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Laplace-Beltrami operator

Let (M, g) be a closed Riemannian manifold of dimension n. The
Laplace-Beltrami operator is defined by

1 9 of
- </ U
Agf ,—‘g‘ 8Xi ( | a J)

where gj; is the Riemannian metric, g are the components of the
matrix inverse to gj and |g| = det g.
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Eigenvalues of the Laplacian

Consider the eigenvalue problem:
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Eigenvalues of the Laplacian

Consider the eigenvalue problem:
Agf =\
The spectrum is discrete,

0=X(M,g) < M(M,g) < Xo(M,g) <+ +oo

Set

Ai(M,g) = \i(M, g)Vol(M, g)n.

3N
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Geometric optimization of eigenvalues

Consider \;(M, g) as a functional on the space R of Riemannian
metrics on M.
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Geometric optimization of eigenvalues

Consider \;(M, g) as a functional on the space R of Riemannian
metrics on M.
g — Ai(M,g)

We are interested in the following quantities

Ni(M) = sup X{(M, g);
g

Ai(M’ C) = Sup;‘i(Mug)7
gec

where ¢ = [g] = {e“g|w € C*°(M)} is a fixed conformal class of

metrics.
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Surfaces: upper bounds and examples

Korevaar (1993), Hassannezhad (2011): on any surface M of
genus v, )

Ai(M, g) < C(i + 7).
Hersch (1970): A1(S?) = 87 and the maximum is achieved on
the standard metric on S2.

Li-Yau (1982): A;(RP?) = 127 and the maximum is achieved
on the standard metric on RP2.

82
Nadirashvili (1996): A{(T?) = —
(1996): M (T?) = 7 /
and the maximum is achieved on the

flat equilateral torus.

5/24



Harmonic maps to S¥

6/24



Harmonic maps to S¥

®: (M, g) — Sk is a harmonic map if it is a critical point of energy

1
E(®) =5 [ 140 dvg

6/24



Harmonic maps to S¥

®: (M, g) — Sk is a harmonic map if it is a critical point of energy

1
E(®) =5 [ 140 dvg

They satisfy the equation

Agd = |dO50.

6/24



Harmonic maps to S¥

®: (M, g) — S¥ is a harmonic map if it is a critical point of energy
g

1
E(®) =5 [ 140 dvg

They satisfy the equation

Agd = |dO50.

Equivalently, A = 1 is an eigenvalue of the problem with density

Agu=Ndo|2u.

6/24



Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant.
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Harmonic maps from surfaces

If M is a surface, then Laplacian is conformally covariant. In
particular, for go = |d®|2g one has

dO2, =1, Ag®=0.
Conversely, if ®: (M, h) — S¥ is such that
Apd = b,
then
0= SA4(I0P) = (840, ) — |d0} = 1 [dof,
i.e. @ is harmonic.
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Conformally critical metrics on surfaces

Nadirashvili (1996), EI Soufi, llias (2008): Critical points for the
functional A\;j(M, g) in the conformal class correspond to harmonic

maps to S".

Critical metrics in ¢

Harmonic maps to S¥

Critical metrics

Minimal surfaces in SK
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Maximal metrics for \;: first examples

Hersch (1970): A1(S?) = 87 and the maximum is achieved on
the standard metric on S2.

Li-Yau (1982): A;(RP?) = 127 and the maximum is achieved
on the standard metric on RIP2.

Nadirashvili (1996): A;(T2) 8r°
: 1 = —
V3

and the maximum is achieved on the
flat equilateral torus.
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Maximal metrics: S? and RIP? revisited

e The eigenfunctions of S C R3 are the restrictions of
homogeneous harmonic polynomials p on R3.
Eigenvalue is deg p(deg p + 1)

degree 1: x,y,z

degree 2: xy, yz, xz,x°

Y R
® S?: the identity map S? — S? is an isometric minimal
immersion.

e RP2: Veronese immersion v: RP? — S*

V3 1
V(X7y7Z) = (Xy,XZ,yZ,2(X2 _}/2)75( 2+.y2) _22
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Existence of maximizers for \; on surfaces.

Theorem For any surface (M, ¢) there exists a “smooth” metric
g € ¢, such that \y(M, g) = A1(M, ¢c).

Many proofs by Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich, K.-Stern

Theorem (K.-Stern, 2020) Any maximal metric has to be
“smooth”.
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Optimisation in higher dimensions

Recall B
/\l(Ma [g]) = Sup)\l(Mapg)

p>0

For surfaces

(M, g) = (M, g) = sugAl(M,g,p)/pdvg,
p>

where

Agu= M, g,p)pu.

In higher dimensions these quantities are genuinely different.

12/24



Optimisation in higher dimensions

In the following n = dim M > 2.

13/24



Optimisation in higher dimensions

In the following n = dim M > 2. Consider

Ni(M, [g]) = sup Xi(M, pg)

13/24



Optimisation in higher dimensions

In the following n = dim M > 2. Consider
/\i(Mv [g]) = SUpS\;(M,pg)
p>0

K.-Métras (2022):

Critical metrics in ¢ }—{ n-harmonic maps to Sk

13/24



Optimisation in higher dimensions

In the following n = dim M > 2. Consider
/\i(Mv [g]) = SUpS\;(M,pg)
p>0

K.-Métras (2022):

Critical metrics in ¢ }—{ n-harmonic maps to Sk

El Soufi, llias (1986): A1(S™, [gst]) = A1(S", gst)
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Optimisation in higher dimensions
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Optimisation in higher dimensions

Consider

Vi(M, g) = sup A;(M,g,p)/pdvg

p>0

K.-Stern (2022):
Critical densi- H ) Sk
" (M,g) armonic maps to

K.-Stern (2022): V1(S", gst) is achieved on constant density.
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Main result

Theorem (K.-Stern 2022) Let 3 < n < 5. Then for any (M, g)
there exists a smooth density p achieving V1(M, g).
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Main result

Theorem (K.-Stern 2022) Let 3 < n < 5. Then for any (M, g)
there exists a smooth density p achieving V1(M, g). Furthermore,
any density achieving V1(M, g) is smooth.

The first existence result in higher dimensions.

Observation: Many results for surfaces in conformal class can be
extended to V1(M, g).
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Outline of the existence proof for surfaces

As in Petrides, Nadirashvili-Sire,
K.-Nadirashvili-Penskoi-Polterovich.

e Consider a regularized or restricted functional with better
compactness properties, e.g.
o A (Ke[p]), K: — heat flow or
p <L X(pg)

® There exists a maximal measure p.. It corresponds to a map
®.: M — Rk by eigenfunctions;

® A priori multiplicity bounds for surfaces imply k = k(¢);

® Show that ®. converge to a harmonic map to SK.

Main challenge for dim M > 2: there are no multiplicity bounds
(Y. Colin de Verdite)
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Alternative proof via min-max theory

As in K.-Stern

® For each k > 3 construct a harmonic map ®,: (M, g) — Sk
such that

2E(D) = 2E(Ps1) = Vi(M, g), indg(dy) < k+ 1.

® Show that such family of harmonic maps “stabilizes” in the
sense that there is N, such that for all kK > N the map ®y
factors into
M — SN < sk

This can be thought of as a multiplicity bound, but for special
densities arising from harmonic maps.

® Observe that for k > N the densitiy |d®,|2 is maximal.
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Geometric applications

Same methods can be used to establish existence results for
harmonic maps (M, g) — (N, h)
Theorem (K.-Stern 2022) Let (N, h) be a Riemannian manifold,
such that

e 7(N) # 0 for some | > 3;

® (N, h) does not contain stable minimal spheres.

Then there exists a nontrivial harmonic map (M, g) — (N, h),
smooth up to a singular set of codimension 3.

Can be applied to
® (N, h) is a 3-manifold with Ricp > 0;

® (N, h) is a k-manifold with positive isotropic curvature, k > 4.
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Open questions

. Existence for A;1(M,[g]). Need to better understand
n-harmonic maps.

. Existence for V;(M, g). The case k = 2 is tractable using
current methods.

. Prove the following identity

sup V1i(M, h)Vol(M, h)*="
hele]

= /\1(/\/’, [g])
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Hersch's theorem

Theorem V;(S", gst) = nVol(S", gs+). Constant density is the only
maximizer.

Proof. Let g = gs.
e conformal automorphisms of S” modulo O(n + 1) are = B"+1

e Hersch trick: there exists ®,, b € B"*! such that

/d)bpdvg —0
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Hersch's theorem: continued

® Use the components of @, as test-functions for A\1(S", g, p)

Al(Sn7g7p) /( L)2pdVg g/’dq)’b@ dVg
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Hersch's theorem: continued

® Use the components of @, as test-functions for A\1(S", g, p)

>\1(Sn7g7p) /( L)2pdVg g/’dq)’b@ dVg

® Sumoveri=1,2,...,n+1

Al(S”,g,p)/pdvg < 2E5(Pp) < nVoI(S7, g),

® Can check that equality iff p is constant.
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Proof of Hersch's trick

® Define the map /: B"t! — B! by

1
I(b) = ——— [ Pppd
(5)= g [ Oorte

n+

: =nt+l  —n+l . .
® |t extends continuously to /: B B with /|sn = id.

® Brouwer theorem implies there exists by with /(bg) = 0.
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Intuition for the min-max construction

° Fix (M, g) and k > 2. Let T, be a collection of weakly
continuous families of maps B*' s W12(M, SK) such that

Fel, iff F,=a acSk

e Example: For any Fy € C>°(M,S") its canonical family F is
Fr = &4 0 Fy, where ®p are the conformal automorphisms of
S,
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Intuition for the min-max construction
® Hersch's trick = for any F € Fk and any p one has

Al(M,g,p)/pdvg <2 sup Eg(Fa)

aeﬁkﬂ
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Intuition for the min-max construction

® Hersch's trick = for any F € Fk and any p one has

Al(M,g,p)/pdVg <2 sup Eg(Fa)

aE@k+1

® As a result,

1 .
)q(l\/l,g,p)/pdvg < inf sup Eg(Fs) =: En(M, g).
2 FETk yeph !

® Goal: for large n one has V1(M, g) = E,(M, g).
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