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The Robin Laplacian

The Laplacian eigenvalue problem on a bounded Lipschitz domain
Ω ⊂ Rd , treated as fixed:

−∆u ≡ −
d∑

k=1

∂2u

∂x2k
= λu in Ω

∂u

∂ν
+ αu = 0 on ∂Ω

Here: ν outer unit normal to ∂Ω; α constant/parameter

Weak formulation: for all v ∈ H1(Ω),

aα(ψ, v) :=

∫
Ω
∇ψ · ∇v dx + α

∫
∂Ω
ψ v dσ = λ

∫
Ω
ψ v dx

Formally we define the Robin Laplacian −∆α to be the
operator on L2(Ω) associated with the sesquilinear form aα on
H1(Ω).
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If α ∈ R, then there is an eigenvalue sequence

λ1(α) < λ2(α) ≤ λ3(α) ≤ . . .→ ∞

and the eigenfunctions form an orthonormal basis of L2(Ω)

If α ∈ R, then we have the usual variational characterisations,
e.g.:

λ1(α) = inf
0̸=u∈H1(Ω)

∫
Ω |∇u|2 dx + α

∫
∂Ω |u|2 dσ∫

Ω |u|2 dx

Kato theory: for fixed Ω the eigenvalues depend analytically
on α except at a locally finite number of crossing points

α = 0⇝ Neumann, α = ∞⇝ formally Dirichlet
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As α→ +∞, all eigenvalues converge to their Dirichlet
counterparts from below

As α→ −∞, some eigenvalues converge to their Dirichlet
counterparts from above, others diverge to −∞

The first few eigenvalues of the interval of length 1 (left) and the
disk of radius 1 (right) as functions of α ∈ R
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As α→ ∞, λk(α) → λDk , kth Dirichlet eigenvalue
Rate of convergence: |λk(α)− λDk | ≤ C/

√
α

(works of Filinovskiy 2014-17)

For α < 0, λ1(α) < −α2 always (Giorgi–Smits 2007):
fix a unit vector v ∈ Rd and use uv (x) = eαx ·v as a test
function

In 1D, u(x) = eαx solves

−u′′ = (−α2)u in (0,∞)

−u′(0) + αu(0) = 0

If Ω is C 1, then for each k ≥ 1

λk(α) = −α2 + o(α2) as α→ −∞

(Lacey–Ockendon–Sabina 1998, Lou–Zhu 2004, Daners–K.
2010)
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If Ω has corners, then λk(α) = −C (Ω, k)α2 + o(α2)
for some C (Ω, k) ≥ 1 (Lacey–Ockendon–Sabina 1998,
Levitin–Parnovski 2008, works of Khalile–Pankrashkin 2018+)

For Ω smooth, more terms in the asymptotic expansion in α
are known and involve the maximal mean curvature of ∂Ω
(Exner–Minakov–Parnovski 2014; Freitas–Krejčǐŕık 2015;
Pankrashkin–Popoff 2015; Helffer–Kachmar 2017, . . . )
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The case of complex α

−∆α still has discrete spectrum but no longer self-adjoint

Complex eigenvalues and no variational principles

The eigenvalues still depend meromorphically on α ∈ C
(Kato!), but there is no natural “enumeration” of them

The eigenfunctions no longer form an ONB of L2(Ω)

Theorem: basic properties (BKL)

Let λk(α0), k ∈ N, be an enumeration of the eigenvalues for some
α0 ∈ R (repeated according to their finite multiplicities). Then
each λk(α0), and its corresponding eigenprojection, may be
extended to a meromorphic function of α ∈ C (holomorphic outside
crossing points), such that for any α, these eigenvalues form the
totality of the spectrum of −∆α. At crossing points, the weighted
eigenvalue mean and the total eigenprojection are holomorphic.
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Based on the real case as well as explicit calculations for intervals,
balls, hyperrectangles:

Conjecture

Ω ⊂ Rd bounded Lipschitz, α→ ∞ in C.
(1) If Reα remains bounded from below, then each EV converges

to a Dirichlet EV
(2) If Reα→ −∞, then there is a sequence of absolutely

divergent EVs. Any limit point of any non-divergent EV curve
is a Dirichlet EV

Ω smooth (C 1): divergent EVs behave like −α2 + o(α2)
Ω Lipschitz: each divergent EV curve behaves like
−Cα2 + o(α2) for some C depending on that curve (and Ω)

Today: bounds on the numerical range, which control the possible
rate of divergence of the EVs
Sabine’s talk: more on the eigenvalue curves, especially via the
Dirichlet-to-Neumann operator
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Observation (“refined trace inequality”)

For any Lipschitz Ω, there exists C = CΩ > 0 such that∫
∂Ω

|u|2 dσ ≤ CΩ∥u∥H1(Ω)∥u∥L2(Ω)

for all u ∈ H1(Ω).

Lemma

There exist constants C1 ≥ 2 and C2 > 0 depending on Ω
such that ∫

∂Ω
|u|2 dσ ≤ C1∥∇u∥L2(Ω) + C2

for all u ∈ H1(Ω) with L2(Ω)-norm 1.

If Ω is C 2, then we may choose C1 = 2 and C2 an explicit
constant related to the maximal mean curvature of ∂Ω.
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∫
∂Ω

|u|2 dσ ≤ C1∥∇u∥L2(Ω) + C2 (C1 ≥ 2, C2 > 0) (1)

Numerical range of the Robin form aα is the set of values the
Rayleigh quotient can take,{

z ∈ C : z = aα(u) for some u ∈ H1(Ω) : ∥u∥L2(Ω) = 1
}
.

Every eigenvalue is in the numerical range. For

t :=

∫
Ω
|∇u|2 dx , s :=

∫
∂Ω

|u|2 dσ,

(1) means that s ∈ [0,C1

√
t + C2], for any u. Hence:

Theorem (BKL)

For fixed α ∈ C, the numerical range of aα, in particular every
eigenvalue λ of −∆α, is contained in

ΛΩ,α :=
{
t + α · s ∈ C : t ≥ 0, s ∈ [0,C1

√
t + C2]

}
.
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The location of the eigenvalues for complex α

ΛΩ,α =
{
t + α · s ∈ C : t ≥ 0, s ∈ [0,C1

√
t + C2]

}

The region ΛΩ,α for Reα > 0, Imα > 0.
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The location of the eigenvalues for complex α

ΛΩ,α for Reα < 0 and two different choices of Imα > 0.

Claim: Reλ ≥ −C 2
1

4
(Reα)2 + C2Reα.

(This also means that ∆α generates a cosine function.)
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∫
∂Ω

|u|2 dσ ≤ C1∥∇u∥L2(Ω) + C2 (C1 ≥ 2, C2 > 0)

Use the elementary inequality

2∥∇u∥L2(Ω) ≤
C1|Reα|

2
+

2

C1|Reα|
∥∇u∥2L2(Ω)

to get, for all u ∈ H1(Ω) with ∥u∥L2(Ω) = 1,

Re aα(u) = ∥∇u∥2L2(Ω) + Reα

∫
∂Ω

|u|2 dσ

≥ ∥∇u∥2L2(Ω) + C1Reα∥∇u∥L2(Ω) + C2Reα

≥ −
(
C1

2

)2

(Reα)2 + C2Reα.
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Consequences in the real case, α < 0

For general Lipschitz Ω, there exists CΩ ≥ 1 such that

λ1(α) ≥ −CΩα
2

(CΩ could be estimated explicitly based on knowledge of Ω;
comes from a covering of ∂Ω and the behaviour of ν inside
each neighbourhood of the covering)
For Ω ∈ C 2, there exists C2 > 0 related to the maximal mean
curvature such that

λ1(α) ≥ −α2 + C2α;

in particular, combined with the test function argument of
Giorgi–Smits (λ1(α) < −α2),

λ1(α) = −α2 + O(|α|).

With the argument of Daners–K. an alternative proof that
λk(α) ∼ −α2 for each fixed k (avoiding the blow-up argument
of Lou–Zhu and the Dirichlet-Neumann bracketing/operator
decomposition used for the higher terms of the asymptotics)
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Not clear if
λ1(α) = −α2 + O(|α|)

should hold if Ω ∈ C 1 only, the constant C2 is given as follows:

Choose ε > 0 such that level surface St of the distance
function to the boundary is a smooth manifold at distance
t ∈ [0, ε]

κ̄St (x) = mean curvature of St ∈ C 2 at x
Then we may take

C2 = ε−1 + (d − 1) max
t∈[0,ε]

max
x∈St

|κ̄St (x)|

For comparison: if Ω ∈ C 3, then

λ1(α) = −α2 +
[
(d − 1) max

x∈∂Ω
κ̄∂Ω(x)

]
α+ O(|α|2/3)
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Thank you
for your attention!

Reference: S. Bögli, J. B. K. and R. Lang, On the eigenvalues of
the Robin Laplacian with a complex parameter, Anal. Math. Phys.
12 (2022), 39
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