, y, z
degree 2: $x y, y z, x z, x^{2}-y^{2}, x^{2}-z^{2}$
- \mathbb{S}^{2} : the identity map $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is an isometric minimal immersion.
- $\mathbb{R P}^{2}$: Veronese immersion $v: \mathbb{R P}^{2} \rightarrow \mathbb{S}^{4}$

$$
v(x, y, z)=\left(x y, x z, y z, \frac{\sqrt{3}}{2}\left(x^{2}-y^{2}\right), \frac{1}{2}\left(x^{2}+y^{2}\right)-z^{2}\right)
$$

Existence of maximizers for $\bar{\lambda}_{1}$ on surfaces.

Existence of maximizers for $\bar{\lambda}_{1}$ on surfaces.

Theorem For any surface (M, c) there exists a "smooth" metric $g \in c$, such that $\bar{\lambda}_{1}(M, g)=\Lambda_{1}(M, c)$.

Existence of maximizers for $\bar{\lambda}_{1}$ on surfaces.

Theorem For any surface (M, c) there exists a "smooth" metric $g \in c$, such that $\bar{\lambda}_{1}(M, g)=\Lambda_{1}(M, c)$.

Many proofs by Petrides, Nadirashvili-Sire, K.-Nadirashvili-Penskoi-Polterovich, K.-Stern

Existence of maximizers for $\bar{\lambda}_{1}$ on surfaces.

Theorem For any surface (M, c) there exists a "smooth" metric $g \in c$, such that $\bar{\lambda}_{1}(M, g)=\Lambda_{1}(M, c)$.

Many proofs by Petrides, Nadirashvili-Sire, K.-Nadirashvili-Penskoi-Polterovich, K.-Stern

Theorem (K.-Stern, 2020) Any maximal metric has to be "smooth".

Optimisation in higher dimensions

Optimisation in higher dimensions

Recall

$$
\Lambda_{1}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{1}(M, \rho g)
$$

Optimisation in higher dimensions

Recall

$$
\Lambda_{1}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{1}(M, \rho g)
$$

For surfaces

$$
\Lambda_{1}(M, g)=\mathcal{V}_{1}(M, g):=\sup _{\rho>0} \lambda_{1}(M, g, \rho) \int \rho d v_{g}
$$

Optimisation in higher dimensions

Recall

$$
\Lambda_{1}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{1}(M, \rho g)
$$

For surfaces

$$
\Lambda_{1}(M, g)=\mathcal{V}_{1}(M, g):=\sup _{\rho>0} \lambda_{1}(M, g, \rho) \int \rho d v_{g}
$$

where

$$
\Delta_{g} u=\lambda(M, g, \rho) \rho u
$$

Optimisation in higher dimensions

Recall

$$
\Lambda_{1}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{1}(M, \rho g)
$$

For surfaces

$$
\Lambda_{1}(M, g)=\mathcal{V}_{1}(M, g):=\sup _{\rho>0} \lambda_{1}(M, g, \rho) \int \rho d v_{g}
$$

where

$$
\Delta_{g} u=\lambda(M, g, \rho) \rho u
$$

In higher dimensions these quantities are genuinely different.

Optimisation in higher dimensions

In the following $n=\operatorname{dim} M>2$.

Optimisation in higher dimensions

In the following $n=\operatorname{dim} M>2$. Consider

$$
\Lambda_{i}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{i}(M, \rho g)
$$

Optimisation in higher dimensions

In the following $n=\operatorname{dim} M>2$. Consider

$$
\Lambda_{i}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{i}(M, \rho g)
$$

K.-Métras (2022):

$$
\text { Critical metrics in } c \quad \longleftrightarrow n \text {-harmonic maps to } \mathbb{S}^{k}
$$

Optimisation in higher dimensions

In the following $n=\operatorname{dim} M>2$. Consider

$$
\Lambda_{i}(M,[g])=\sup _{\rho>0} \bar{\lambda}_{i}(M, \rho g)
$$

K.-Métras (2022):

$$
\text { Critical metrics in } c \quad \longleftrightarrow n \text {-harmonic maps to } \mathbb{S}^{k}
$$

El Soufi, Ilias (1986): $\Lambda_{1}\left(\mathbb{S}^{n},\left[g_{s t}\right]\right)=\bar{\lambda}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)$

Optimisation in higher dimensions

Consider

$$
\mathcal{V}_{i}(M, g):=\sup _{\rho>0} \lambda_{i}(M, g, \rho) \int \rho d v_{g}
$$

Optimisation in higher dimensions

Consider

$$
\mathcal{V}_{i}(M, g):=\sup _{\rho>0} \lambda_{i}(M, g, \rho) \int \rho d v_{g}
$$

K.-Stern (2022):

Optimisation in higher dimensions

Consider

$$
\mathcal{V}_{i}(M, g):=\sup _{\rho>0} \lambda_{i}(M, g, \rho) \int \rho d v_{g}
$$

K.-Stern (2022):

K.-Stern (2022): $\mathcal{V}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)$ is achieved on constant density.

Main result

Theorem (K.-Stern 2022) Let $3 \leqslant n \leqslant 5$. Then for any (M, g) there exists a smooth density ρ achieving $\mathcal{V}_{1}(M, g)$.

Main result

Theorem (K.-Stern 2022) Let $3 \leqslant n \leqslant 5$. Then for any (M, g) there exists a smooth density ρ achieving $\mathcal{V}_{1}(M, g)$. Furthermore, any density achieving $\mathcal{V}_{1}(M, g)$ is smooth.

Main result

Theorem (K.-Stern 2022) Let $3 \leqslant n \leqslant 5$. Then for any (M, g) there exists a smooth density ρ achieving $\mathcal{V}_{1}(M, g)$. Furthermore, any density achieving $\mathcal{V}_{1}(M, g)$ is smooth.

The first existence result in higher dimensions.

Main result

Theorem (K.-Stern 2022) Let $3 \leqslant n \leqslant 5$. Then for any (M, g) there exists a smooth density ρ achieving $\mathcal{V}_{1}(M, g)$. Furthermore, any density achieving $\mathcal{V}_{1}(M, g)$ is smooth.

The first existence result in higher dimensions.

Observation: Many results for surfaces in conformal class can be extended to $\mathcal{V}_{1}(M, g)$.

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire, K.-Nadirashvili-Penskoi-Polterovich.

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire, K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire, K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.
$\mu \mapsto \bar{\lambda}_{1}\left(K_{\underline{\varepsilon}}[\mu]\right), K_{t}$ - heat flow or $\rho \leq \frac{1}{\varepsilon} \mapsto \bar{\lambda}_{1}(\rho g)$

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.
$\mu \mapsto \bar{\lambda}_{1}\left(K_{\varepsilon}[\mu]\right), K_{t}$ - heat flow or
$\rho \leq \frac{1}{\varepsilon} \mapsto \bar{\lambda}_{1}(\rho g)$
- There exists a maximal measure μ_{ε}. It corresponds to a map $\Phi_{\varepsilon}: M \rightarrow \mathbb{R}^{k(\varepsilon)}$ by eigenfunctions;

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.
$\mu \mapsto \bar{\lambda}_{1}\left(K_{\varepsilon}[\mu]\right), K_{t}$ - heat flow or
$\rho \leq \frac{1}{\varepsilon} \mapsto \bar{\lambda}_{1}(\rho g)$
- There exists a maximal measure μ_{ε}. It corresponds to a map $\Phi_{\varepsilon}: M \rightarrow \mathbb{R}^{k(\varepsilon)}$ by eigenfunctions;
- A priori multiplicity bounds for surfaces imply $k \equiv k(\varepsilon)$;

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.
$\mu \mapsto \bar{\lambda}_{1}\left(K_{\varepsilon}[\mu]\right), K_{t}$ - heat flow or
$\rho \leq \frac{1}{\varepsilon} \mapsto \bar{\lambda}_{1}(\rho g)$
- There exists a maximal measure μ_{ε}. It corresponds to a map $\Phi_{\varepsilon}: M \rightarrow \mathbb{R}^{k(\varepsilon)}$ by eigenfunctions;
- A priori multiplicity bounds for surfaces imply $k \equiv k(\varepsilon)$;
- Show that Φ_{ε} converge to a harmonic map to \mathbb{S}^{k}.

Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

- Consider a regularized or restricted functional with better compactness properties, e.g.
$\mu \mapsto \bar{\lambda}_{1}\left(K_{\varepsilon}[\mu]\right), K_{t}$ - heat flow or
$\rho \leq \frac{1}{\varepsilon} \mapsto \bar{\lambda}_{1}(\rho g)$
- There exists a maximal measure μ_{ε}. It corresponds to a map $\Phi_{\varepsilon}: M \rightarrow \mathbb{R}^{k(\varepsilon)}$ by eigenfunctions;
- A priori multiplicity bounds for surfaces imply $k \equiv k(\varepsilon)$;
- Show that Φ_{ε} converge to a harmonic map to \mathbb{S}^{k}.

Main challenge for $\operatorname{dim} M>2$: there are no multiplicity bounds (Y. Colin de Verdire)

Alternative proof via min-max theory

As in K.-Stern

Alternative proof via min-max theory

As in K.-Stern

- For each $k>3$ construct a harmonic map $\Phi_{k}:(M, g) \rightarrow \mathbb{S}^{k}$ such that

$$
2 E\left(\Phi_{k}\right) \geqslant 2 E\left(\Phi_{k+1}\right) \geqslant \mathcal{V}_{1}(M, g), \quad \operatorname{ind}_{E}\left(\Phi_{k}\right) \leqslant k+1
$$

Alternative proof via min-max theory

As in K.-Stern

- For each $k>3$ construct a harmonic map $\Phi_{k}:(M, g) \rightarrow \mathbb{S}^{k}$ such that

$$
2 E\left(\Phi_{k}\right) \geqslant 2 E\left(\Phi_{k+1}\right) \geqslant \mathcal{V}_{1}(M, g), \quad \operatorname{ind}_{E}\left(\Phi_{k}\right) \leqslant k+1
$$

- Show that such family of harmonic maps "stabilizes"

Alternative proof via min-max theory

As in K.-Stern

- For each $k>3$ construct a harmonic map $\Phi_{k}:(M, g) \rightarrow \mathbb{S}^{k}$ such that

$$
2 E\left(\Phi_{k}\right) \geqslant 2 E\left(\Phi_{k+1}\right) \geqslant \mathcal{V}_{1}(M, g), \quad \operatorname{ind}_{E}\left(\Phi_{k}\right) \leqslant k+1
$$

- Show that such family of harmonic maps "stabilizes" in the sense that there is N, such that for all $k>N$ the map Φ_{k} factors into

$$
M \rightarrow \mathbb{S}^{N} \hookrightarrow \mathbb{S}^{k}
$$

Alternative proof via min-max theory

As in K.-Stern

- For each $k>3$ construct a harmonic map $\Phi_{k}:(M, g) \rightarrow \mathbb{S}^{k}$ such that

$$
2 E\left(\Phi_{k}\right) \geqslant 2 E\left(\Phi_{k+1}\right) \geqslant \mathcal{V}_{1}(M, g), \quad \operatorname{ind}_{E}\left(\Phi_{k}\right) \leqslant k+1
$$

- Show that such family of harmonic maps "stabilizes" in the sense that there is N, such that for all $k>N$ the map Φ_{k} factors into

$$
M \rightarrow \mathbb{S}^{N} \hookrightarrow \mathbb{S}^{k}
$$

This can be thought of as a multiplicity bound, but for special densities arising from harmonic maps.

Alternative proof via min-max theory

As in K.-Stern

- For each $k>3$ construct a harmonic map $\Phi_{k}:(M, g) \rightarrow \mathbb{S}^{k}$ such that

$$
2 E\left(\Phi_{k}\right) \geqslant 2 E\left(\Phi_{k+1}\right) \geqslant \mathcal{V}_{1}(M, g), \quad \operatorname{ind}_{E}\left(\Phi_{k}\right) \leqslant k+1
$$

- Show that such family of harmonic maps "stabilizes" in the sense that there is N, such that for all $k>N$ the map Φ_{k} factors into

$$
M \rightarrow \mathbb{S}^{N} \hookrightarrow \mathbb{S}^{k}
$$

This can be thought of as a multiplicity bound, but for special densities arising from harmonic maps.

- Observe that for $k \gg N$ the densitiy $\left|d \Phi_{k}\right|_{g}^{2}$ is maximal.

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold, such that

- $\pi_{l}(N) \neq 0$ for some $I \geq 3$;

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold, such that

- $\pi_{l}(N) \neq 0$ for some $l \geq 3$;
- (N, h) does not contain stable minimal spheres.

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold, such that

- $\pi_{l}(N) \neq 0$ for some $I \geq 3$;
- (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map $(M, g) \rightarrow(N, h)$, smooth up to a singular set of codimension 3.

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold, such that

- $\pi_{l}(N) \neq 0$ for some $I \geq 3$;
- (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map $(M, g) \rightarrow(N, h)$, smooth up to a singular set of codimension 3.

Can be applied to

- (N, h) is a 3-manifold with $\operatorname{Ric}_{h}>0$;

Geometric applications

Same methods can be used to establish existence results for harmonic maps $(M, g) \rightarrow(N, h)$

Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold, such that

- $\pi_{l}(N) \neq 0$ for some $I \geq 3$;
- (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map $(M, g) \rightarrow(N, h)$, smooth up to a singular set of codimension 3.

Can be applied to

- (N, h) is a 3-manifold with $\operatorname{Ric}_{h}>0$;
- (N, h) is a k-manifold with positive isotropic curvature, $k \geq 4$.

Open questions

1. Existence for $\Lambda_{1}(M,[g])$. Need to better understand n-harmonic maps.

Open questions

1. Existence for $\Lambda_{1}(M,[g])$. Need to better understand n-harmonic maps.
2. Existence for $\mathcal{V}_{i}(M, g)$. The case $k=2$ is tractable using current methods.

Open questions

1. Existence for $\Lambda_{1}(M,[g])$. Need to better understand n-harmonic maps.
2. Existence for $\mathcal{V}_{i}(M, g)$. The case $k=2$ is tractable using current methods.
3. Prove the following identity

$$
\sup _{h \in[g]} \mathcal{V}_{1}(M, h) \operatorname{Vol}(M, h)^{\frac{2-n}{n}}=\Lambda_{1}(M,[g]) .
$$

Hersch's theorem

Theorem $\mathcal{V}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)=n \operatorname{Vol}\left(\mathbb{S}^{n}, g_{s t}\right)$. Constant density is the only maximizer.

Hersch's theorem

Theorem $\mathcal{V}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)=n \operatorname{Vol}\left(\mathbb{S}^{n}, g_{s t}\right)$. Constant density is the only maximizer.

Proof. Let $g=g_{s t}$.

Hersch's theorem

Theorem $\mathcal{V}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)=n \operatorname{Vol}\left(\mathbb{S}^{n}, g_{s t}\right)$. Constant density is the only maximizer.

Proof. Let $g=g_{s t}$.

- conformal automorphisms of \mathbb{S}^{n} modulo $O(n+1)$ are $\cong \mathbb{B}^{n+1}$

Hersch's theorem

Theorem $\mathcal{V}_{1}\left(\mathbb{S}^{n}, g_{s t}\right)=n \operatorname{Vol}\left(\mathbb{S}^{n}, g_{s t}\right)$. Constant density is the only maximizer.

Proof. Let $g=g_{s t}$.

- conformal automorphisms of \mathbb{S}^{n} modulo $O(n+1)$ are $\cong \mathbb{B}^{n+1}$
- Hersch trick: there exists $\Phi_{b}, b \in \mathbb{B}^{n+1}$ such that

$$
\int \Phi_{b} \rho d v_{g}=0
$$

Hersch's theorem: continued

- Use the components of Φ_{b} as test-functions for $\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right)$

$$
\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right) \int\left(\Phi_{b}^{i}\right)^{2} \rho d v_{g} \leqslant \int\left|d \Phi_{b}^{i}\right|_{g}^{2} d v_{g}
$$

Hersch's theorem: continued

- Use the components of Φ_{b} as test-functions for $\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right)$

$$
\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right) \int\left(\Phi_{b}^{i}\right)^{2} \rho d v_{g} \leqslant \int\left|d \Phi_{b}^{i}\right|_{g}^{2} d v_{g}
$$

- Sum over $i=1,2, \ldots, n+1$

$$
\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right) \int \rho d v_{g} \leqslant 2 E_{g}\left(\Phi_{b}\right) \leqslant n \operatorname{Vol}\left(\mathbb{S}^{n}, g\right)
$$

Hersch's theorem: continued

- Use the components of Φ_{b} as test-functions for $\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right)$

$$
\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right) \int\left(\Phi_{b}^{i}\right)^{2} \rho d v_{g} \leqslant \int\left|d \Phi_{b}^{i}\right|_{g}^{2} d v_{g}
$$

- Sum over $i=1,2, \ldots, n+1$

$$
\lambda_{1}\left(\mathbb{S}^{n}, g, \rho\right) \int \rho d v_{g} \leqslant 2 E_{g}\left(\Phi_{b}\right) \leqslant n \operatorname{Vol}\left(\mathbb{S}^{n}, g\right)
$$

- Can check that equality iff ρ is constant.

Proof of Hersch's trick

- Define the map $I: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{n+1}$ by

$$
I(b)=\frac{1}{\int \rho d v_{g}} \int \Phi_{b} \rho d v_{g}
$$

Proof of Hersch's trick

- Define the map $I: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{n+1}$ by

$$
I(b)=\frac{1}{\int \rho d v_{g}} \int \Phi_{b} \rho d v_{g}
$$

- It extends continuously to $I: \overline{\mathbb{B}}^{n+1} \rightarrow \overline{\mathbb{B}}^{n+1}$ with $\left.I\right|_{\mathbb{S}^{n}}=i d$.

Proof of Hersch's trick

- Define the map $I: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{n+1}$ by

$$
I(b)=\frac{1}{\int \rho d v_{g}} \int \Phi_{b} \rho d v_{g}
$$

- It extends continuously to $I: \overline{\mathbb{B}}^{n+1} \rightarrow \overline{\mathbb{B}}^{n+1}$ with $\left.I\right|_{\mathbb{S}^{n}}=i d$.
- Brouwer theorem implies there exists b_{0} with $I\left(b_{0}\right)=0$.

Intuition for the min-max construction

Intuition for the min-max construction

- Fix (M, g) and $k \geqslant 2$. Let $\widetilde{\Gamma}_{n}$ be a collection of weakly continuous families of maps $\overline{\mathbb{B}}^{k+1} \mapsto W^{1,2}\left(M, \mathbb{S}^{k}\right)$ such that

$$
F \in \widetilde{\Gamma}_{k} \quad \text { iff } \quad F_{a} \equiv a, a \in \mathbb{S}^{k}
$$

Intuition for the min-max construction

- Fix (M, g) and $k \geqslant 2$. Let $\widetilde{\Gamma}_{n}$ be a collection of weakly continuous families of maps $\overline{\mathbb{B}}^{k+1} \mapsto W^{1,2}\left(M, \mathbb{S}^{k}\right)$ such that

$$
F \in \widetilde{\Gamma}_{k} \quad \text { iff } \quad F_{a} \equiv a, a \in \mathbb{S}^{k}
$$

- Example: For any $F_{0} \in C^{\infty}\left(M, \mathbb{S}^{n}\right)$ its canonical family F is $F_{b}=\Phi_{b} \circ F_{0}$, where Φ_{b} are the conformal automorphisms of \mathbb{S}^{n}.

Intuition for the min-max construction

- Hersch's trick \Longrightarrow for any $F \in \widetilde{\Gamma}_{k}$ and any ρ one has

$$
\lambda_{1}(M, g, \rho) \int \rho d v_{g} \leqslant 2 \sup _{a \in \overline{\mathbb{B}}^{k+1}} E_{g}\left(F_{a}\right)
$$

Intuition for the min-max construction

- Hersch's trick \Longrightarrow for any $F \in \widetilde{\Gamma}_{k}$ and any ρ one has

$$
\lambda_{1}(M, g, \rho) \int \rho d v_{g} \leqslant 2 \sup _{a \in \overline{\mathbb{B}}^{k+1}} E_{g}\left(F_{a}\right)
$$

- As a result,

$$
\frac{1}{2} \lambda_{1}(M, g, \rho) \int \rho d v_{g} \leqslant \inf _{F \in \widetilde{\Gamma}_{k}} \sup _{a \in \mathbb{B}^{k+1}} E_{g}\left(F_{a}\right)=: \widetilde{\mathcal{E}}_{n}(M, g)
$$

Intuition for the min-max construction

- Hersch's trick \Longrightarrow for any $F \in \widetilde{\Gamma}_{k}$ and any ρ one has

$$
\lambda_{1}(M, g, \rho) \int \rho d v_{g} \leqslant 2 \sup _{a \in \overline{\mathbb{B}}^{k+1}} E_{g}\left(F_{a}\right)
$$

- As a result,

$$
\frac{1}{2} \lambda_{1}(M, g, \rho) \int \rho d v_{g} \leqslant \inf _{F \in \widetilde{\Gamma}_{k}} \sup _{a \in \mathbb{B}^{k+1}} E_{g}\left(F_{a}\right)=: \widetilde{\mathcal{E}}_{n}(M, g)
$$

- Goal: for large n one has $\mathcal{V}_{1}(M, g)=\widetilde{\mathcal{E}}_{n}(M, g)$.

