The behaviour of the spectrum of the Robin Laplacian with a complex boundary parameter

James Kennedy

> Grupo de Física Matemática
> Faculdade de Ciências da Universidade de Lisboa
> Based on joint work with Sabine Bögli (Durham) and Robin Lang (Stuttgart)

Shape optimisation and geometric spectral theory ICMS, Edinburgh
 21 September, 2022

Work funded by the Portuguese Science Foundation (FCT), grant reference IF/01461/2015

Grupo de
Física Matemática
da Universidade de Lishoa

FCT Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÈNCLA, TECNOLOGLA E ENSINO SUPERIOR

The Robin Laplacian

The Laplacian eigenvalue problem on a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{d}$, treated as fixed:

$$
\begin{aligned}
-\Delta u \equiv-\sum_{k=1}^{d} \frac{\partial^{2} u}{\partial x_{k}^{2}} & =\lambda u & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\alpha u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

- Here: ν outer unit normal to $\partial \Omega ; \alpha$ constant/parameter
- Weak formulation: for all $v \in H^{1}(\Omega)$,

$$
a_{\alpha}(\psi, v):=\int_{\Omega} \nabla \psi \cdot \overline{\nabla v} d x+\alpha \int_{\partial \Omega} \psi \bar{v} d \sigma=\lambda \int_{\Omega} \psi \bar{v} d x
$$

Formally we define the Robin Laplacian $-\Delta_{\alpha}$ to be the operator on $L^{2}(\Omega)$ associated with the sesquilinear form a_{α} on $H^{1}(\Omega)$.

- If $\alpha \in \mathbb{R}$, then there is an eigenvalue sequence

$$
\lambda_{1}(\alpha)<\lambda_{2}(\alpha) \leq \lambda_{3}(\alpha) \leq \ldots \rightarrow \infty
$$

and the eigenfunctions form an orthonormal basis of $L^{2}(\Omega)$

- If $\alpha \in \mathbb{R}$, then we have the usual variational characterisations, e.g.:

$$
\lambda_{1}(\alpha)=\inf _{0 \neq u \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2} d x+\alpha \int_{\partial \Omega}|u|^{2} d \sigma}{\int_{\Omega}|u|^{2} \mathrm{~d} x}
$$

- Kato theory: for fixed Ω the eigenvalues depend analytically on α except at a locally finite number of crossing points
- $\alpha=0 \rightsquigarrow$ Neumann, $\alpha=\infty \rightsquigarrow$ formally Dirichlet
- As $\alpha \rightarrow+\infty$, all eigenvalues converge to their Dirichlet counterparts from below
- As $\alpha \rightarrow-\infty$, some eigenvalues converge to their Dirichlet counterparts from above, others diverge to $-\infty$

The first few eigenvalues of the interval of length 1 (left) and the disk of radius 1 (right) as functions of $\alpha \in \mathbb{R}$

- As $\alpha \rightarrow \infty, \lambda_{k}(\alpha) \rightarrow \lambda_{k}^{D}, k$ th Dirichlet eigenvalue Rate of convergence: $\left|\lambda_{k}(\alpha)-\lambda_{k}^{D}\right| \leq C / \sqrt{\alpha}$ (works of Filinovskiy 2014-17)
- For $\alpha<0, \lambda_{1}(\alpha)<-\alpha^{2}$ always (Giorgi-Smits 2007): fix a unit vector $v \in \mathbb{R}^{d}$ and use $u_{v}(x)=e^{\alpha x \cdot v}$ as a test function
$\operatorname{In} 1 \mathrm{D}, u(x)=e^{\alpha x}$ solves

$$
\begin{aligned}
-u^{\prime \prime} & =\left(-\alpha^{2}\right) u \quad \text { in }(0, \infty) \\
-u^{\prime}(0)+\alpha u(0) & =0
\end{aligned}
$$

- If Ω is C^{1}, then for each $k \geq 1$

$$
\lambda_{k}(\alpha)=-\alpha^{2}+o\left(\alpha^{2}\right) \quad \text { as } \alpha \rightarrow-\infty
$$

(Lacey-Ockendon-Sabina 1998, Lou-Zhu 2004, Daners-K. 2010)

- If Ω has corners, then $\lambda_{k}(\alpha)=-C(\Omega, k) \alpha^{2}+o\left(\alpha^{2}\right)$ for some $C(\Omega, k) \geq 1$ (Lacey-Ockendon-Sabina 1998, Levitin-Parnovski 2008, works of Khalile-Pankrashkin 2018+)
- For Ω smooth, more terms in the asymptotic expansion in α are known and involve the maximal mean curvature of $\partial \Omega$ (Exner-Minakov-Parnovski 2014; Freitas-Krejčiřík 2015; Pankrashkin-Popoff 2015; Helffer-Kachmar 2017, ...)

The case of complex α

- $-\Delta_{\alpha}$ still has discrete spectrum but no longer self-adjoint
- Complex eigenvalues and no variational principles
- The eigenvalues still depend meromorphically on $\alpha \in \mathbb{C}$ (Kato!), but there is no natural "enumeration" of them
- The eigenfunctions no longer form an ONB of $L^{2}(\Omega)$

Theorem: basic properties (BKL)

Let $\lambda_{k}\left(\alpha_{0}\right), k \in \mathbb{N}$, be an enumeration of the eigenvalues for some $\alpha_{0} \in \mathbb{R}$ (repeated according to their finite multiplicities). Then each $\lambda_{k}\left(\alpha_{0}\right)$, and its corresponding eigenprojection, may be extended to a meromorphic function of $\alpha \in \mathbb{C}$ (holomorphic outside crossing points), such that for any α, these eigenvalues form the totality of the spectrum of $-\Delta_{\alpha}$. At crossing points, the weighted eigenvalue mean and the total eigenprojection are holomorphic.

Based on the real case as well as explicit calculations for intervals, balls, hyperrectangles:

Conjecture

$\Omega \subset \mathbb{R}^{d}$ bounded Lipschitz, $\alpha \rightarrow \infty$ in \mathbb{C}.
(1) If $\operatorname{Re} \alpha$ remains bounded from below, then each EV converges to a Dirichlet EV
(2) If $\operatorname{Re} \alpha \rightarrow-\infty$, then there is a sequence of absolutely divergent EVs. Any limit point of any non-divergent EV curve is a Dirichlet EV

- Ω smooth $\left(C^{1}\right)$: divergent EVs behave like $-\alpha^{2}+o\left(\alpha^{2}\right)$
- Ω Lipschitz: each divergent EV curve behaves like $-C \alpha^{2}+o\left(\alpha^{2}\right)$ for some C depending on that curve (and Ω)

Today: bounds on the numerical range, which control the possible rate of divergence of the EVs
Sabine's talk: more on the eigenvalue curves, especially via the Dirichlet-to-Neumann operator

Observation ("refined trace inequality")

For any Lipschitz Ω, there exists $C=C_{\Omega}>0$ such that

$$
\int_{\partial \Omega}|u|^{2} d \sigma \leq C_{\Omega}\|u\|_{H^{1}(\Omega)}\|u\|_{L^{2}(\Omega)}
$$

for all $u \in H^{1}(\Omega)$.

Lemma

- There exist constants $C_{1} \geq 2$ and $C_{2}>0$ depending on Ω such that

$$
\int_{\partial \Omega}|u|^{2} d \sigma \leq C_{1}\|\nabla u\|_{L^{2}(\Omega)}+C_{2}
$$

for all $u \in H^{1}(\Omega)$ with $L^{2}(\Omega)$-norm 1 .

- If Ω is C^{2}, then we may choose $C_{1}=2$ and C_{2} an explicit constant related to the maximal mean curvature of $\partial \Omega$.

$$
\begin{equation*}
\int_{\partial \Omega}|u|^{2} d \sigma \leq C_{1}\|\nabla u\|_{L^{2}(\Omega)}+C_{2} \quad\left(C_{1} \geq 2, C_{2}>0\right) \tag{1}
\end{equation*}
$$

Numerical range of the Robin form a_{α} is the set of values the Rayleigh quotient can take,

$$
\left\{z \in \mathbb{C}: z=a_{\alpha}(u) \text { for some } u \in H^{1}(\Omega):\|u\|_{L^{2}(\Omega)}=1\right\}
$$

Every eigenvalue is in the numerical range. For

$$
t:=\int_{\Omega}|\nabla u|^{2} d x, \quad s:=\int_{\partial \Omega}|u|^{2} d \sigma
$$

(1) means that $s \in\left[0, C_{1} \sqrt{t}+C_{2}\right]$, for any u. Hence:

Theorem (BKL)

For fixed $\alpha \in \mathbb{C}$, the numerical range of a_{α}, in particular every eigenvalue λ of $-\Delta_{\alpha}$, is contained in

$$
\Lambda_{\Omega, \alpha}:=\left\{t+\alpha \cdot s \in \mathbb{C}: t \geq 0, s \in\left[0, C_{1} \sqrt{t}+C_{2}\right]\right\}
$$

The location of the eigenvalues for complex α

$$
\Lambda_{\Omega, \alpha}=\left\{t+\alpha \cdot s \in \mathbb{C}: t \geq 0, s \in\left[0, C_{1} \sqrt{t}+C_{2}\right]\right\}
$$

The region $\Lambda_{\Omega, \alpha}$ for $\operatorname{Re} \alpha>0, \operatorname{Im} \alpha>0$.

The location of the eigenvalues for complex α

$\Lambda_{\Omega, \alpha}$ for $\operatorname{Re} \alpha<0$ and two different choices of $\operatorname{Im} \alpha>0$.
Claim: $\operatorname{Re} \lambda \geq-\frac{C_{1}^{2}}{4}(\operatorname{Re} \alpha)^{2}+C_{2} \operatorname{Re} \alpha$.
(This also means that Δ_{α} generates a cosine function.)

$$
\int_{\partial \Omega}|u|^{2} d \sigma \leq C_{1}\|\nabla u\|_{L^{2}(\Omega)}+C_{2} \quad\left(C_{1} \geq 2, C_{2}>0\right)
$$

Use the elementary inequality

$$
2\|\nabla u\|_{L^{2}(\Omega)} \leq \frac{C_{1}|\operatorname{Re} \alpha|}{2}+\frac{2}{C_{1}|\operatorname{Re} \alpha|}\|\nabla u\|_{L^{2}(\Omega)}^{2}
$$

to get, for all $u \in H^{1}(\Omega)$ with $\|u\|_{L^{2}(\Omega)}=1$,

$$
\begin{aligned}
\operatorname{Re} a_{\alpha}(u) & =\|\nabla u\|_{L^{2}(\Omega)}^{2}+\operatorname{Re} \alpha \int_{\partial \Omega}|u|^{2} d \sigma \\
& \geq\|\nabla u\|_{L^{2}(\Omega)}^{2}+C_{1} \operatorname{Re} \alpha\|\nabla u\|_{L^{2}(\Omega)}+C_{2} \operatorname{Re} \alpha \\
& \geq-\left(\frac{C_{1}}{2}\right)^{2}(\operatorname{Re} \alpha)^{2}+C_{2} \operatorname{Re} \alpha .
\end{aligned}
$$

Consequences in the real case, $\alpha<0$

- For general Lipschitz Ω, there exists $C_{\Omega} \geq 1$ such that

$$
\lambda_{1}(\alpha) \geq-C_{\Omega} \alpha^{2}
$$

(C_{Ω} could be estimated explicitly based on knowledge of Ω; comes from a covering of $\partial \Omega$ and the behaviour of ν inside each neighbourhood of the covering)

- For $\Omega \in C^{2}$, there exists $C_{2}>0$ related to the maximal mean curvature such that

$$
\lambda_{1}(\alpha) \geq-\alpha^{2}+C_{2} \alpha ;
$$

in particular, combined with the test function argument of Giorgi-Smits $\left(\lambda_{1}(\alpha)<-\alpha^{2}\right)$,

$$
\lambda_{1}(\alpha)=-\alpha^{2}+O(|\alpha|)
$$

With the argument of Daners-K. an alternative proof that $\lambda_{k}(\alpha) \sim-\alpha^{2}$ for each fixed k (avoiding the blow-up argument of Lou-Zhu and the Dirichlet-Neumann bracketing/operator decomposition used for the higher terms of the asymptotics)

Not clear if

$$
\lambda_{1}(\alpha)=-\alpha^{2}+O(|\alpha|)
$$

should hold if $\Omega \in C^{1}$ only, the constant C_{2} is given as follows:

- Choose $\varepsilon>0$ such that level surface S_{t} of the distance function to the boundary is a smooth manifold at distance $t \in[0, \varepsilon]$

- $\bar{\kappa}^{S_{t}}(x)=$ mean curvature of $S_{t} \in C^{2}$ at x
- Then we may take

$$
C_{2}=\varepsilon^{-1}+(d-1) \max _{t \in[0, \varepsilon]} \max _{x \in S_{t}}\left|\bar{\kappa}^{S_{t}}(x)\right|
$$

- For comparison: if $\Omega \in C^{3}$, then

$$
\lambda_{1}(\alpha)=-\alpha^{2}+\left[(d-1) \max _{x \in \partial \Omega} \bar{\kappa}^{\partial \Omega}(x)\right] \alpha+O\left(|\alpha|^{2 / 3}\right)
$$

Thank you
 for your attention!

Reference: S. Bögli, J. B. K. and R. Lang, On the eigenvalues of the Robin Laplacian with a complex parameter, Anal. Math. Phys. 12 (2022), 39

