Regularity for convex shapes minimizing perimeter

Jimmy LAMBOLEY

in collaboration with Raphaël $\operatorname{Prunier}$

Sorbonne université, IMJ-PRG

21/09/22

Shape Optimization and Geometric Spectral Theory

ICMS, Edinburgh

Outline of the talk

2 Regularity Theory

Outline of the talk

2 Regularity Theory

Application to Stability

Newton's problem of minimal resistance [1685]

$$\min\left\{\int_{\mathbb{D}}\frac{1}{1+|\nabla u(x)|^2}dx , u:\mathbb{D}\to[0,M], u \text{ concave }\right\}$$

$$\mathbb{D} = \{x \in \mathbb{R}^2, |x| \le 1\}$$

Newton's problem of minimal resistance [1685]

$$\min\left\{\int_{\mathbb{D}} \frac{1}{1+|\nabla u(x)|^2} dx , u: \mathbb{D} \to [0, M], u \text{ concave}\right\}$$
$$\mathbb{D} = \{x \in \mathbb{R}^2, |x| \le 1\}$$

Radial symmetric solution :

Newton's problem of minimal resistance [1685]

Non radial solutions [Guasoni 1995], [Buttazzo-Ferone-Kawohl, 1995] - Numerical computations [Lachand-Robert - Oudet, 2004]

M = 3/2

M = 7/10

Shape optimization under convexity constraint

We are interested in problems of the form

$$\min\left\{J(\Omega), \quad \Omega \subset \mathbb{R}^d \ \ is \ \ convex, \ \ \Omega \in \mathcal{F}_{ad}
ight\}$$

where

- $\Omega \mapsto J(\Omega)$ is a shape functional,
- \mathcal{F}_{ad} is a class of admissible sets (volume constraint, box constraint...)

Shape optimization under convexity constraint

$$\min\left\{J(\Omega), \quad \Omega \subset \mathbb{R}^d \text{ is convex}, \quad \Omega \in \mathcal{F}_{ad}\right\}$$

Usual questions of optimization :

- Existence of a minimum,
- Properties of optimal shapes (symmetry, regularity...),
- Numerical computations ([Choné-Le Meur 2001], [Mérigot-Oudet 2014], [Mirebeau 2015], [Antunes-Bogosel 2019], [Ftouhi 2022], [Bogosel 2022]...)

Shape optimization under convexity constraint

$$\min\left\{J(\Omega), \quad \Omega \subset \mathbb{R}^d \text{ is convex}, \quad \Omega \in \mathcal{F}_{ad}\right\}$$

Usual questions of optimization :

- Existence of a minimum,
- Properties of optimal shapes (symmetry, regularity...),
- Numerical computations ([Choné-Le Meur 2001], [Mérigot-Oudet 2014], [Mirebeau 2015], [Antunes-Bogosel 2019], [Ftouhi 2022], [Bogosel 2022]...)

Existence is usually "easier", but the rest is delicate (the "neighbour" of a convex set is not convex in general)

[Henrot-Oudet 2003]

$$\mathsf{min}\left\{\lambda_2(\Omega), \ |\Omega| = V_0, \ \Omega \ \textit{convex} \ \subset \mathbb{R}^2\right\}$$

[Henrot-Oudet 2003]

$$\min\left\{\lambda_2(\Omega), |\Omega| = V_0, \ \Omega \text{ convex } \subset \mathbb{R}^2\right\}$$

[Andrews-Clutterbuck 2011] Fundamental gap

$$\inf \left\{ \lambda_2(\Omega) - \lambda_1(\Omega), \ \text{Diam}(\Omega) = d_0, \ \Omega \text{ convex} \subset \mathbb{R}^n \right\}$$

[Henrot-Oudet 2003]

$$\min\left\{\lambda_2(\Omega), |\Omega| = V_0, \ \Omega \text{ convex } \subset \mathbb{R}^2\right\}$$

[Andrews-Clutterbuck 2011] Fundamental gap

$$\inf \left\{ \lambda_2(\Omega) - \lambda_1(\Omega), \ Diam(\Omega) = d_0, \ \Omega \ convex \subset \mathbb{R}^n \right\}$$

[Bucur-Fragalà 2016] [L.-Novruzi-Pierre 2022] Reverse Faber-Krahn :

 $\max \Big\{ \lambda_1(\Omega), \ \Omega \text{ convex}, \ \Omega \subset [0,1]^2, \ |\Omega| = V_0 \Big\}$

[Henrot-Oudet 2003]

$$\min\left\{\lambda_2(\Omega), |\Omega| = V_0, \ \Omega \text{ convex } \subset \mathbb{R}^2\right\}$$

[Andrews-Clutterbuck 2011] Fundamental gap

$$\inf \left\{ \lambda_2(\Omega) - \lambda_1(\Omega), \ \text{Diam}(\Omega) = d_0, \ \Omega \text{ convex} \subset \mathbb{R}^n \right\}$$

Severse Faber-Krahn : [L.-Novruzi-Pierre 2022] Reverse Faber-Krahn :

 $\max \Big\{ \lambda_1(\Omega), \ \Omega \text{ convex}, \ \Omega \subset [0,1]^2, \ |\Omega| = V_0 \Big\}$

Theorem[L.-Novruzi-Pierre 2022] Solutions are polygons

[Henrot-Oudet 2003]

$$\min\left\{\lambda_2(\Omega), |\Omega| = V_0, \ \Omega \text{ convex } \subset \mathbb{R}^2\right\}$$

[Andrews-Clutterbuck 2011] Fundamental gap

$$\inf \left\{ \lambda_2(\Omega) - \lambda_1(\Omega), \quad Diam(\Omega) = d_0, \quad \Omega \text{ convex} \subset \mathbb{R}^n \right\}$$

[Bucur-Fragalà 2016] [L.-Novruzi-Pierre 2022] Reverse Faber-Krahn :

 $\mathsf{max}\Big\{\lambda_1(\Omega), \ \Omega \text{ convex}, \ \Omega \subset [0,1]^2, \ |\Omega| = V_0\Big\}$

Theorem[L.-Novruzi-Pierre 2022] Solutions are polygons

• Pólya-Szegö conjecture [Jerison's talk], max $\frac{T(\Omega)cap(\overline{\Omega})}{|\Omega|^2}$ [van den Berg's talk]

An example coming from Blaschke-Santaló diagrams [Cox-Ross 1995], [Antunes-Freitas 2006], [Ftouhi 2022]

$$\max\left\{\lambda_1(\Omega), \ |\Omega|=1, \ P(\Omega)=p_0, \ \Omega \ convex \ \subset \mathbb{R}^2\right\}$$

An example coming from Blaschke-Santaló diagrams [Cox-Ross 1995], [Antunes-Freitas 2006], [Ftouhi 2022]

 $\mathsf{max}\Big\{\lambda_1(\Omega), \ |\Omega| = 1, \ P(\Omega) = p_0, \ \Omega \ \textit{convex} \ \subset \mathbb{R}^2\Big\}$

An example coming from Blaschke-Santaló diagrams [Cox-Ross 1995], [Antunes-Freitas 2006], [Ftouhi 2022]

 $\max \Big\{ \lambda_1(\Omega), \ |\Omega| = 1, \ P(\Omega) = p_0, \ \Omega \ convex \ \subset \mathbb{R}^2 \Big\}$

Theorem (L.-Novruzi-Pierre 2012, Ftouhi-L. 2021)

For any $p_0 \ge P(B)$, there exists a solution, and it is $C^{1,1}$.

Outline of the talk

Convexity constraint

Application to Stability

Class of isoperimetric problems

Consider

$$\min\left\{P(\Omega)+R(\Omega), \ \Omega \text{ open convex} \subset \mathbb{R}^n\right\}$$

where $P(\Omega) = \mathcal{H}^{n-1}(\partial \Omega)$, and $\Omega \mapsto R(\Omega)$ is a perturbative term.

Class of isoperimetric problems

Consider

 $\min\left\{P(\Omega)+R(\Omega), \ \Omega \text{ open convex} \subset \mathbb{R}^n\right\}$

where $P(\Omega) = \mathcal{H}^{n-1}(\partial \Omega)$, and $\Omega \mapsto R(\Omega)$ is a perturbative term.

What is the regularity of optimal shapes?

Class of isoperimetric problems

Consider

 $\min\left\{P(\Omega)+R(\Omega), \ \Omega \text{ open convex} \subset \mathbb{R}^n\right\}$

where $P(\Omega) = \mathcal{H}^{n-1}(\partial \Omega)$, and $\Omega \mapsto R(\Omega)$ is a perturbative term.

What is the regularity of optimal shapes?

Classical setting (no convexity constraint) :

Definition

 Ω is a quasi-minimizer of the perimeter if for every Ω' such that $\Omega' \Delta \Omega \subset B_r$ for $r \leq r_0$, $P(\Omega) \leq P(\Omega') + \Delta r_0^{n-1+\alpha}$ ($z \in (0, 11)$)

$$\mathsf{P}(\Omega) \leq \mathsf{P}(\Omega') + \bigwedge r^{n-1+lpha}$$
 ($lpha \in (0,1]$)

Theorem

A quasi-minimizer of the perimeter is $C^{1,\alpha/2}$ up to a small set of dimension less than d - 8.

Quasi-minimizer of the perimeter under convexity constraint

Definition

Given $\Lambda, \varepsilon > 0$, Ω is a (Λ, ε) -quasi-minimizer of the perimeter under convexity constraint (qmpcc) if for every Ω' convex in \mathbb{R}^n such that $\Omega' \subset \Omega$ and $|\Omega \setminus \Omega'| \le \varepsilon$,

 $P(\Omega) \leq P(\Omega') + \Lambda |\Omega \setminus \Omega'|$

Quasi-minimizer of the perimeter under convexity constraint

Definition

Given $\Lambda, \varepsilon > 0$, Ω is a (Λ, ε) -quasi-minimizer of the perimeter under convexity constraint (qmpcc) if for every Ω' convex in \mathbb{R}^n such that $\Omega' \subset \Omega$ and $|\Omega \setminus \Omega'| \le \varepsilon$,

 $P(\Omega) \leq P(\Omega') + \Lambda |\Omega \setminus \Omega'|$

Theorem (L.-Prunier 2022)

If Ω in an open convex set and is a **qmpcc**, then $\partial \Omega$ is $C^{1,1}$.

Quasi-minimizer of the perimeter under convexity constraint

Definition

Given $\Lambda, \varepsilon > 0$, Ω is a (Λ, ε) -quasi-minimizer of the perimeter under convexity constraint (qmpcc) if for every Ω' convex in \mathbb{R}^n such that $\Omega' \subset \Omega$ and $|\Omega \setminus \Omega'| \le \varepsilon$,

 $P(\Omega) \leq P(\Omega') + \Lambda |\Omega \setminus \Omega'|$

Theorem (L.-Prunier 2022)

If Ω in an open convex set and is a **qmpcc**, then $\partial \Omega$ is $C^{1,1}$.

• The result is sharp [Alvino-Ferone-Nitsch 2011] : the solution of

 $\min\left\{\frac{P(\Omega)-P(B)}{P(B)\mathcal{A}(\Omega)^2}, \ \Omega \text{ convex } \subset \mathbb{R}^2\right\}$

is a stadium, where \mathcal{A} is the Fraenkel asymmetry.

• $R = \lambda_n$ or $R = \mu_n$ is allowed :

• $R = \lambda_n$ or $R = \mu_n$ is allowed :

Proposition (L.-Prunier 2022)

Given $D' \subset D \subset \mathbb{R}^N$ convex, $n \in \mathbb{N}^*$, then there exists C = C(n, D', D) > 0 such that

 $\forall D' \subset \Omega' \subset \Omega \subset D, \ |\lambda_n(\Omega) - \lambda_n(\Omega')| \leq C |\Omega \setminus \Omega'|$

• $R = \lambda_n$ or $R = \mu_n$ is allowed :

Proposition (L.-Prunier 2022)

Given $D' \subset D \subset \mathbb{R}^N$ convex, $n \in \mathbb{N}^*$, then there exists C = C(n, D', D) > 0 such that

 $\forall D' \subset \Omega' \subset \Omega \subset D, \ |\lambda_n(\Omega) - \lambda_n(\Omega')| \leq C |\Omega \setminus \Omega'|$

One can handle volume constraint, as well as inclusion in a box.

• $R = \lambda_n$ or $R = \mu_n$ is allowed :

Proposition (L.-Prunier 2022)

Given $D'\subset D\subset \mathbb{R}^N$ convex, $n\in \mathbb{N}^*,$ then there exists C=C(n,D',D)>0 such that

 $\forall D' \subset \Omega' \subset \Omega \subset D, \ |\lambda_n(\Omega) - \lambda_n(\Omega')| \leq C |\Omega \setminus \Omega'|$

One can handle volume constraint, as well as inclusion in a box.

Corollary

Solutions to

$$\min \left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ \Omega \text{ convex } \subset B_{R_0}, \ |\Omega| = V_0 \right\}$$

are $C^{1,1}$.

First ingredient : Model problem in the calculus of variations

Given D a convex bounded set, consider :

$$\min\left\{\frac{1}{2}\int_{D}|\nabla u(x)|^{2}-\int_{D}f(x)u(x)dx, \ u\in H^{1}(D), \ u \text{ convex}\right\}$$

First ingredient : Model problem in the calculus of variations

Given D a convex bounded set, consider :

$$\min\left\{\frac{1}{2}\int_{D}|\nabla u(x)|^{2}-\int_{D}f(x)u(x)dx, \ u\in H^{1}(D), \ u \text{ convex}\right\}$$

(existence if $\int_D f = 0$)

First ingredient : Model problem in the calculus of variations

Given D a convex bounded set, consider :

$$\min\left\{\frac{1}{2}\int_{D}|\nabla u(x)|^{2}-\int_{D}f(x)u(x)dx, \ u\in H^{1}(D), \ u \text{ convex}\right\}$$

(existence if $\int_D f = 0$)

Theorem (Caffarelli-Carlier-Lions 2015-unpublished)

If $f \in L^{\infty}(D)$ and u_0 is a solution, then u_0 is $C^{1,1}_{loc}(D)$.

First ingredient : Model problem in the calculus of variations

Given D a convex bounded set, consider :

$$\min\left\{\frac{1}{2}\int_{D}|\nabla u(x)|^{2}-\int_{D}f(x)u(x)dx, \ u\in H^{1}(D), \ u \text{ convex}\right\}$$

(existence if $\int_D f = 0$)

Theorem (Caffarelli-Carlier-Lions 2015-unpublished)

If $f \in L^{\infty}(D)$ and u_0 is a solution, then u_0 is $C^{1,1}_{loc}(D)$.

• Proof by a slicing procedure.

Regularity Theory

Ideas of the proof of the main result (ii)

Rough strategy

Let Ω be a **qpmcc**.

Ideas of the proof of the main result (ii) Rough strategy

Let Ω be a **qpmcc**.

- **(**) Ω is locally the graph of a convex function $u: D \to \mathbb{R}$,
- **2** $P(\Omega)$ will behave similarly to $\int_D |\nabla u|^2$,
- The error term $R(\Omega)$ will behave similarly to $\int_D fu$

Ideas of the proof of the main result (ii) Rough strategy

Let Ω be a **qpmcc**.

- **(**) Ω is locally the graph of a convex function $u: D \to \mathbb{R}$,
- **2** $P(\Omega)$ will behave similarly to $\int_D |\nabla u|^2$,
- The error term $R(\Omega)$ will behave similarly to $\int_D fu$

 $\forall v : D \to \mathbb{R} \text{ convex such that } v \ge u \text{ and } v = u \text{ on } \partial D, \\ \int_D \sqrt{1 + |\nabla u|^2} \le \int_D \sqrt{1 + |\nabla v|^2} + \Lambda \int_D (v - u)$

Similar strategy as [Caffarelli-Carlier-Lions]?

Main issue

• It works "easily" if n = 2 or if Ω is strictly convex,

Ideas of the proof of the main result (iii) Main issue

- It works "easily" if n = 2 or if Ω is strictly convex,
- It does not work in the general case as the set

$$\left\{ v \ge u \text{ such that } v = u \text{ on } \partial D \right\}$$

may only contain u.

Ideas of the proof of the main result (iii) Main issue

- It works "easily" if n = 2 or if Ω is strictly convex,
- It does not work in the general case as the set

$$\left\{ v \geq u \text{ such that } v = u \text{ on } \partial D \right\}$$

may only contain u.

Solution of the main issue

• We see Ω as the graph of $u: D \to \mathbb{R}$ with D maximal,

Solution of the main issue

- We see Ω as the graph of $u: D \to \mathbb{R}$ with D maximal,
- Then for $v \ge u$ convex, we use $\Omega_v := \Omega \cap \mathsf{Epi}(v)$.

Solution of the main issue

- We see Ω as the graph of $u: D \to \mathbb{R}$ with D maximal,
- Then for $v \ge u$ convex, we use $\Omega_v := \Omega \cap \mathsf{Epi}(v)$.

Solution of the main issue

- We see Ω as the graph of $u: D \to \mathbb{R}$ with D maximal,
- Then for $v \ge u$ convex, we use $\Omega_v := \Omega \cap \mathsf{Epi}(v)$.

•
$$P(\Omega) - P(\Omega_v) \ge \int_D \sqrt{1 + |\nabla u|^2} - \int_{D_v} \sqrt{1 + |\nabla v|^2}$$
 where $D_v \subset D$.
• We pick $v = v_r$ as in [Caffarelli-Carlier-Lions]
• We control $|\Omega \setminus \Omega_{v_r}|$ from above.

Outline of the talk

Convexity constraint

2 Regularity Theory

Application to Stability

Main question [Fuglede 1989], [Dambrine-Pierre 2000], [Cicalese-Leonardi 2012], [Acerbi-Fusco-Morini 2015], [Allen-Kriventsov-Neumayer 2021]...

$$\min\left\{ egin{smallmatrix} J(\Omega), & \Omega\in \mathcal{F}_{ad}
ight\}$$

$$J'(\Omega^*)=0$$
 & $J''(\Omega^*)>0$

Main question [Fuglede 1989], [Dambrine-Pierre 2000], [Cicalese-Leonardi 2012], [Acerbi-Fusco-Morini 2015], [Allen-Kriventsov-Neumayer 2021]...

$$\min\left\{ egin{smallmatrix} {\sf J}(\Omega), & \Omega\in {\cal F}_{{\sf ad}}
ight\}$$

$$\begin{array}{ll} J'(\Omega^*)=0 & \& & J''(\Omega^*)>0\\ & & \Downarrow ?\\ \Omega^* \text{ local minimum among smooth perturbations}\\ & & \Downarrow ? \end{array}$$

Main question [Fuglede 1989], [Dambrine-Pierre 2000], [Cicalese-Leonardi 2012], [Acerbi-Fusco-Morini 2015], [Allen-Kriventsov-Neumayer 2021]...

$$\min\left\{ egin{smallmatrix} {\sf J}(\Omega), & \Omega\in {\cal F}_{{\sf ad}}
ight\}$$

$$J'(\Omega^*) = 0 \quad \& \quad J''(\Omega^*) > 0$$

$$\Downarrow ?$$

$$\Omega^* \text{ local minimum among smooth perturbations}$$

$$\Downarrow ?$$

$$\Omega^* \text{ local minimum}$$

$$\min\left\{ egin{array}{c} P(\Omega)-\gamma\lambda_1(\Omega), \ |\Omega|=V_0, \ \Omega\subset B_{R_0}
ight\} \ (\gamma\geq 0) \end{array}$$

$$\min \left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ |\Omega| = V_0, \ \Omega \subset B_{R_0} \right\} \quad (\gamma \ge 0)$$

Theorem (Nitsch 2014)

If $0 \leq \gamma < \gamma_d$ (explicit), then B is a stable critical point.

$$\min\left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ |\Omega| = V_0, \ \Omega \subset B_{R_0} \right\} \quad (\gamma \ge 0)$$

Theorem (Nitsch 2014)

If $0 \leq \gamma < \gamma_d$ (explicit), then B is a stable critical point.

Theorem (Dambrine-L. 2019)

- If $0 \le \gamma < \gamma_d$, then B is a local minimum for $C^{1,1}$ -perturbations.
- **2** However, B is not a local minimum (in L^1) if $\gamma > 0$.

$$\min\left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ |\Omega| = V_0, \ \Omega \subset B_{R_0} \right\} \quad (\gamma \ge 0)$$

Theorem (Nitsch 2014)

If $0 \leq \gamma < \gamma_d$ (explicit), then B is a stable critical point.

Theorem (Dambrine-L. 2019)

- If $0 \le \gamma < \gamma_d$, then B is a local minimum for $C^{1,1}$ -perturbations.
- **2** However, B is not a local minimum (in L^1) if $\gamma > 0$.

Can we retrieve local minimality among convex sets?

Work in progress [Prunier 2022-2023]

$$\min\left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ |\Omega| = V_0, \ \Omega \subset B_{R_0}
ight\} \quad (\gamma \ge 0)$$

Theorem (Prunier)

If $\gamma < \gamma_d$, then the ball is a local minimizer for $P - \gamma \lambda_1$ among convex sets.

Work in progress [Prunier 2022-2023]

$$\min\left\{ P(\Omega) - \gamma \lambda_1(\Omega), \ |\Omega| = V_0, \ \Omega \subset B_{R_0}
ight\} \quad (\gamma \ge 0)$$

Theorem (Prunier)

If $\gamma < \gamma_d$, then the ball is a local minimizer for $P - \gamma \lambda_1$ among convex sets.

Two difficulties :

O Control the third order term in Taylor's expansion for suitable norms.

Work in progress [Prunier 2022-2023]

$$\min\left\{ egin{array}{c} P(\Omega)-\gamma\lambda_1(\Omega), \ |\Omega|=V_0, \ \Omega\subset B_{R_0}
ight\} \ (\gamma\geq 0) \end{array}$$

Theorem (Prunier)

If $\gamma < \gamma_d$, then the ball is a local minimizer for $P - \gamma \lambda_1$ among convex sets.

Two difficulties :

- **O** Control the third order term in Taylor's expansion for suitable norms.
- Selection principle among convex sets :

Theorem (Prunier)

Let $(K_j)_{j \in \mathbb{N}}$ a sequence of (Λ, ε) -qmpcc converging in L^1 to the ball and bounded in $C^{1,1}$. Then it converges to B in $C^{1,\alpha}$ for any $\alpha < 1$.