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Convexity constraint

Newton’s problem of minimal resistance [1685]

min

{∫
D

1

1 + |∇u(x)|2
dx , u : D→ [0,M], u concave

}

D = {x ∈ R2, |x | ≤ 1}

Radial symmetric solution :8 Giuseppe Buttazzo

1

Fig. 4. The optimal radial shape for M = R.

2

Fig. 5. The optimal radial shape for M = 2R.

1-
2

Fig. 6. The optimal radial shape for M = R/2.
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Convexity constraint

Newton’s problem of minimal resistance [1685]

Non radial solutions [Guasoni 1995], [Buttazzo-Ferone-Kawohl, 1995] - Numerical
computations [Lachand-Robert - Oudet, 2004]
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Convexity constraint

Shape optimization under convexity constraint

We are interested in problems of the form

min
{
J(Ω), Ω ⊂ Rd is convex , Ω ∈ Fad

}

where

Ω 7→ J(Ω) is a shape functional,

Fad is a class of admissible sets (volume constraint, box constraint...)
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Convexity constraint

Shape optimization under convexity constraint

min
{
J(Ω), Ω ⊂ Rd is convex , Ω ∈ Fad

}
Usual questions of optimization :

Existence of a minimum,

Properties of optimal shapes (symmetry, regularity...),

Numerical computations ([Choné-Le Meur 2001], [Mérigot-Oudet 2014], [Mirebeau

2015], [Antunes-Bogosel 2019], [Ftouhi 2022], [Bogosel 2022]...)

Existence is usually “easier”,
but the rest is delicate

(the “neighbour” of a convex set is not convex in general)
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Convexity constraint

Some examples

1 [Henrot-Oudet 2003]

min
{
λ2(Ω), |Ω| = V0, Ω convex ⊂ R2

}

2 [Andrews-Clutterbuck 2011] Fundamental gap

inf
{
λ2(Ω)− λ1(Ω), Diam(Ω) = d0, Ω convex ⊂ Rn

}
3 [Bucur-Fragalà 2016] [L.-Novruzi-Pierre 2022] Reverse Faber-Krahn :

max
{
λ1(Ω), Ω convex , Ω ⊂ [0, 1]2, |Ω| = V0

}
Theorem[L.-Novruzi-Pierre 2022] Solutions are polygons

4 Pólya-Szegö conjecture [Jerison’s talk], max T (Ω)cap(Ω)
|Ω|2 [van den Berg’s talk]
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4 Pólya-Szegö conjecture [Jerison’s talk], max T (Ω)cap(Ω)
|Ω|2 [van den Berg’s talk]

Jimmy Lamboley (Sorbonne, Paris) 21/09/22 8 / 21



Convexity constraint

An example coming from Blaschke-Santaló diagrams
[Cox-Ross 1995], [Antunes-Freitas 2006], [Ftouhi 2022]

max
{
λ1(Ω), |Ω| = 1, P(Ω) = p0, Ω convex ⊂ R2

}

Theorem (L.-Novruzi-Pierre 2012, Ftouhi-L. 2021)

For any p0 ≥ P(B), there exists a solution, and it is C 1,1.
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Regularity Theory

Class of isoperimetric problems

Consider
min

{
P(Ω) + R(Ω), Ω open convex ⊂ Rn

}
where P(Ω) = Hn−1(∂Ω), and Ω 7→ R(Ω) is a perturbative term.

What is the regularity of optimal shapes ?

Classical setting (no convexity constraint) :

Definition

Ω is a quasi-minimizer of the perimeter if for every Ω′ such that Ω′∆Ω ⊂ Br for
r ≤ r0,

P(Ω) ≤ P(Ω′) + Λrn−1+α ( α ∈ (0, 1] )

Theorem

A quasi-minimizer of the perimeter is C 1,α/2 up to a small set of dimension less
than d − 8.
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Regularity Theory

Quasi-minimizer of the perimeter under convexity
constraint

Definition

Given Λ, ε > 0, Ω is a (Λ, ε)-quasi-minimizer of the perimeter under convexity
constraint (qmpcc) if for every Ω′ convex in Rn such that Ω′ ⊂ Ω and
|Ω \ Ω′| ≤ ε,

P(Ω) ≤ P(Ω′) + Λ|Ω \ Ω′|

Theorem (L.-Prunier 2022)

If Ω in an open convex set and is a qmpcc, then ∂Ω is C 1,1.

The result is sharp [Alvino-Ferone-Nitsch 2011] : the solution of

min
{

P(Ω)−P(B)
P(B)A(Ω)2 , Ω convex ⊂ R2

}
is a stadium, where A is the Fraenkel asymmetry.
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Regularity Theory

Applications

1 R = λn or R = µn is allowed :

Proposition (L.-Prunier 2022)

Given D ′ ⊂ D ⊂ RN convex, n ∈ N∗, then there exists C = C (n,D ′,D) > 0 such
that

∀D ′ ⊂ Ω′ ⊂ Ω ⊂ D, |λn(Ω)− λn(Ω′)| ≤ C |Ω \ Ω′|

2 One can handle volume constraint, as well as inclusion in a box.

Corollary

Solutions to

min
{
P(Ω)− γλ1(Ω), Ω convex ⊂ BR0 , |Ω| = V0

}
are C 1,1.
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Regularity Theory

Ideas of the proof of the main result (i)
First ingredient : Model problem in the calculus of variations

Given D a convex bounded set, consider :

min

{
1

2

∫
D

|∇u(x)|2 −
∫
D

f (x)u(x)dx , u ∈ H1(D), u convex

}

(existence if
∫
D
f = 0)

Theorem (Caffarelli-Carlier-Lions 2015-unpublished)

If f ∈ L∞(D) and u0 is a solution, then u0 is C 1,1
loc (D).

Proof by a slicing procedure.
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Regularity Theory

Ideas of the proof of the main result (ii)
Rough strategy

Let Ω be a qpmcc.

1 Ω is locally the graph of a convex function u : D → R,

2 P(Ω) will behave similarly to
∫
D
|∇u|2,

3 The error term R(Ω) will behave similarly to
∫
D
fu

∀v : D → R convex such that v ≥ u and v = u on ∂D,∫
D

√
1 + |∇u|2 ≤

∫
D

√
1 + |∇v |2 + Λ

∫
D

(v − u)

Similar strategy as [Caffarelli-Carlier-Lions] ?
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Regularity Theory

Ideas of the proof of the main result (iii)
Main issue

It works “easily” if n = 2 or if Ω is strictly convex,

It does not work in the general case as the set{
v ≥ u such that v = u on ∂D

}
may only contain u.
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Regularity Theory

Ideas of the proof of the main result (iv)
Solution of the main issue

We see Ω as the graph of u : D → R with D maximal,

Then for v ≥ u convex, we use Ωv := Ω ∩ Epi(v).

1 P(Ω)− P(Ωv ) ≥
∫
D

√
1 + |∇u|2 −

∫
Dv

√
1 + |∇v |2 where Dv ⊂ D.

2 We pick v = vr as in [Caffarelli-Carlier-Lions]
3 We control |Ω \ Ωvr | from above.
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Application to Stability

Outline of the talk

1 Convexity constraint

2 Regularity Theory

3 Application to Stability
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Application to Stability

Main question [Fuglede 1989], [Dambrine-Pierre 2000], [Cicalese-Leonardi

2012], [Acerbi-Fusco-Morini 2015], [Allen-Kriventsov-Neumayer 2021]...

min
{
J(Ω), Ω ∈ Fad

}

J ′(Ω∗) = 0 & J ′′(Ω∗) > 0
⇓ ?

Ω∗ local minimum among smooth perturbations
⇓ ?

Ω∗ local minimum
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Application to Stability

Example : “Isoperimetric/reverse Faber-Krahn problem”

min
{
P(Ω)− γλ1(Ω), |Ω| = V0, Ω ⊂ BR0

}
(γ ≥ 0)

Theorem (Nitsch 2014)

If 0 ≤ γ < γd (explicit), then B is a stable critical point.

Theorem (Dambrine-L. 2019)

1 If 0 ≤ γ < γd , then B is a local minimum for C 1,1-perturbations.

2 However, B is not a local minimum (in L1) if γ > 0.

Can we retrieve local minimality among convex sets ?
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Application to Stability

Work in progress [Prunier 2022-2023]

min
{
P(Ω)− γλ1(Ω), |Ω| = V0, Ω ⊂ BR0

}
(γ ≥ 0)

Theorem (Prunier)

If γ < γd , then the ball is a local minimizer for P − γλ1 among convex sets.

Two difficulties :

1 Control the third order term in Taylor’s expansion for suitable norms.

2 Selection principle among convex sets :

Theorem (Prunier)

Let (Kj)j∈N a sequence of (Λ, ε)-qmpcc converging in L1 to the ball and bounded
in C 1,1. Then it converges to B in C 1,α for any α < 1.
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